Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method
Purpose To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation. Methods The hybrid se...
Saved in:
Published in | Magnetic resonance in medicine Vol. 72; no. 1; pp. 178 - 187 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.07.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation.
Methods
The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two‐point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High‐intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1/dT across subjects.
Results
The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat‐only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C.
Conclusion
The results demonstrate the capability of real‐time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Magn Reson Med 72:178–187, 2014. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation. Methods The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1/dT across subjects. Results The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. Conclusion The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Magn Reson Med 72:178-187, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Purpose To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation. Methods The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two‐point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High‐intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1/dT across subjects. Results The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat‐only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. Conclusion The results demonstrate the capability of real‐time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Magn Reson Med 72:178–187, 2014. © 2013 Wiley Periodicals, Inc. To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation.PURPOSETo present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation.The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects.METHODSThe hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects.The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C.RESULTSThe water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C.The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast.CONCLUSIONThe results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. |
Author | Payne, Allison Diakite, Mahamadou Odéen, Henrik Parker, Dennis L. Todd, Nick |
AuthorAffiliation | 2 Department of Radiology, University of Utah, Salt Lake City, Utah, USA 1 Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA |
AuthorAffiliation_xml | – name: 1 Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA – name: 2 Department of Radiology, University of Utah, Salt Lake City, Utah, USA |
Author_xml | – sequence: 1 givenname: Mahamadou surname: Diakite fullname: Diakite, Mahamadou email: bijoumd@hotmail.com organization: Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA – sequence: 2 givenname: Henrik surname: Odéen fullname: Odéen, Henrik organization: Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA – sequence: 3 givenname: Nick surname: Todd fullname: Todd, Nick organization: Department of Radiology, University of Utah, Utah, Salt Lake City, USA – sequence: 4 givenname: Allison surname: Payne fullname: Payne, Allison organization: Department of Radiology, University of Utah, Utah, Salt Lake City, USA – sequence: 5 givenname: Dennis L. surname: Parker fullname: Parker, Dennis L. organization: Department of Radiology, University of Utah, Utah, Salt Lake City, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23901014$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQgC1URNPCgT-ALHHhsq3ttfdxQUIVlEcLUhTE0fKuZxOXXTv40Ta_jz-Gk5TwONmyv_lmPJ4TdGSdBYSeU3JGCWHnk5_OGG8JeYRmVDBWMNHyIzQjNSdFSVt-jE5CuCGEtG3Nn6BjVraEEspn6OfC3SmvsQc1FtFMgCNMa_AqJg94ctZE541dYmPxoCJWVmP1I4FLAUcTQgKs0w6Y1NJCNH1WBWeV7aFYJqNB45VZrgpjI9hg4gYPrk8hH6cxehVcysYUtgaF48oDFDqXkdEsGfHau-jsHycePOT0tt_gBcUTxJXTT9HjQY0Bnj2sp-jru7eLi_fF1ZfLDxdvrgrDSU2KvmUN7ekAtOOgBGjdd0NHFC2HVjUNzz0RvOmaVlW6I60gfVepkitVC1p3tCtP0eu9d526CXQPNj9glGtvJuU30ikj_72xZiWX7lYKXjJa0ix49SDwLj8iRDmZ0MM4KrttqKSirGkjWrZFX_6H3rjkc0d2lKgqzhuWqRd_V3Qo5ff_ZuB8D9yZETaHe0rkdnBkHhy5Gxx5Pb_ebXJEsY8wIcL9IUL577Kqy1rIb58v5bxpqk9z9jEn-gXzIc02 |
CODEN | MRMEEN |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.24900 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 187 |
ExternalDocumentID | PMC5432131 3334852261 23901014 MRM24900 ark_67375_WNG_R886KR2J_2 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: The Ben B. and Iris M. Margolis Foundation – fundername: National Institutes of Health funderid: R01 CA134599 – fundername: Siemens Medical Solutions – fundername: NCI NIH HHS grantid: R01 CA172787 – fundername: NCI NIH HHS grantid: R01 CA134599 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AGHNM CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-i4070-c9281c1fe1b4ea5eddcbfb0a13f9a884390548b89a6db0950cb6a34aa7517b1b3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:18:50 EDT 2025 Fri Jul 11 16:44:13 EDT 2025 Fri Jul 25 12:13:07 EDT 2025 Thu Apr 03 06:55:42 EDT 2025 Wed Jan 22 16:29:07 EST 2025 Wed Oct 30 10:04:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | fat temperature aqueous tissue |
Language | English |
License | Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4070-c9281c1fe1b4ea5eddcbfb0a13f9a884390548b89a6db0950cb6a34aa7517b1b3 |
Notes | The Ben B. and Iris M. Margolis Foundation National Institutes of Health - No. R01 CA134599 ArticleID:MRM24900 istex:C1E2DCA5BD9C59D4C55EDDF8156D56F930FC5B93 Siemens Medical Solutions ark:/67375/WNG-R886KR2J-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24900 |
PMID | 23901014 |
PQID | 1535664482 |
PQPubID | 1016391 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5432131 proquest_miscellaneous_1537185921 proquest_journals_1535664482 pubmed_primary_23901014 wiley_primary_10_1002_mrm_24900_MRM24900 istex_primary_ark_67375_WNG_R886KR2J_2 |
PublicationCentury | 2000 |
PublicationDate | July 2014 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Stollberger Rudolf, Paul W. Imaging of the active B1 field in vivo. Magn Reson Med 2005;35:246-251. Gandhi S, Daniel B, Butts K. Temperature Dependence of Relaxation Times in Bovine Adipose Tissue. In Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia, 1998. p. 701. Cusack R, Papadakis N. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage 2002;16:754-764. Blaimer M, Breuer FA, Seiberlich N, Mueller MF, Heidemann RM, Jellus V, Wiggins G, Wald LL, Griswold MA, Jakob PM. Accelerated volumetric MRI with a SENSE/GRAPPA combination. J Magn Reson Imaging 2006;24:444-450. Melhem ER, Jara H, Shakir H, Gagliano TA. Fast inversion-recovery MR: the effect of hybrid RARE readout on the null points of fat and cerebrospinal fluid. AJNR Am J Neuroradiol 1997;18:1627-1633. Parker DL. Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 1984;31:161-167. Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, Jolesz FA. Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam. Magn Reson Med 1996;36:745-752. Kuroda K, Iwabuchi T, Obara M, Honda M, Saito K, Imai Y. Temperature dependence of relaxation times in proton components of fatty acids. Magn Reson Med Sci 2011;10:177-183. Stafford RJ, Price RE, Diederich CJ, Kangasniemi M, Olsson LE, Hazle JD. Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imaging 2004;20:706-714. Dimitrov IE, Douglas D, Ren J, Smith NB, Webb AG, Sherry AD, Malloy CR. In vivo determination of human breast fat composition by 1H magnetic resonance spectroscopy at 7 T. Magn Reson Med 2012;67:20-26. Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997;37:628-630. de Zwart JA, van Gelderen P, Kelly DJ, Moonen CT. Fast magnetic-resonance temperature imaging. J Magn Reson B 1996;112:86-90. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225. Kuroda K OK, Mulkern RV, Jolesz FA. Optimization of chemical shift selective suppression of fat. Magn Reson Med 1996;40:505-510. Oros-Peusquens AM, Laurila M, Shah NJ. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. MAGMA 2008;21:131-147. Ishahara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34:814-823. Lam MK IT, Saito K, Kuruda K. Effect of Water Resonace Thermal Shift on Methylene T1 Estimation with Multiple Flip Angle Multipoint Dixon Technique for Fat Temperature Imaging. In Proceedings of the 19th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. p. 4128. Graham SJ, Bronskill MJ, Henkelman RM. Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 1998;39:198-203. Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat 2002;184:181-184. Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008;27:376-390. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004;15:223-236. Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49:515-526. Hynynen K, McDannold N, Mulkern RV, Jolesz FA. Temperature monitoring in fat with MRI. Magn Reson Med 2000;43:901-904. Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA. Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 2000;44:167. Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm (NMR imaging). IEEE Trans Med Imaging 1991;10:53-65. Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53:237-241. Blaimer M, Breuer FA, Mueller M, Seiberlich N, Ebel D, Heidemann RM, Griswold MA, Jakob PM. 2D-GRAPPA-operator for faster 3D parallel MRI. Magn Reson Med 2006;56:1359-1364. Deoni SC, Peters TM, Rutt BK. Determination of optimal angles for variable nutation proton magnetic spin-lattice, T1, and spin-spin, T2, relaxation times measurement. Magn Reson Med 2004;51:194-199. Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993;30:98-106. Sprinkhuizen SM, Bakker CJ, Ippel JH, Boelens R, Viergever MA, Bartels LW. Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. MAGMA 2012;25:33-39. Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525-533. Schabel MC, Morrell GR. Uncertainty in T(1) mapping using the variable flip angle method with two flip angles. Phys Med Biol 2009;54:N1-N8. 2002; 16 2004; 20 2006; 56 1990; 16 2011 2010 1991; 10 2000; 43 1995; 34 2000; 44 1998 2011; 10 1996; 36 1998; 39 1984; 31 2004; 51 2009; 54 2006; 24 2002; 184 2000; 12 1997; 37 2004; 15 2008; 27 1993; 30 1997; 18 2005; 53 1996; 40 2003; 49 2008; 21 2012; 25 2012; 67 1996; 112 2005; 35 21484477 - MAGMA. 2012 Feb;25(1):33-9 21960000 - Magn Reson Med Sci. 2011;10(3):177-83 17058204 - Magn Reson Med. 2006 Dec;56(6):1359-64 15548953 - Top Magn Reson Imaging. 2004 Aug;15(4):223-36 10861887 - Magn Reson Med. 2000 Jun;43(6):901-4 6724602 - IEEE Trans Biomed Eng. 1984 Jan;31(1):161-7 12594755 - Magn Reson Med. 2003 Mar;49(3):515-26 21656551 - Magn Reson Med. 2012 Jan;67(1):20-6 11936199 - Ann Anat. 2002 Mar;184(2):181-4 9094088 - Magn Reson Med. 1997 Apr;37(4):628-30 9469702 - Magn Reson Med. 1998 Feb;39(2):198-203 18222800 - IEEE Trans Med Imaging. 1991;10(1):53-65 15390144 - J Magn Reson Imaging. 2004 Oct;20(4):706-14 10893536 - Magn Reson Med. 2000 Jul;44(1):167 18219673 - J Magn Reson Imaging. 2008 Feb;27(2):376-90 11042633 - J Magn Reson Imaging. 2000 Oct;12(4):525-33 9367309 - AJNR Am J Neuroradiol. 1997 Oct;18(9):1627-33 8622590 - Magn Reson Med. 1996 Feb;35(2):246-51 12169259 - Neuroimage. 2002 Jul;16(3 Pt 1):754-64 8916025 - Magn Reson Med. 1996 Nov;36(5):745-52 8371680 - Magn Reson Med. 1993 Jul;30(1):98-106 14705061 - Magn Reson Med. 2004 Jan;51(1):194-9 18338191 - MAGMA. 2008 Mar;21(1-2):131-47 15690526 - Magn Reson Med. 2005 Jan;53(1):237-41 16786571 - J Magn Reson Imaging. 2006 Aug;24(2):444-50 8598808 - Magn Reson Med. 1995 Dec;34(6):814-23 9771566 - Magn Reson Med. 1998 Oct;40(4):505-10 2266841 - Magn Reson Med. 1990 Nov;16(2):192-225 19060359 - Phys Med Biol. 2009 Jan 7;54(1):N1-8 8661313 - J Magn Reson B. 1996 Jul;112(1):86-90 |
