Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method

Purpose To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation. Methods The hybrid se...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 72; no. 1; pp. 178 - 187
Main Authors Diakite, Mahamadou, Odéen, Henrik, Todd, Nick, Payne, Allison, Parker, Dennis L.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation. Methods The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two‐point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High‐intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1/dT across subjects. Results The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat‐only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. Conclusion The results demonstrate the capability of real‐time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Magn Reson Med 72:178–187, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList Purpose To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation. Methods The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1/dT across subjects. Results The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. Conclusion The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Magn Reson Med 72:178-187, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Purpose To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1) of fat during thermal ablation. Methods The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two‐point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High‐intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1/dT across subjects. Results The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat‐only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. Conclusion The results demonstrate the capability of real‐time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Magn Reson Med 72:178–187, 2014. © 2013 Wiley Periodicals, Inc.
To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation.PURPOSETo present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation.The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects.METHODSThe hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects.The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C.RESULTSThe water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C.The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast.CONCLUSIONThe results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast.
To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast.
Author Payne, Allison
Diakite, Mahamadou
Odéen, Henrik
Parker, Dennis L.
Todd, Nick
AuthorAffiliation 2 Department of Radiology, University of Utah, Salt Lake City, Utah, USA
1 Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA
AuthorAffiliation_xml – name: 1 Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA
– name: 2 Department of Radiology, University of Utah, Salt Lake City, Utah, USA
Author_xml – sequence: 1
  givenname: Mahamadou
  surname: Diakite
  fullname: Diakite, Mahamadou
  email: bijoumd@hotmail.com
  organization: Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA
– sequence: 2
  givenname: Henrik
  surname: Odéen
  fullname: Odéen, Henrik
  organization: Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA
– sequence: 3
  givenname: Nick
  surname: Todd
  fullname: Todd, Nick
  organization: Department of Radiology, University of Utah, Utah, Salt Lake City, USA
– sequence: 4
  givenname: Allison
  surname: Payne
  fullname: Payne, Allison
  organization: Department of Radiology, University of Utah, Utah, Salt Lake City, USA
– sequence: 5
  givenname: Dennis L.
  surname: Parker
  fullname: Parker, Dennis L.
  organization: Department of Radiology, University of Utah, Utah, Salt Lake City, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23901014$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQgC1URNPCgT-ALHHhsq3ttfdxQUIVlEcLUhTE0fKuZxOXXTv40Ta_jz-Gk5TwONmyv_lmPJ4TdGSdBYSeU3JGCWHnk5_OGG8JeYRmVDBWMNHyIzQjNSdFSVt-jE5CuCGEtG3Nn6BjVraEEspn6OfC3SmvsQc1FtFMgCNMa_AqJg94ctZE541dYmPxoCJWVmP1I4FLAUcTQgKs0w6Y1NJCNH1WBWeV7aFYJqNB45VZrgpjI9hg4gYPrk8hH6cxehVcysYUtgaF48oDFDqXkdEsGfHau-jsHycePOT0tt_gBcUTxJXTT9HjQY0Bnj2sp-jru7eLi_fF1ZfLDxdvrgrDSU2KvmUN7ekAtOOgBGjdd0NHFC2HVjUNzz0RvOmaVlW6I60gfVepkitVC1p3tCtP0eu9d526CXQPNj9glGtvJuU30ikj_72xZiWX7lYKXjJa0ix49SDwLj8iRDmZ0MM4KrttqKSirGkjWrZFX_6H3rjkc0d2lKgqzhuWqRd_V3Qo5ff_ZuB8D9yZETaHe0rkdnBkHhy5Gxx5Pb_ebXJEsY8wIcL9IUL577Kqy1rIb58v5bxpqk9z9jEn-gXzIc02
CODEN MRMEEN
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.24900
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 187
ExternalDocumentID PMC5432131
3334852261
23901014
MRM24900
ark_67375_WNG_R886KR2J_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: The Ben B. and Iris M. Margolis Foundation
– fundername: National Institutes of Health
  funderid: R01 CA134599
– fundername: Siemens Medical Solutions
– fundername: NCI NIH HHS
  grantid: R01 CA172787
– fundername: NCI NIH HHS
  grantid: R01 CA134599
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AGHNM
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-i4070-c9281c1fe1b4ea5eddcbfb0a13f9a884390548b89a6db0950cb6a34aa7517b1b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:18:50 EDT 2025
Fri Jul 11 16:44:13 EDT 2025
Fri Jul 25 12:13:07 EDT 2025
Thu Apr 03 06:55:42 EDT 2025
Wed Jan 22 16:29:07 EST 2025
Wed Oct 30 10:04:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords fat
temperature
aqueous tissue
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4070-c9281c1fe1b4ea5eddcbfb0a13f9a884390548b89a6db0950cb6a34aa7517b1b3
Notes The Ben B. and Iris M. Margolis Foundation
National Institutes of Health - No. R01 CA134599
ArticleID:MRM24900
istex:C1E2DCA5BD9C59D4C55EDDF8156D56F930FC5B93
Siemens Medical Solutions
ark:/67375/WNG-R886KR2J-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24900
PMID 23901014
PQID 1535664482
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5432131
proquest_miscellaneous_1537185921
proquest_journals_1535664482
pubmed_primary_23901014
wiley_primary_10_1002_mrm_24900_MRM24900
istex_primary_ark_67375_WNG_R886KR2J_2
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Stollberger Rudolf, Paul W. Imaging of the active B1 field in vivo. Magn Reson Med 2005;35:246-251.
Gandhi S, Daniel B, Butts K. Temperature Dependence of Relaxation Times in Bovine Adipose Tissue. In Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia, 1998. p. 701.
Cusack R, Papadakis N. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage 2002;16:754-764.
Blaimer M, Breuer FA, Seiberlich N, Mueller MF, Heidemann RM, Jellus V, Wiggins G, Wald LL, Griswold MA, Jakob PM. Accelerated volumetric MRI with a SENSE/GRAPPA combination. J Magn Reson Imaging 2006;24:444-450.
Melhem ER, Jara H, Shakir H, Gagliano TA. Fast inversion-recovery MR: the effect of hybrid RARE readout on the null points of fat and cerebrospinal fluid. AJNR Am J Neuroradiol 1997;18:1627-1633.
Parker DL. Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 1984;31:161-167.
Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, Jolesz FA. Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam. Magn Reson Med 1996;36:745-752.
Kuroda K, Iwabuchi T, Obara M, Honda M, Saito K, Imai Y. Temperature dependence of relaxation times in proton components of fatty acids. Magn Reson Med Sci 2011;10:177-183.
Stafford RJ, Price RE, Diederich CJ, Kangasniemi M, Olsson LE, Hazle JD. Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imaging 2004;20:706-714.
Dimitrov IE, Douglas D, Ren J, Smith NB, Webb AG, Sherry AD, Malloy CR. In vivo determination of human breast fat composition by 1H magnetic resonance spectroscopy at 7 T. Magn Reson Med 2012;67:20-26.
Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997;37:628-630.
de Zwart JA, van Gelderen P, Kelly DJ, Moonen CT. Fast magnetic-resonance temperature imaging. J Magn Reson B 1996;112:86-90.
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225.
Kuroda K OK, Mulkern RV, Jolesz FA. Optimization of chemical shift selective suppression of fat. Magn Reson Med 1996;40:505-510.
Oros-Peusquens AM, Laurila M, Shah NJ. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. MAGMA 2008;21:131-147.
Ishahara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34:814-823.
Lam MK IT, Saito K, Kuruda K. Effect of Water Resonace Thermal Shift on Methylene T1 Estimation with Multiple Flip Angle Multipoint Dixon Technique for Fat Temperature Imaging. In Proceedings of the 19th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. p. 4128.
Graham SJ, Bronskill MJ, Henkelman RM. Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 1998;39:198-203.
Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat 2002;184:181-184.
Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008;27:376-390.
Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004;15:223-236.
Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49:515-526.
Hynynen K, McDannold N, Mulkern RV, Jolesz FA. Temperature monitoring in fat with MRI. Magn Reson Med 2000;43:901-904.
Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA. Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 2000;44:167.
Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm (NMR imaging). IEEE Trans Med Imaging 1991;10:53-65.
Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53:237-241.
Blaimer M, Breuer FA, Mueller M, Seiberlich N, Ebel D, Heidemann RM, Griswold MA, Jakob PM. 2D-GRAPPA-operator for faster 3D parallel MRI. Magn Reson Med 2006;56:1359-1364.
Deoni SC, Peters TM, Rutt BK. Determination of optimal angles for variable nutation proton magnetic spin-lattice, T1, and spin-spin, T2, relaxation times measurement. Magn Reson Med 2004;51:194-199.
Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993;30:98-106.
Sprinkhuizen SM, Bakker CJ, Ippel JH, Boelens R, Viergever MA, Bartels LW. Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. MAGMA 2012;25:33-39.
Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525-533.
Schabel MC, Morrell GR. Uncertainty in T(1) mapping using the variable flip angle method with two flip angles. Phys Med Biol 2009;54:N1-N8.
2002; 16
2004; 20
2006; 56
1990; 16
2011
2010
1991; 10
2000; 43
1995; 34
2000; 44
1998
2011; 10
1996; 36
1998; 39
1984; 31
2004; 51
2009; 54
2006; 24
2002; 184
2000; 12
1997; 37
2004; 15
2008; 27
1993; 30
1997; 18
2005; 53
1996; 40
2003; 49
2008; 21
2012; 25
2012; 67
1996; 112
2005; 35
21484477 - MAGMA. 2012 Feb;25(1):33-9
21960000 - Magn Reson Med Sci. 2011;10(3):177-83
17058204 - Magn Reson Med. 2006 Dec;56(6):1359-64
15548953 - Top Magn Reson Imaging. 2004 Aug;15(4):223-36
10861887 - Magn Reson Med. 2000 Jun;43(6):901-4
6724602 - IEEE Trans Biomed Eng. 1984 Jan;31(1):161-7
12594755 - Magn Reson Med. 2003 Mar;49(3):515-26
21656551 - Magn Reson Med. 2012 Jan;67(1):20-6
11936199 - Ann Anat. 2002 Mar;184(2):181-4
9094088 - Magn Reson Med. 1997 Apr;37(4):628-30
9469702 - Magn Reson Med. 1998 Feb;39(2):198-203
18222800 - IEEE Trans Med Imaging. 1991;10(1):53-65
15390144 - J Magn Reson Imaging. 2004 Oct;20(4):706-14
10893536 - Magn Reson Med. 2000 Jul;44(1):167
18219673 - J Magn Reson Imaging. 2008 Feb;27(2):376-90
11042633 - J Magn Reson Imaging. 2000 Oct;12(4):525-33
9367309 - AJNR Am J Neuroradiol. 1997 Oct;18(9):1627-33
8622590 - Magn Reson Med. 1996 Feb;35(2):246-51
12169259 - Neuroimage. 2002 Jul;16(3 Pt 1):754-64
8916025 - Magn Reson Med. 1996 Nov;36(5):745-52
8371680 - Magn Reson Med. 1993 Jul;30(1):98-106
14705061 - Magn Reson Med. 2004 Jan;51(1):194-9
18338191 - MAGMA. 2008 Mar;21(1-2):131-47
15690526 - Magn Reson Med. 2005 Jan;53(1):237-41
16786571 - J Magn Reson Imaging. 2006 Aug;24(2):444-50
8598808 - Magn Reson Med. 1995 Dec;34(6):814-23
9771566 - Magn Reson Med. 1998 Oct;40(4):505-10
2266841 - Magn Reson Med. 1990 Nov;16(2):192-225
19060359 - Phys Med Biol. 2009 Jan 7;54(1):N1-8
8661313 - J Magn Reson B. 1996 Jul;112(1):86-90
References_xml – reference: Lam MK IT, Saito K, Kuruda K. Effect of Water Resonace Thermal Shift on Methylene T1 Estimation with Multiple Flip Angle Multipoint Dixon Technique for Fat Temperature Imaging. In Proceedings of the 19th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. p. 4128.
– reference: Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat 2002;184:181-184.
– reference: Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, Jolesz FA. Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam. Magn Reson Med 1996;36:745-752.
– reference: de Zwart JA, van Gelderen P, Kelly DJ, Moonen CT. Fast magnetic-resonance temperature imaging. J Magn Reson B 1996;112:86-90.
– reference: Blaimer M, Breuer FA, Seiberlich N, Mueller MF, Heidemann RM, Jellus V, Wiggins G, Wald LL, Griswold MA, Jakob PM. Accelerated volumetric MRI with a SENSE/GRAPPA combination. J Magn Reson Imaging 2006;24:444-450.
– reference: Blaimer M, Breuer FA, Mueller M, Seiberlich N, Ebel D, Heidemann RM, Griswold MA, Jakob PM. 2D-GRAPPA-operator for faster 3D parallel MRI. Magn Reson Med 2006;56:1359-1364.
– reference: Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008;27:376-390.
– reference: Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225.
– reference: Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997;37:628-630.
– reference: Gandhi S, Daniel B, Butts K. Temperature Dependence of Relaxation Times in Bovine Adipose Tissue. In Proceedings of the 6th Annual Meeting of ISMRM, Sydney, Australia, 1998. p. 701.
– reference: Cusack R, Papadakis N. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage 2002;16:754-764.
– reference: Melhem ER, Jara H, Shakir H, Gagliano TA. Fast inversion-recovery MR: the effect of hybrid RARE readout on the null points of fat and cerebrospinal fluid. AJNR Am J Neuroradiol 1997;18:1627-1633.
– reference: Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49:515-526.
– reference: Ishahara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34:814-823.
– reference: Parker DL. Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 1984;31:161-167.
– reference: Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993;30:98-106.
– reference: Graham SJ, Bronskill MJ, Henkelman RM. Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 1998;39:198-203.
– reference: Kuroda K OK, Mulkern RV, Jolesz FA. Optimization of chemical shift selective suppression of fat. Magn Reson Med 1996;40:505-510.
– reference: Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA. Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 2000;44:167.
– reference: Sprinkhuizen SM, Bakker CJ, Ippel JH, Boelens R, Viergever MA, Bartels LW. Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. MAGMA 2012;25:33-39.
– reference: Stafford RJ, Price RE, Diederich CJ, Kangasniemi M, Olsson LE, Hazle JD. Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imaging 2004;20:706-714.
– reference: Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004;15:223-236.
– reference: Oros-Peusquens AM, Laurila M, Shah NJ. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. MAGMA 2008;21:131-147.
– reference: Kuroda K, Iwabuchi T, Obara M, Honda M, Saito K, Imai Y. Temperature dependence of relaxation times in proton components of fatty acids. Magn Reson Med Sci 2011;10:177-183.
– reference: Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525-533.
– reference: Stollberger Rudolf, Paul W. Imaging of the active B1 field in vivo. Magn Reson Med 2005;35:246-251.
– reference: Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53:237-241.
– reference: Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm (NMR imaging). IEEE Trans Med Imaging 1991;10:53-65.
– reference: Hynynen K, McDannold N, Mulkern RV, Jolesz FA. Temperature monitoring in fat with MRI. Magn Reson Med 2000;43:901-904.
– reference: Schabel MC, Morrell GR. Uncertainty in T(1) mapping using the variable flip angle method with two flip angles. Phys Med Biol 2009;54:N1-N8.
– reference: Deoni SC, Peters TM, Rutt BK. Determination of optimal angles for variable nutation proton magnetic spin-lattice, T1, and spin-spin, T2, relaxation times measurement. Magn Reson Med 2004;51:194-199.
– reference: Dimitrov IE, Douglas D, Ren J, Smith NB, Webb AG, Sherry AD, Malloy CR. In vivo determination of human breast fat composition by 1H magnetic resonance spectroscopy at 7 T. Magn Reson Med 2012;67:20-26.
– volume: 184
  start-page: 181
  year: 2002
  end-page: 184
  article-title: Quantification of glands and fat in breast tissue: an experimental determination
  publication-title: Ann Anat
– volume: 34
  start-page: 814
  year: 1995
  end-page: 823
  article-title: A precise and fast temperature mapping using water proton chemical shift
  publication-title: Magn Reson Med
– volume: 16
  start-page: 754
  year: 2002
  end-page: 764
  article-title: New robust 3‐D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images
  publication-title: Neuroimage
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 35
  start-page: 246
  year: 2005
  end-page: 251
  article-title: Imaging of the active B1 field in vivo
  publication-title: Magn Reson Med
– start-page: 349
  year: 2011
  end-page: 366
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
– volume: 15
  start-page: 223
  year: 2004
  end-page: 236
  article-title: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method
  publication-title: Top Magn Reson Imaging
– volume: 40
  start-page: 505
  year: 1996
  end-page: 510
  article-title: Optimization of chemical shift selective suppression of fat
  publication-title: Magn Reson Med
– volume: 30
  start-page: 98
  year: 1993
  end-page: 106
  article-title: Magnetic resonance‐guided thermal surgery
  publication-title: Magn Reson Med
– volume: 67
  start-page: 20
  year: 2012
  end-page: 26
  article-title: In vivo determination of human breast fat composition by H magnetic resonance spectroscopy at 7 T
  publication-title: Magn Reson Med
– volume: 37
  start-page: 628
  year: 1997
  end-page: 630
  article-title: An extended two‐point Dixon algorithm for calculating separate water, fat, and B0 images
  publication-title: Magn Reson Med
– volume: 10
  start-page: 53
  year: 1991
  end-page: 65
  article-title: Parameter relations for the Shinnar‐Le Roux selective excitation pulse design algorithm (NMR imaging)
  publication-title: IEEE Trans Med Imaging
– volume: 56
  start-page: 1359
  year: 2006
  end-page: 1364
  article-title: 2D‐GRAPPA‐operator for faster 3D parallel MRI
  publication-title: Magn Reson Med
– volume: 44
  start-page: 167
  year: 2000
  article-title: Temperature mapping using the water proton chemical shift: self‐referenced method with echo‐planar spectroscopic imaging
  publication-title: Magn Reson Med
– volume: 12
  start-page: 525
  year: 2000
  end-page: 533
  article-title: Magnetic resonance temperature imaging for guidance of thermotherapy
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 161
  year: 1984
  end-page: 167
  article-title: Applications of NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring
  publication-title: IEEE Trans Biomed Eng
– volume: 20
  start-page: 706
  year: 2004
  end-page: 714
  article-title: Interleaved echo‐planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 376
  year: 2008
  end-page: 390
  article-title: MR thermometry
  publication-title: J Magn Reson Imaging
– start-page: 4128
  year: 2010
– volume: 49
  start-page: 515
  year: 2003
  end-page: 526
  article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state
  publication-title: Magn Reson Med
– volume: 36
  start-page: 745
  year: 1996
  end-page: 752
  article-title: Optimization of spoiled gradient‐echo phase imaging for in vivo localization of a focused ultrasound beam
  publication-title: Magn Reson Med
– volume: 39
  start-page: 198
  year: 1998
  end-page: 203
  article-title: Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle
  publication-title: Magn Reson Med
– volume: 18
  start-page: 1627
  year: 1997
  end-page: 1633
  article-title: Fast inversion‐recovery MR: the effect of hybrid RARE readout on the null points of fat and cerebrospinal fluid
  publication-title: AJNR Am J Neuroradiol
– volume: 24
  start-page: 444
  year: 2006
  end-page: 450
  article-title: Accelerated volumetric MRI with a SENSE/GRAPPA combination
  publication-title: J Magn Reson Imaging
– start-page: 701
  year: 1998
– volume: 25
  start-page: 33
  year: 2012
  end-page: 39
  article-title: Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study
  publication-title: MAGMA
– volume: 51
  start-page: 194
  year: 2004
  end-page: 199
  article-title: Determination of optimal angles for variable nutation proton magnetic spin‐lattice, T1, and spin‐spin, T2, relaxation times measurement
  publication-title: Magn Reson Med
– volume: 43
  start-page: 901
  year: 2000
  end-page: 904
  article-title: Temperature monitoring in fat with MRI
  publication-title: Magn Reson Med
– volume: 112
  start-page: 86
  year: 1996
  end-page: 90
  article-title: Fast magnetic‐resonance temperature imaging
  publication-title: J Magn Reson B
– volume: 10
  start-page: 177
  year: 2011
  end-page: 183
  article-title: Temperature dependence of relaxation times in proton components of fatty acids
  publication-title: Magn Reson Med Sci
– volume: 21
  start-page: 131
  year: 2008
  end-page: 147
  article-title: Magnetic field dependence of the distribution of NMR relaxation times in the living human brain
  publication-title: MAGMA
– volume: 54
  start-page: N1
  year: 2009
  end-page: N8
  article-title: Uncertainty in T(1) mapping using the variable flip angle method with two flip angles
  publication-title: Phys Med Biol
– reference: 18338191 - MAGMA. 2008 Mar;21(1-2):131-47
– reference: 15548953 - Top Magn Reson Imaging. 2004 Aug;15(4):223-36
– reference: 14705061 - Magn Reson Med. 2004 Jan;51(1):194-9
– reference: 8661313 - J Magn Reson B. 1996 Jul;112(1):86-90
– reference: 9367309 - AJNR Am J Neuroradiol. 1997 Oct;18(9):1627-33
– reference: 21484477 - MAGMA. 2012 Feb;25(1):33-9
– reference: 9469702 - Magn Reson Med. 1998 Feb;39(2):198-203
– reference: 2266841 - Magn Reson Med. 1990 Nov;16(2):192-225
– reference: 21960000 - Magn Reson Med Sci. 2011;10(3):177-83
– reference: 6724602 - IEEE Trans Biomed Eng. 1984 Jan;31(1):161-7
– reference: 12594755 - Magn Reson Med. 2003 Mar;49(3):515-26
– reference: 8371680 - Magn Reson Med. 1993 Jul;30(1):98-106
– reference: 12169259 - Neuroimage. 2002 Jul;16(3 Pt 1):754-64
– reference: 11936199 - Ann Anat. 2002 Mar;184(2):181-4
– reference: 10861887 - Magn Reson Med. 2000 Jun;43(6):901-4
– reference: 21656551 - Magn Reson Med. 2012 Jan;67(1):20-6
– reference: 17058204 - Magn Reson Med. 2006 Dec;56(6):1359-64
– reference: 18222800 - IEEE Trans Med Imaging. 1991;10(1):53-65
– reference: 8598808 - Magn Reson Med. 1995 Dec;34(6):814-23
– reference: 8916025 - Magn Reson Med. 1996 Nov;36(5):745-52
– reference: 19060359 - Phys Med Biol. 2009 Jan 7;54(1):N1-8
– reference: 9771566 - Magn Reson Med. 1998 Oct;40(4):505-10
– reference: 9094088 - Magn Reson Med. 1997 Apr;37(4):628-30
– reference: 18219673 - J Magn Reson Imaging. 2008 Feb;27(2):376-90
– reference: 15390144 - J Magn Reson Imaging. 2004 Oct;20(4):706-14
– reference: 16786571 - J Magn Reson Imaging. 2006 Aug;24(2):444-50
– reference: 15690526 - Magn Reson Med. 2005 Jan;53(1):237-41
– reference: 8622590 - Magn Reson Med. 1996 Feb;35(2):246-51
– reference: 11042633 - J Magn Reson Imaging. 2000 Oct;12(4):525-33
– reference: 10893536 - Magn Reson Med. 2000 Jul;44(1):167
SSID ssj0009974
Score 2.255982
Snippet Purpose To present a three‐dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance...
To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance...
Purpose To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance...
SourceID pubmedcentral
proquest
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 178
SubjectTerms Adipose Tissue - surgery
Algorithms
Animals
aqueous tissue
Body Water
Echo-Planar Imaging - methods
fat
High-Intensity Focused Ultrasound Ablation
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
In Vitro Techniques
Magnetic Resonance Imaging, Interventional - methods
Phantoms, Imaging
Protons
Signal-To-Noise Ratio
Swine
Temperature
Title Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method
URI https://api.istex.fr/ark:/67375/WNG-R886KR2J-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24900
https://www.ncbi.nlm.nih.gov/pubmed/23901014
https://www.proquest.com/docview/1535664482
https://www.proquest.com/docview/1537185921
https://pubmed.ncbi.nlm.nih.gov/PMC5432131
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5VlUBc-Cl_oQUNEkJcnHrtdWyLE0KUqig9RKnoAcna9a5Tq42DYltqOfURKvFYvEWfhJldx6HAAXGLtD-JN9_MfrOe_YaxV74ShQ5F4pkikZ7gOvAUbkSe0egIVSwDYUuyjA9H-0fi4Dg63mBvV3dhnD5Ef-BGlmH9NRm4VPXuWjR0vpwPMXbwKV6nXC0iRJO1dFSaOgXmWJCfScVKVcgPdvuRSEhpLc__xi7_TJL8lbza3WfvHvuy-t0u6eR02DZqmH_7TdLxPx_sPrvbsVJ452D0gG2YaovdHnfv3bfYLZsomtcP2Y-pzbMF5Jpn15dXVJoeSN6q02aGufURdFgIZQWFbEBWGiQ-9aKtobF_M7i7kTCXs4ruUOJkFBAg_K4vv8_aUhsNJKOM85cuw765gGKRtzU2tGe4TjUVgwLK2Z-BhAbxiEOvNFUqcCojQPoTi2o9MxRLlzR-AVMOrm72I3a092H6ft_rCkJ4JcadvpenQcJzXhiuhJGR0TpXhfIlD4tUJglyKySgiUpSOdIKuaOfq5EMhZRxxGPFVfiYbVaLyjxlgIEUMT_0TjLBteZSFVGMaNYkQmXiYMBeW2hkX53oRyaXp5QDF0fZ58OP2SRJRp8mwUGGHXdW2Mk6868z3EaQJmPki80v-2Y0XHobIytaceqD5hClAR-wJw5q_ZcFdBKFweuAxTdA2HcgUfCbLVV5YsXBIxEGPMQ531iM9SOcPHWQIboyi65sPBnbD8_-ves2u4OEUbh05R222Sxb8xxJWaNeWOv7CdOKPc8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRTwuPMorUGCQEOLi1GuvY1vighAltE0OUSp6Qatdrx2sNg5KbIly6k-oxM_iX_SXMLObOBQ4IG6R9pF4883sN-vZbxh74WtRmFAkXl4kyhPcBJ7GjcjLDTpCHatA2JIsg2Gvfyj2jqKjDfZ6dRfG6UO0B25kGdZfk4HTgfTOWjV0Op92MXjwMWC_QhW9bUA1WotHpanTYI4FeZpUrHSF_GCnHYqUlFbz69_45Z9pkr_SV7v_7N5in1a_3KWdHHebWnezb7-JOv7vo91mN5fEFN44JN1hG3m1xa4Nlq_et9hVmyuaLe6yH2ObagtIN08uzs6pOj2QwtVSnhmm1k3QeSGUFRSqBlUZUPjYs2YBtf2nwV2PhKmaVHSNEiejmAAReHH2fdKUJjdASso4f-mS7OtTKGZZs8CG5gQXakH1oIDS9iegoEZI4tBzQ8UKnNAIkATFrFrPDMXc5Y2fwpiDK519jx3uvhu_7XvLmhBeiaGn72VpkPCMFznXIldRbkymC-0rHhapShKkV8hBE52kqmc00kc_0z0VCqXiiMea6_A-26xmVf6QAcZSRP7QQakE15orXUQxAtqQDlUeBx320mJDfnG6H1LNjykNLo7kx-F7OUqS3v4o2JPYcXsFHrn0AAuJOwkyZQx-sfl524y2Sy9kVEUrTn3QIqI04B32wGGt_bKADqMwfu2w-BIK2w6kC365pSo_W33wSIQBD3HOVxZk7QinUB1IRJe06JKD0cB-ePTvXZ-x6_3x4EAefBjuP2Y3kD8Kl728zTbreZM_QY5W66fWFH8CYKZB6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamISZu-BkwCgOMhBA36eLEaRxxhRhlbLRCVSd2gWTZcVKqrenUJBLjao8wicfiLfYknGOnKQMuEHeV_NPG_c7xd5zj7xDy3Nc8NyEXXpYL5XFmAk_DRuRlBhyhjlXAbUmWwbC3d8j3j6KjNfJqeRfG6UO0B25oGdZfo4GfmnxnJRo6W8y6EDv4EK9f4z1fIKR3RyvtqCRxEswxR0eT8KWskB_stEOBkeJifv0bvfwzS_JX9mq3n_4t8nn5w13WyXG3rnQ3_fabpuN_PtltcrOhpfS1w9EdspYVm2Rj0Lx43yTXbaZoWt4lP8Y20ZYC2Ty5PL_A2vQU9a0acWY6s04CTwvptKC5qqgqDFXw1PO6pJX9n6m7HElnalLgJUqYDCMCwN_l-fdJPTWZoaijDPNPXYp9dUbzeVqX0FCfwDqVWA2KYtL-hCpaASBh6IXBUgVOZoSiAMW8WM1M84XLGj-jY0Zd4ex75LD_dvxmz2sqQnhTCDx9L00CwVKWZ0zzTEWZManOta9YmCdKCCBXwECFFonqGQ3k0U91T4VcqThisWY6vE_Wi3mRPSAUIimkfuCelIC1ZkrnUQxwNqhClcVBh7yw0JCnTvVDqsUxJsHFkfw0fCdHQvQORsG-hI7bS-zIxv5LCfsI8GQIfaH5WdsMlouvY1SBK459wB6iJGAdsuWg1n5ZgEdREL12SHwFhG0HVAW_2lJMv1h18IiHAQthzpcWY-0Ip08dSECXtOiSg9HAfnj4712fko2Pu3354f3w4BG5AeSRu9TlbbJeLersMRC0Sj-xhvgTqZdAog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+real-time+temperature+monitoring+in+fat+and+aqueous+tissue+during+magnetic+resonance-guided+high-intensity+focused+ultrasound+using+a+three-dimensional+proton+resonance+frequency+T1+method&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Diakite%2C+Mahamadou&rft.au=Odeen%2C+Henrik&rft.au=Todd%2C+Nick&rft.au=Payne%2C+Allison&rft.date=2014-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=72&rft.issue=1&rft.spage=178&rft_id=info:doi/10.1002%2Fmrm.24900&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3334852261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon