Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China

The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The oc...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Space Physics Vol. 116; no. A9
Main Authors Ding, Feng, Wan, Weixing, Xu, Guirong, Yu, Tao, Yang, Guanglin, Wang, Jing-song
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 20–60 min, 100–400 m/s, 130°–270°, and 0.8–1.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 20–70 min, 50–230 m/s, 170°–300°, and 2–7%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer. Key Points Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing with HF Doppler observation, we find a height dependence of MSTIDs
AbstractList Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing with HF Doppler observation, we find a height dependence of MSTIDs The 15-month climatology of medium-scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 2060 min, 100400 m/s, 130°270°, and 0.81.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 2070 min, 50230 m/s, 170°300°, and 27%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer.
Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing with HF Doppler observation, we find a height dependence of MSTIDs The 15-month climatology of medium-scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 20-60 min, 100-400 m/s, 130 degree -270 degree , and 0.8-1.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 20-70 min, 50-230 m/s, 170 degree -300 degree , and 2-7%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer.
The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 20–60 min, 100–400 m/s, 130°–270°, and 0.8–1.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 20–70 min, 50–230 m/s, 170°–300°, and 2–7%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer. Key Points Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing with HF Doppler observation, we find a height dependence of MSTIDs
Author Wan, Weixing
Yang, Guanglin
Wang, Jing-song
Ding, Feng
Xu, Guirong
Yu, Tao
Author_xml – sequence: 1
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  email: dingf@mail.iggcas.ac.cn
  organization: Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Weixing
  surname: Wan
  fullname: Wan, Weixing
  organization: Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Guirong
  surname: Xu
  fullname: Xu, Guirong
  organization: Institute of Heavy Rain, China Meteorological Administration, Wuhan, China
– sequence: 4
  givenname: Tao
  surname: Yu
  fullname: Yu, Tao
  organization: National Center for Space Weather, China Meteorological Administration, Beijing, China
– sequence: 5
  givenname: Guanglin
  surname: Yang
  fullname: Yang, Guanglin
  organization: National Center for Space Weather, China Meteorological Administration, Beijing, China
– sequence: 6
  givenname: Jing-song
  surname: Wang
  fullname: Wang, Jing-song
  organization: National Center for Space Weather, China Meteorological Administration, Beijing, China
BookMark eNpdkEtvEzEUhS1UJELpjh9gsWIz1O-ZWUaBJkQVzyKWlu2507p17GDPtOTf11UQQtzN3Zzz6eh7iU5iioDQa0reUcL6c0Yo3S4JVVLIZ2jBqFQNY4SdoAWhomsIY-0LdFbKLaknpBKELpBfBb8zUwrp-oDTiHcw-HnXFGcC4Cmbewg-XmOfYir7G8je4cGXac7WRAcFJ1sg38OA7QEbvP7yHUeYHlK-wz5iB7EiAl7d-GheoeejCQXO_vxT9OPiw9Vq01x-Xn9cLS8bXweJxrSjgGFsLaVOdkY6MM6xDgwRrpWGKrCcK95ZI1vVS25V3w6KgQVLutEwforeHrn7nH7NUCa988VBCCZCmouuskR11ApVo2_-i96mOce6Tne97BhX9CnEj6EHH-Cg97n6yoeKeSL1-l_terv-tmSUE1FbzbFVZcHvvy2T77RqeSv1z09rvdlcdduv7y_0lj8CS42IRg
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
Copyright 2011 by American Geophysical Union
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: Copyright 2011 by American Geophysical Union
DBID BSCLL
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1029/2011JA016545
DatabaseName Istex
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Meteorological & Geoastrophysical Abstracts - Academic

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9402
EndPage n/a
ExternalDocumentID 2473786971
JGRA21304
ark_67375_WNG_HHT8JQDF_J
Genre article
Feature
GeographicLocations China, People's Rep
GeographicLocations_xml – name: China, People's Rep
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
05W
0R~
33P
3V.
50Y
52M
702
7TG
7XB
8-1
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ACBWZ
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AIURR
ALVPJ
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
CCPQU
D0L
D1K
DPXWK
H8D
HGLYW
HZ~
K6-
KL.
L7M
LEEKS
LK5
M7R
MY~
O9-
P2W
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
Q9U
R.K
SUPJJ
WBKPD
ID FETCH-LOGICAL-i4014-a7f4edf7b11c58a5ceacc28ea04c75a16eb33638ba576953b697d62ebeb08fa23
IEDL.DBID BENPR
ISSN 0148-0227
2169-9380
IngestDate Fri Jul 11 03:54:44 EDT 2025
Sat Jul 26 01:02:45 EDT 2025
Wed Jan 22 16:52:09 EST 2025
Wed Oct 30 09:53:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue A9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4014-a7f4edf7b11c58a5ceacc28ea04c75a16eb33638ba576953b697d62ebeb08fa23
Notes istex:EF1EA3B3ABF43449B1DDB9A634EB15AF4E531657
ark:/67375/WNG-HHT8JQDF-J
ArticleID:2011JA016545
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011JA016545
PQID 895823616
PQPubID 54732
PageCount 11
ParticipantIDs proquest_miscellaneous_1024654746
proquest_journals_895823616
wiley_primary_10_1029_2011JA016545_JGRA21304
istex_primary_ark_67375_WNG_HHT8JQDF_J
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of Geophysical Research: Space Physics
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Ding, F., W. Wan, and H. Yuan (2003), The influence of background winds and attenuation on the propagation of atmospheric gravity waves, J. Atmos. Sol. Terr. Phys., 65, 857-869, doi:10.1016/S1364-6826(03)00090-7.
Xiao, Z., S. Xiao, Y. Hao, and D. Zhang (2007), Morphological features of ionospheric response to typhoon, J. Geophys. Res., 112, A04304, doi:10.1029/2006JA011671.
MacDougall, J. W., and G. E. Hall (1998), An F region height change produced by gravity waves, Radio Sci., 33(6), 1867-1876, doi:10.1029/98RS01787.
Seker, I., S. F. Fung, and J. D. Mathews (2011), Relation between magnetospheric state parameters and the occurrence of plasma depletion events in the nighttime midlatitude F region, J. Geophys. Res., 116, A04323, doi:10.1029/2010JA015521.
Saito, A., S. Fukao, and S. Miyazaki (1998), High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25, 3079-3082, doi:10.1029/98GL52361.
Bristow, W., and R. Greenwald (1996), Multiradar observations of medium-scale acoustic gravity waves using the Super Dual Auroral Radar Network, J. Geophys. Res., 101(A11), 24,499-24,511, doi:10.1029/96JA01494.
Yokoyama, T., Y. Otsuka, T. Ogawa, M. Yamamoto, and D. L. Hysell (2008), First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 35, L03101, doi:10.1029/2007GL032496.
Cowling, D. H., H. D. Webb, and K. C. Yeh (1971), Group rays of internal gravity waves in a wind-stratified atmosphere, J. Geophys. Res., 76, 213-220, doi:10.1029/JA076i001p00213.
Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over USA, Geophys. Res. Lett., 34, L22101, doi:10.1029/2007GL031663.
Afraimovich, E. L., E. A. Kosogorov, O. S. Lesyuta, I. I. Ushakov, and A. F. Yakovets (2001), Geomagnetic control of the spectrum of travelling ionospheric disturbances based on data from a global GPS Network, Ann. Geophys., 19, 723-731, doi:10.5194/angeo-19-723-2001.
Kelley, M. C., J. J. Makela, and A. Saito (2002), The mid-latitude F region at the mesoscale: Some progress at last, J. Atmos. Sol. Terr. Phys., 64, 1525-1529, doi:10.1016/S1364-6826(02)00090-1.
Adams, G. W., J. W. Brosnahan, and T. D. Halderman (1988), Direct radar observations of TIDs in the D- and E-regions, J. Atmos. Terr. Phys., 50, 931-935.
Candido, C. M. N., I. S. Batista, F. Becker-Guedes, M. A. Abdu, J. H. A. Sobral, and H. Takahashi (2011), Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity, J. Geophys. Res., 116, A06316, doi:10.1029/2010JA016374.
Kelley, M. C., and J. J. Makela (2001), Resolution of the discrepancy between experiment and theory of midlatitude F region structures, Geophys. Res. Lett., 28, 2589-2592, doi:10.1029/2000GL012777.
Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995, Ann. Geophys., 14, 917-940.
Ibrahim, C., F. Chane-Ming, C. Barthe, and Y. Kuleshov (2010), Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean, Geophys. Res. Lett., 37, L09807, doi:10.1029/2010GL042938.
Shiokawa, K., C. Ihara, Y. Otsuka, and T. Ogawa (2003), Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res., 108(A1), 1052, doi:10.1029/2002JA009491.
Lee, C. C., Y. A. Liou, Y. Otsuka, F. D. Chu, T. K. Yeh, K. Hoshinoo, and K. Matunaga (2008), Nighttime medium-scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan, J. Geophys. Res., 113, A12316, doi:10.1029/2008JA013250.
Ning, B. Q., L. Li, and J. Li (1995), Variation of medium-scale traveling ionospheric disturbances at Wuhan, Chin. J. Geophys., 38(4), 439-447.
Buss, S., et al. (2004), Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland, Atmos. Chem. Phys., 4, 1183-1200, doi:10.5194/acp-4-1183-2004.
Garcia, F. J., M. C. Kelley, J. J. Makela, P. J. Sultane, X. Pi, and S. Musman (2000), Mesoscale structure of the midlatitude ionosphere during high geomagnetic activity: Airglow and GPS observations, J. Geophys. Res., 105, 18,417-18,427, doi:10.1029/1999JA000306.
Wan, W. X., B. Q. Ning, H. Yuan, J. N. Li, L. Li, and J. Liang (1997), TID observation using a short baseline network of GPS receivers, Acta Geodyn. Geophys. Hung., 32(3-4), 321-327.
Morton, F. W., and E. A. Essex (1978), Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique, J. Atmos. Terr. Phys., 40, 1113-1122, doi:10.1016/0021-9169(78)90059-4.
Martinis, C., J. Baumgardner, J. Wroten, and M. Mendillo (2010), Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo, Geophys. Res. Lett., 37, L11103, doi:10.1029/2010GL043569.
Baker, D. M., and K. Davies (1969), F2 region acoustic waves from severe weather, J. Atmos. Terr. Phys., 31, 1345-1346, doi:10.1016/0021-9169(69)90118-4.
Bertin, F., J. Testud, L. Kersley, and P. R. Rees (1978), The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: An experimental study, J. Atmos. Terr. Phys., 40, 1161-1183, doi:10.1016/0021-9169(78)90067-3.
Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441-1481, doi:10.1139/p60-150.
Hunsucker, R. D. (1982), Atmospheric gravity waves generated in the High-latitude ionosphere: A review, Rev. Geophys., 20, 293-315, doi:10.1029/RG020i002p00293.
Kotake, N., et al. (2007), Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California, Earth Planets Space, 59, 95-102.
Zhou, Q., and J. D. Mathews (2006), On the physical explanation of the Perkins instability, J. Geophys. Res., 111, A12309, doi:10.1029/2006JA011696.
He, L., and J. Ping (2008), Occurrence of medium-scale travelling ionospheric disturbances identified in the Tasman international geospace environment radar observations, Adv. Space Res., 42, 1276-1280, doi:10.1016/j.asr.2007.06.010.
Wan, W. X., H. Yuan, B. Ning, and J. Liang (1998), Travelling ionosphere disturbances associated with tropospheric vortexes around Qinghai-Tibet Plateau, Geophys. Res. Lett., 25, 3775-3778, doi:10.1029/1998GL900030.
Waldock, J. A., and T. B. Jones (1984), The effects of neutral winds on the propagation of medium scale atmospheric gravity waves at mid-latitudes, J. Atmos. Terr. Phys., 46, 217-231, doi:10.1016/0021-9169(84)90149-1.
Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131.
Georges, T. M. (1968), HF Doppler studies of traveling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735-746, doi:10.1016/S0021-9169(68)80029-7.
Pierce, A. D., and S. C. Coroniti (1966), A mechanism for the generation of acoustic gravity waves during thunderstorm formation, Nature, 210, 1209-1210, doi:10.1038/2101209a0.
Kelley, M. C., and C. A. Miller (1997), The electrodynamics of mid-latitude spread F: 3. Electrobuoyancy waves? A new look at the role of electric fields and thermospheric gravity waves, J. Geophys. Res., 102(A6), 11,539-11,547.
Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218-226, doi:10.1029/JA078i001p00218.
Beach, T. L., M. C. Kelley, and P. M. Kintner (1997), Total electron content variations due to nonclassical traveling ionospheric disturbances: Theory and Global Positioning System observations, J. Geophy. Res., 102, 7279-7292.
Pinger, W. H. (1979), Detection of traveling ionospheric disturbances with auroral zone incoherent scatter radar, Radio Sci., 14(1), 75-84, doi:10.1029/RS014i001p00075.
She, C. Y., and R. P. Lowe (1998), Seasonal temperature variations in the mesopause region at mid-latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles, J. Atmos. Sol. Terr. Phys., 60, 1573-1583, doi:10.1016/S1364-6826(98)00082-0.
Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418.
Boška, J., and P. Šauli (2001), Observations of gravity waves of meteorological origin in the F region ionosphere, Phys. Chem. Earth, 26, 425-428.
Jacobson, A. R., R. C. Carlos, R. S. Massey, and G. Wu (1995), Observation of traveling ionospheric disturbances with a satellite-beacon radio interferometer: Seasonal and local time behavior, J. Geophys. Res., 100(A2), 1653-1665, doi:10.1029/94JA02663.
Tsutsui, M., and T. Ogawa (1973), HF Doppler observation of ionospheric effects due to typhoons, Rep. Ionos. Space Res. Jpn., 27, 121-123.
Wang, M., et al. (2007), Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms, Earth Planets Space, 59, 1-13.
Wan, W. X., H. Yuan, B. Ning, and J. Liang (2000), Regional properties of travelling ionospheric disturbances observed in central China, Adv. Space Sci., 25, 219-222.
Ashkaliev, Y. F., et al. (2003), Comparison of travelling ionospheric disturbance measurements with thermosphere/ionosphere model results, Ann. Geophys., 21, 1031-1037, doi:10.5194/angeo-21-1031-2003.
Waldock, J. A., and T. B. Jones (1986), HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes, J. Atmos. Terr. Phys., 48, 245-260, doi:10.1016/0021-9169(86)90099-1.
Candido, C. M. N., A. A. Pimenta, J. A. Bittencourt, and F. Becker-Guedes (2008), Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images, Geophys. Res. Lett., 35, L17105, doi:10.1029/2008GL035043.
Evans, J. V., J. M. Holt, and R. H. Wa
2011; 116
1987; 35
2010; 37
1966; 210
1979; 14
2000; 25
1995; 38
1973; 78
1960; 38
1969; 31
1984; 46
2004; 4
2008; 35
1988; 50
2001; 26
2001; 28
1998; 60
1996; 14
1983; 18
1996; 101
2007; 34
2006; 111
2007; 59
1998; 25
1997; 102
2007; 112
1971; 76
2003; 108
2002; 64
1997; 32
2000; 105
1978; 40
1982; 20
1978; 83
1973; 27
1986; 48
2001; 19
1995; 100
2008; 42
2008; 113
2003; 21
2003; 65
1998; 33
1968; 30
References_xml – reference: Bristow, W., and R. Greenwald (1996), Multiradar observations of medium-scale acoustic gravity waves using the Super Dual Auroral Radar Network, J. Geophys. Res., 101(A11), 24,499-24,511, doi:10.1029/96JA01494.
– reference: Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over USA, Geophys. Res. Lett., 34, L22101, doi:10.1029/2007GL031663.
– reference: Evans, J. V., J. M. Holt, and R. H. Wand (1983), A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill, Radio Sci., 18, 435-451, doi:10.1029/RS018i003p00435.
– reference: Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218-226, doi:10.1029/JA078i001p00218.
– reference: Hunsucker, R. D. (1982), Atmospheric gravity waves generated in the High-latitude ionosphere: A review, Rev. Geophys., 20, 293-315, doi:10.1029/RG020i002p00293.
– reference: Moore, P., and W. J. Boulton (1987), Some aspects of a global thermospheric density model deduced from the analysis of the orbit of intercosmos 13 rocket (1975-22b), Planet. Space Sci., 35(8), 1039-1052, doi:10.1016/0032-0633(87)90008-0.
– reference: Georges, T. M. (1968), HF Doppler studies of traveling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735-746, doi:10.1016/S0021-9169(68)80029-7.
– reference: Seker, I., S. F. Fung, and J. D. Mathews (2011), Relation between magnetospheric state parameters and the occurrence of plasma depletion events in the nighttime midlatitude F region, J. Geophys. Res., 116, A04323, doi:10.1029/2010JA015521.
– reference: Kelley, M. C., J. J. Makela, and A. Saito (2002), The mid-latitude F region at the mesoscale: Some progress at last, J. Atmos. Sol. Terr. Phys., 64, 1525-1529, doi:10.1016/S1364-6826(02)00090-1.
– reference: Kotake, N., et al. (2007), Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California, Earth Planets Space, 59, 95-102.
– reference: Adams, G. W., J. W. Brosnahan, and T. D. Halderman (1988), Direct radar observations of TIDs in the D- and E-regions, J. Atmos. Terr. Phys., 50, 931-935.
– reference: Wang, M., et al. (2007), Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms, Earth Planets Space, 59, 1-13.
– reference: Afraimovich, E. L., E. A. Kosogorov, O. S. Lesyuta, I. I. Ushakov, and A. F. Yakovets (2001), Geomagnetic control of the spectrum of travelling ionospheric disturbances based on data from a global GPS Network, Ann. Geophys., 19, 723-731, doi:10.5194/angeo-19-723-2001.
– reference: He, L., and J. Ping (2008), Occurrence of medium-scale travelling ionospheric disturbances identified in the Tasman international geospace environment radar observations, Adv. Space Res., 42, 1276-1280, doi:10.1016/j.asr.2007.06.010.
– reference: Ibrahim, C., F. Chane-Ming, C. Barthe, and Y. Kuleshov (2010), Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean, Geophys. Res. Lett., 37, L09807, doi:10.1029/2010GL042938.
– reference: Martinis, C., J. Baumgardner, J. Wroten, and M. Mendillo (2010), Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo, Geophys. Res. Lett., 37, L11103, doi:10.1029/2010GL043569.
– reference: Candido, C. M. N., A. A. Pimenta, J. A. Bittencourt, and F. Becker-Guedes (2008), Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images, Geophys. Res. Lett., 35, L17105, doi:10.1029/2008GL035043.
– reference: Ashkaliev, Y. F., et al. (2003), Comparison of travelling ionospheric disturbance measurements with thermosphere/ionosphere model results, Ann. Geophys., 21, 1031-1037, doi:10.5194/angeo-21-1031-2003.
– reference: Ding, F., W. Wan, and H. Yuan (2003), The influence of background winds and attenuation on the propagation of atmospheric gravity waves, J. Atmos. Sol. Terr. Phys., 65, 857-869, doi:10.1016/S1364-6826(03)00090-7.
– reference: Ning, B. Q., L. Li, and J. Li (1995), Variation of medium-scale traveling ionospheric disturbances at Wuhan, Chin. J. Geophys., 38(4), 439-447.
– reference: Zhou, Q., and J. D. Mathews (2006), On the physical explanation of the Perkins instability, J. Geophys. Res., 111, A12309, doi:10.1029/2006JA011696.
– reference: Wan, W. X., B. Q. Ning, H. Yuan, J. N. Li, L. Li, and J. Liang (1997), TID observation using a short baseline network of GPS receivers, Acta Geodyn. Geophys. Hung., 32(3-4), 321-327.
– reference: Boška, J., and P. Šauli (2001), Observations of gravity waves of meteorological origin in the F region ionosphere, Phys. Chem. Earth, 26, 425-428.
– reference: Yokoyama, T., Y. Otsuka, T. Ogawa, M. Yamamoto, and D. L. Hysell (2008), First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 35, L03101, doi:10.1029/2007GL032496.
– reference: Beach, T. L., M. C. Kelley, and P. M. Kintner (1997), Total electron content variations due to nonclassical traveling ionospheric disturbances: Theory and Global Positioning System observations, J. Geophy. Res., 102, 7279-7292.
– reference: Cowling, D. H., H. D. Webb, and K. C. Yeh (1971), Group rays of internal gravity waves in a wind-stratified atmosphere, J. Geophys. Res., 76, 213-220, doi:10.1029/JA076i001p00213.
– reference: Candido, C. M. N., I. S. Batista, F. Becker-Guedes, M. A. Abdu, J. H. A. Sobral, and H. Takahashi (2011), Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity, J. Geophys. Res., 116, A06316, doi:10.1029/2010JA016374.
– reference: Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441-1481, doi:10.1139/p60-150.
– reference: Jacobson, A. R., R. C. Carlos, R. S. Massey, and G. Wu (1995), Observation of traveling ionospheric disturbances with a satellite-beacon radio interferometer: Seasonal and local time behavior, J. Geophys. Res., 100(A2), 1653-1665, doi:10.1029/94JA02663.
– reference: Morton, F. W., and E. A. Essex (1978), Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique, J. Atmos. Terr. Phys., 40, 1113-1122, doi:10.1016/0021-9169(78)90059-4.
– reference: Pinger, W. H. (1979), Detection of traveling ionospheric disturbances with auroral zone incoherent scatter radar, Radio Sci., 14(1), 75-84, doi:10.1029/RS014i001p00075.
– reference: Lee, C. C., Y. A. Liou, Y. Otsuka, F. D. Chu, T. K. Yeh, K. Hoshinoo, and K. Matunaga (2008), Nighttime medium-scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan, J. Geophys. Res., 113, A12316, doi:10.1029/2008JA013250.
– reference: MacDougall, J. W., and G. E. Hall (1998), An F region height change produced by gravity waves, Radio Sci., 33(6), 1867-1876, doi:10.1029/98RS01787.
– reference: Xiao, Z., S. Xiao, Y. Hao, and D. Zhang (2007), Morphological features of ionospheric response to typhoon, J. Geophys. Res., 112, A04304, doi:10.1029/2006JA011671.
– reference: Saito, A., S. Fukao, and S. Miyazaki (1998), High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25, 3079-3082, doi:10.1029/98GL52361.
– reference: Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131.
– reference: Pierce, A. D., and S. C. Coroniti (1966), A mechanism for the generation of acoustic gravity waves during thunderstorm formation, Nature, 210, 1209-1210, doi:10.1038/2101209a0.
– reference: Garcia, F. J., M. C. Kelley, J. J. Makela, P. J. Sultane, X. Pi, and S. Musman (2000), Mesoscale structure of the midlatitude ionosphere during high geomagnetic activity: Airglow and GPS observations, J. Geophys. Res., 105, 18,417-18,427, doi:10.1029/1999JA000306.
– reference: Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995, Ann. Geophys., 14, 917-940.
– reference: Waldock, J. A., and T. B. Jones (1984), The effects of neutral winds on the propagation of medium scale atmospheric gravity waves at mid-latitudes, J. Atmos. Terr. Phys., 46, 217-231, doi:10.1016/0021-9169(84)90149-1.
– reference: Wan, W. X., H. Yuan, B. Ning, and J. Liang (2000), Regional properties of travelling ionospheric disturbances observed in central China, Adv. Space Sci., 25, 219-222.
– reference: Waldock, J. A., and T. B. Jones (1986), HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes, J. Atmos. Terr. Phys., 48, 245-260, doi:10.1016/0021-9169(86)90099-1.
– reference: Wan, W. X., H. Yuan, B. Ning, and J. Liang (1998), Travelling ionosphere disturbances associated with tropospheric vortexes around Qinghai-Tibet Plateau, Geophys. Res. Lett., 25, 3775-3778, doi:10.1029/1998GL900030.
– reference: Shiokawa, K., C. Ihara, Y. Otsuka, and T. Ogawa (2003), Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res., 108(A1), 1052, doi:10.1029/2002JA009491.
– reference: Bertin, F., J. Testud, L. Kersley, and P. R. Rees (1978), The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: An experimental study, J. Atmos. Terr. Phys., 40, 1161-1183, doi:10.1016/0021-9169(78)90067-3.
– reference: Kelley, M. C., and J. J. Makela (2001), Resolution of the discrepancy between experiment and theory of midlatitude F region structures, Geophys. Res. Lett., 28, 2589-2592, doi:10.1029/2000GL012777.
– reference: Tsutsui, M., and T. Ogawa (1973), HF Doppler observation of ionospheric effects due to typhoons, Rep. Ionos. Space Res. Jpn., 27, 121-123.
– reference: Baker, D. M., and K. Davies (1969), F2 region acoustic waves from severe weather, J. Atmos. Terr. Phys., 31, 1345-1346, doi:10.1016/0021-9169(69)90118-4.
– reference: Kelley, M. C., and C. A. Miller (1997), The electrodynamics of mid-latitude spread F: 3. Electrobuoyancy waves? A new look at the role of electric fields and thermospheric gravity waves, J. Geophys. Res., 102(A6), 11,539-11,547.
– reference: She, C. Y., and R. P. Lowe (1998), Seasonal temperature variations in the mesopause region at mid-latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles, J. Atmos. Sol. Terr. Phys., 60, 1573-1583, doi:10.1016/S1364-6826(98)00082-0.
– reference: Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418.
– reference: Buss, S., et al. (2004), Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland, Atmos. Chem. Phys., 4, 1183-1200, doi:10.5194/acp-4-1183-2004.
– volume: 35
  start-page: 1039
  issue: 8
  year: 1987
  end-page: 1052
  article-title: Some aspects of a global thermospheric density model deduced from the analysis of the orbit of intercosmos 13 rocket (1975–22b)
  publication-title: Planet. Space Sci.
– volume: 28
  start-page: 2589
  year: 2001
  end-page: 2592
  article-title: Resolution of the discrepancy between experiment and theory of midlatitude region structures
  publication-title: Geophys. Res. Lett.
– volume: 59
  start-page: 95
  year: 2007
  end-page: 102
  article-title: Statistical study of medium‐scale traveling ionospheric disturbances observed with the GPS networks in Southern California
  publication-title: Earth Planets Space
– volume: 31
  start-page: 1345
  year: 1969
  end-page: 1346
  article-title: F2 region acoustic waves from severe weather
  publication-title: J. Atmos. Terr. Phys.
– volume: 101
  start-page: 24,499
  issue: A11
  year: 1996
  end-page: 24,511
  article-title: Multiradar observations of medium‐scale acoustic gravity waves using the Super Dual Auroral Radar Network
  publication-title: J. Geophys. Res.
– volume: 37
  year: 2010
  article-title: Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean
  publication-title: Geophys. Res. Lett.
– volume: 113
  year: 2008
  article-title: Nighttime medium‐scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan
  publication-title: J. Geophys. Res.
– volume: 59
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms
  publication-title: Earth Planets Space
– volume: 20
  start-page: 293
  year: 1982
  end-page: 315
  article-title: Atmospheric gravity waves generated in the High‐latitude ionosphere: A review
  publication-title: Rev. Geophys.
– volume: 14
  start-page: 917
  year: 1996
  end-page: 940
  article-title: A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995
  publication-title: Ann. Geophys.
– volume: 116
  year: 2011
  article-title: Relation between magnetospheric state parameters and the occurrence of plasma depletion events in the nighttime midlatitude F region
  publication-title: J. Geophys. Res.
– volume: 83
  start-page: 4131
  year: 1978
  end-page: 4145
  article-title: Gravity wave generation, propagation, and dissipation in the thermosphere
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 1031
  year: 2003
  end-page: 1037
  article-title: Comparison of travelling ionospheric disturbance measurements with thermosphere/ionosphere model results
  publication-title: Ann. Geophys.
– volume: 26
  start-page: 425
  year: 2001
  end-page: 428
  article-title: Observations of gravity waves of meteorological origin in the region ionosphere
  publication-title: Phys. Chem. Earth
– volume: 40
  start-page: 1161
  year: 1978
  end-page: 1183
  article-title: The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: An experimental study
  publication-title: J. Atmos. Terr. Phys.
– volume: 60
  start-page: 1573
  year: 1998
  end-page: 1583
  article-title: Seasonal temperature variations in the mesopause region at mid‐latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 116
  year: 2011
  article-title: Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity
  publication-title: J. Geophys. Res.
– volume: 108
  issue: A1
  year: 2003
  article-title: Statistical study of nighttime medium‐scale traveling ionospheric disturbances using midlatitude airglow images
  publication-title: J. Geophys. Res.
– volume: 19
  start-page: 723
  year: 2001
  end-page: 731
  article-title: Geomagnetic control of the spectrum of travelling ionospheric disturbances based on data from a global GPS Network
  publication-title: Ann. Geophys.
– volume: 38
  start-page: 1441
  year: 1960
  end-page: 1481
  article-title: Internal atmospheric gravity waves at ionospheric heights
  publication-title: Can. J. Phys.
– volume: 25
  start-page: 3775
  year: 1998
  end-page: 3778
  article-title: Travelling ionosphere disturbances associated with tropospheric vortexes around Qinghai‐Tibet Plateau
  publication-title: Geophys. Res. Lett.
– volume: 4
  start-page: 1183
  year: 2004
  end-page: 1200
  article-title: Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland
  publication-title: Atmos. Chem. Phys.
– volume: 76
  start-page: 213
  year: 1971
  end-page: 220
  article-title: Group rays of internal gravity waves in a wind‐stratified atmosphere
  publication-title: J. Geophys. Res.
– volume: 37
  year: 2010
  article-title: Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo
  publication-title: Geophys. Res. Lett.
– volume: 102
  start-page: 7279
  year: 1997
  end-page: 7