References_xml | – reference: Lam MK IT, Saito K, Kuruda K. Effect of Water Resonace Thermal Shift on Methylene T1 Estimation with Multiple Flip Angle Multipoint Dixon Technique for Fat Temperature Imaging. In Proceedings of the 19th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. p. 4128. – reference: Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat 2002;184:181-184. – reference: Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, Jolesz FA. Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam. Magn Reson Med 1996;36:745-752. – reference: de Zwart JA, van Gelderen P, Kelly DJ, Moonen CT. Fast magnetic-resonance temperature imaging. J Magn Reson B 1996;112:86-90. – reference: Blaimer M, Breuer FA, Seiberlich N, Mueller MF, Heidemann RM, Jellus V, Wiggins G, Wald LL, Griswold MA, Jakob PM. Accelerated volumetric MRI with a SENSE/GRAPPA combination. J Magn Reson Imaging 2006;24:444-450. – reference: Blaimer M, Breuer FA, Mueller M, Seiberlich N, Ebel D, Heidemann RM, Griswold MA, Jakob PM. 2D-GRAPPA-operator for faster 3D parallel MRI. Magn Reson Med 2006;56:1359-1364. – reference: Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008;27:376-390. – reference: Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225. – reference: Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997;37:628-630. – reference: Gandhi S, Daniel B, Butts K. Temperature Dependence of Relaxation Times in Bovine Adipose Tissue. In Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia, 1998. p. 701. – reference: Cusack R, Papadakis N. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage 2002;16:754-764. – reference: Melhem ER, Jara H, Shakir H, Gagliano TA. Fast inversion-recovery MR: the effect of hybrid RARE readout on the null points of fat and cerebrospinal fluid. AJNR Am J Neuroradiol 1997;18:1627-1633. – reference: Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49:515-526. – reference: Ishahara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34:814-823. – reference: Parker DL. Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 1984;31:161-167. – reference: Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993;30:98-106. – reference: Graham SJ, Bronskill MJ, Henkelman RM. Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 1998;39:198-203. – reference: Kuroda K OK, Mulkern RV, Jolesz FA. Optimization of chemical shift selective suppression of fat. Magn Reson Med 1996;40:505-510. – reference: Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA. Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 2000;44:167. – reference: Sprinkhuizen SM, Bakker CJ, Ippel JH, Boelens R, Viergever MA, Bartels LW. Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. MAGMA 2012;25:33-39. – reference: Stafford RJ, Price RE, Diederich CJ, Kangasniemi M, Olsson LE, Hazle JD. Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imaging 2004;20:706-714. – reference: Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004;15:223-236. – reference: Oros-Peusquens AM, Laurila M, Shah NJ. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. MAGMA 2008;21:131-147. – reference: Kuroda K, Iwabuchi T, Obara M, Honda M, Saito K, Imai Y. Temperature dependence of relaxation times in proton components of fatty acids. Magn Reson Med Sci 2011;10:177-183. – reference: Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525-533. – reference: Stollberger Rudolf, Paul W. Imaging of the active B1 field in vivo. Magn Reson Med 2005;35:246-251. – reference: Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53:237-241. – reference: Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm (NMR imaging). IEEE Trans Med Imaging 1991;10:53-65. – reference: Hynynen K, McDannold N, Mulkern RV, Jolesz FA. Temperature monitoring in fat with MRI. Magn Reson Med 2000;43:901-904. – reference: Schabel MC, Morrell GR. Uncertainty in T(1) mapping using the variable flip angle method with two flip angles. Phys Med Biol 2009;54:N1-N8. – reference: Deoni SC, Peters TM, Rutt BK. Determination of optimal angles for variable nutation proton magnetic spin-lattice, T1, and spin-spin, T2, relaxation times measurement. Magn Reson Med 2004;51:194-199. – reference: Dimitrov IE, Douglas D, Ren J, Smith NB, Webb AG, Sherry AD, Malloy CR. In vivo determination of human breast fat composition by 1H magnetic resonance spectroscopy at 7 T. Magn Reson Med 2012;67:20-26. – volume: 184 start-page: 181 year: 2002 end-page: 184 article-title: Quantification of glands and fat in breast tissue: an experimental determination publication-title: Ann Anat – volume: 34 start-page: 814 year: 1995 end-page: 823 article-title: A precise and fast temperature mapping using water proton chemical shift publication-title: Magn Reson Med – volume: 16 start-page: 754 year: 2002 end-page: 764 article-title: New robust 3‐D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images publication-title: Neuroimage – volume: 16 start-page: 192 year: 1990 end-page: 225 article-title: The NMR phased array publication-title: Magn Reson Med – volume: 35 start-page: 246 year: 2005 end-page: 251 article-title: Imaging of the active B1 field in vivo publication-title: Magn Reson Med – start-page: 349 year: 2011 end-page: 366 – volume: 53 start-page: 237 year: 2005 end-page: 241 article-title: High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 publication-title: Magn Reson Med – volume: 15 start-page: 223 year: 2004 end-page: 236 article-title: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method publication-title: Top Magn Reson Imaging – volume: 40 start-page: 505 year: 1996 end-page: 510 article-title: Optimization of chemical shift selective suppression of fat publication-title: Magn Reson Med – volume: 30 start-page: 98 year: 1993 end-page: 106 article-title: Magnetic resonance‐guided thermal surgery publication-title: Magn Reson Med – volume: 67 start-page: 20 year: 2012 end-page: 26 article-title: In vivo determination of human breast fat composition by H magnetic resonance spectroscopy at 7 T publication-title: Magn Reson Med – volume: 37 start-page: 628 year: 1997 end-page: 630 article-title: An extended two‐point Dixon algorithm for calculating separate water, fat, and B0 images publication-title: Magn Reson Med – volume: 10 start-page: 53 year: 1991 end-page: 65 article-title: Parameter relations for the Shinnar‐Le Roux selective excitation pulse design algorithm (NMR imaging) publication-title: IEEE Trans Med Imaging – volume: 56 start-page: 1359 year: 2006 end-page: 1364 article-title: 2D‐GRAPPA‐operator for faster 3D parallel MRI publication-title: Magn Reson Med – volume: 44 start-page: 167 year: 2000 article-title: Temperature mapping using the water proton chemical shift: self‐referenced method with echo‐planar spectroscopic imaging publication-title: Magn Reson Med – volume: 12 start-page: 525 year: 2000 end-page: 533 article-title: Magnetic resonance temperature imaging for guidance of thermotherapy publication-title: J Magn Reson Imaging – volume: 31 start-page: 161 year: 1984 end-page: 167 article-title: Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring publication-title: IEEE Trans Biomed Eng – volume: 20 start-page: 706 year: 2004 end-page: 714 article-title: Interleaved echo‐planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy publication-title: J Magn Reson Imaging – volume: 27 start-page: 376 year: 2008 end-page: 390 article-title: MR thermometry publication-title: J Magn Reson Imaging – start-page: 4128 year: 2010 – volume: 49 start-page: 515 year: 2003 end-page: 526 article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state publication-title: Magn Reson Med – volume: 36 start-page: 745 year: 1996 end-page: 752 article-title: Optimization of spoiled gradient‐echo phase imaging for in vivo localization of a focused ultrasound beam publication-title: Magn Reson Med – volume: 39 start-page: 198 year: 1998 end-page: 203 article-title: Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle publication-title: Magn Reson Med – volume: 18 start-page: 1627 year: 1997 end-page: 1633 article-title: Fast inversion‐recovery MR: the effect of hybrid RARE readout on the null points of fat and cerebrospinal fluid publication-title: AJNR Am J Neuroradiol – volume: 24 start-page: 444 year: 2006 end-page: 450 article-title: Accelerated volumetric MRI with a SENSE/GRAPPA combination publication-title: J Magn Reson Imaging – start-page: 701 year: 1998 – volume: 25 start-page: 33 year: 2012 end-page: 39 article-title: Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study publication-title: MAGMA – volume: 51 start-page: 194 year: 2004 end-page: 199 article-title: Determination of optimal angles for variable nutation proton magnetic spin‐lattice, T1, and spin‐spin, T2, relaxation times measurement publication-title: Magn Reson Med – volume: 43 start-page: 901 year: 2000 end-page: 904 article-title: Temperature monitoring in fat with MRI publication-title: Magn Reson Med – volume: 112 start-page: 86 year: 1996 end-page: 90 article-title: Fast magnetic‐resonance temperature imaging publication-title: J Magn Reson B – volume: 10 start-page: 177 year: 2011 end-page: 183 article-title: Temperature dependence of relaxation times in proton components of fatty acids publication-title: Magn Reson Med Sci – volume: 21 start-page: 131 year: 2008 end-page: 147 article-title: Magnetic field dependence of the distribution of NMR relaxation times in the living human brain publication-title: MAGMA – volume: 54 start-page: N1 year: 2009 end-page: N8 article-title: Uncertainty in T(1) mapping using the variable flip angle method with two flip angles publication-title: Phys Med Biol – reference: 18338191 - MAGMA. 2008 Mar;21(1-2):131-47 – reference: 15548953 - Top Magn Reson Imaging. 2004 Aug;15(4):223-36 – reference: 14705061 - Magn Reson Med. 2004 Jan;51(1):194-9 – reference: 8661313 - J Magn Reson B. 1996 Jul;112(1):86-90 – reference: 9367309 - AJNR Am J Neuroradiol. 1997 Oct;18(9):1627-33 – reference: 21484477 - MAGMA. 2012 Feb;25(1):33-9 – reference: 9469702 - Magn Reson Med. 1998 Feb;39(2):198-203 – reference: 2266841 - Magn Reson Med. 1990 Nov;16(2):192-225 – reference: 21960000 - Magn Reson Med Sci. 2011;10(3):177-83 – reference: 6724602 - IEEE Trans Biomed Eng. 1984 Jan;31(1):161-7 – reference: 12594755 - Magn Reson Med. 2003 Mar;49(3):515-26 – reference: 8371680 - Magn Reson Med. 1993 Jul;30(1):98-106 – reference: 12169259 - Neuroimage. 2002 Jul;16(3 Pt 1):754-64 – reference: 11936199 - Ann Anat. 2002 Mar;184(2):181-4 – reference: 10861887 - Magn Reson Med. 2000 Jun;43(6):901-4 – reference: 21656551 - Magn Reson Med. 2012 Jan;67(1):20-6 – reference: 17058204 - Magn Reson Med. 2006 Dec;56(6):1359-64 – reference: 18222800 - IEEE Trans Med Imaging. 1991;10(1):53-65 – reference: 8598808 - Magn Reson Med. 1995 Dec;34(6):814-23 – reference: 8916025 - Magn Reson Med. 1996 Nov;36(5):745-52 – reference: 19060359 - Phys Med Biol. 2009 Jan 7;54(1):N1-8 – reference: 9771566 - Magn Reson Med. 1998 Oct;40(4):505-10 – reference: 9094088 - Magn Reson Med. 1997 Apr;37(4):628-30 – reference: 18219673 - J Magn Reson Imaging. 2008 Feb;27(2):376-90 – reference: 15390144 - J Magn Reson Imaging. 2004 Oct;20(4):706-14 – reference: 16786571 - J Magn Reson Imaging. 2006 Aug;24(2):444-50 – reference: 15690526 - Magn Reson Med. 2005 Jan;53(1):237-41 – reference: 8622590 - Magn Reson Med. 1996 Feb;35(2):246-51 – reference: 11042633 - J Magn Reson Imaging. 2000 Oct;12(4):525-33 – reference: 10893536 - Magn Reson Med. 2000 Jul;44(1):167 |
SSID | ssj0009974 |
Score | 2.255982 |
Snippet | Purpose
To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance... To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance... Purpose To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance... |
SourceID | pubmedcentral proquest pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 178 |
SubjectTerms | Adipose Tissue - surgery Algorithms Animals aqueous tissue Body Water Echo-Planar Imaging - methods fat High-Intensity Focused Ultrasound Ablation Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional In Vitro Techniques Magnetic Resonance Imaging, Interventional - methods Phantoms, Imaging Protons Signal-To-Noise Ratio Swine Temperature |
Title | Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method |
URI | https://api.istex.fr/ark:/67375/WNG-R886KR2J-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24900 https://www.ncbi.nlm.nih.gov/pubmed/23901014 https://www.proquest.com/docview/1535664482 https://www.proquest.com/docview/1537185921 https://pubmed.ncbi.nlm.nih.gov/PMC5432131 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5VlUBc-Cl_oQUNEkJcnHrtdWyLE0KUqig9RKnoAcna9a5Tq42DYltqOfURKvFYvEWfhJldx6HAAXGLtD-JN9_MfrOe_YaxV74ShQ5F4pkikZ7gOvAUbkSe0egIVSwDYUuyjA9H-0fi4Dg63mBvV3dhnD5Ef-BGlmH9NRm4VPXuWjR0vpwPMXbwKV6nXC0iRJO1dFSaOgXmWJCfScVKVcgPdvuRSEhpLc__xi7_TJL8lbza3WfvHvuy-t0u6eR02DZqmH_7TdLxPx_sPrvbsVJ452D0gG2YaovdHnfv3bfYLZsomtcP2Y-pzbMF5Jpn15dXVJoeSN6q02aGufURdFgIZQWFbEBWGiQ-9aKtobF_M7i7kTCXs4ruUOJkFBAg_K4vv8_aUhsNJKOM85cuw765gGKRtzU2tGe4TjUVgwLK2Z-BhAbxiEOvNFUqcCojQPoTi2o9MxRLlzR-AVMOrm72I3a092H6ft_rCkJ4JcadvpenQcJzXhiuhJGR0TpXhfIlD4tUJglyKySgiUpSOdIKuaOfq5EMhZRxxGPFVfiYbVaLyjxlgIEUMT_0TjLBteZSFVGMaNYkQmXiYMBeW2hkX53oRyaXp5QDF0fZ58OP2SRJRp8mwUGGHXdW2Mk6868z3EaQJmPki80v-2Y0XHobIytaceqD5hClAR-wJw5q_ZcFdBKFweuAxTdA2HcgUfCbLVV5YsXBIxEGPMQ531iM9SOcPHWQIboyi65sPBnbD8_-ves2u4OEUbh05R222Sxb8xxJWaNeWOv7CdOKPc8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRTwuPMorUGCQEOLi1GuvY1vighAltE0OUSp6Qatdrx2sNg5KbIly6k-oxM_iX_SXMLObOBQ4IG6R9pF4883sN-vZbxh74WtRmFAkXl4kyhPcBJ7GjcjLDTpCHatA2JIsg2Gvfyj2jqKjDfZ6dRfG6UO0B25kGdZfk4HTgfTOWjV0Op92MXjwMWC_QhW9bUA1WotHpanTYI4FeZpUrHSF_GCnHYqUlFbz69_45Z9pkr_SV7v_7N5in1a_3KWdHHebWnezb7-JOv7vo91mN5fEFN44JN1hG3m1xa4Nlq_et9hVmyuaLe6yH2ObagtIN08uzs6pOj2QwtVSnhmm1k3QeSGUFRSqBlUZUPjYs2YBtf2nwV2PhKmaVHSNEiejmAAReHH2fdKUJjdASso4f-mS7OtTKGZZs8CG5gQXakH1oIDS9iegoEZI4tBzQ8UKnNAIkATFrFrPDMXc5Y2fwpiDK519jx3uvhu_7XvLmhBeiaGn72VpkPCMFznXIldRbkymC-0rHhapShKkV8hBE52kqmc00kc_0z0VCqXiiMea6_A-26xmVf6QAcZSRP7QQakE15orXUQxAtqQDlUeBx320mJDfnG6H1LNjykNLo7kx-F7OUqS3v4o2JPYcXsFHrn0AAuJOwkyZQx-sfl524y2Sy9kVEUrTn3QIqI04B32wGGt_bKADqMwfu2w-BIK2w6kC365pSo_W33wSIQBD3HOVxZk7QinUB1IRJe06JKD0cB-ePTvXZ-x6_3x4EAefBjuP2Y3kD8Kl728zTbreZM_QY5W66fWFH8CYKZB6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamISZu-BkwCgOMhBA36eLEaRxxhRhlbLRCVSd2gWTZcVKqrenUJBLjao8wicfiLfYknGOnKQMuEHeV_NPG_c7xd5zj7xDy3Nc8NyEXXpYL5XFmAk_DRuRlBhyhjlXAbUmWwbC3d8j3j6KjNfJqeRfG6UO0B25oGdZfo4GfmnxnJRo6W8y6EDv4EK9f4z1fIKR3RyvtqCRxEswxR0eT8KWskB_stEOBkeJifv0bvfwzS_JX9mq3n_4t8nn5w13WyXG3rnQ3_fabpuN_PtltcrOhpfS1w9EdspYVm2Rj0Lx43yTXbaZoWt4lP8Y20ZYC2Ty5PL_A2vQU9a0acWY6s04CTwvptKC5qqgqDFXw1PO6pJX9n6m7HElnalLgJUqYDCMCwN_l-fdJPTWZoaijDPNPXYp9dUbzeVqX0FCfwDqVWA2KYtL-hCpaASBh6IXBUgVOZoSiAMW8WM1M84XLGj-jY0Zd4ex75LD_dvxmz2sqQnhTCDx9L00CwVKWZ0zzTEWZManOta9YmCdKCCBXwECFFonqGQ3k0U91T4VcqThisWY6vE_Wi3mRPSAUIimkfuCelIC1ZkrnUQxwNqhClcVBh7yw0JCnTvVDqsUxJsHFkfw0fCdHQvQORsG-hI7bS-zIxv5LCfsI8GQIfaH5WdsMlouvY1SBK459wB6iJGAdsuWg1n5ZgEdREL12SHwFhG0HVAW_2lJMv1h18IiHAQthzpcWY-0Ip08dSECXtOiSg9HAfnj4712fko2Pu3354f3w4BG5AeSRu9TlbbJeLersMRC0Sj-xhvgTqZdAog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+real-time+temperature+monitoring+in+fat+and+aqueous+tissue+during+magnetic+resonance-guided+high-intensity+focused+ultrasound+using+a+three-dimensional+proton+resonance+frequency+T1+method&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Diakite%2C+Mahamadou&rft.au=Odeen%2C+Henrik&rft.au=Todd%2C+Nick&rft.au=Payne%2C+Allison&rft.date=2014-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=72&rft.issue=1&rft.spage=178&rft_id=info:doi/10.1002%2Fmrm.24900&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3334852261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |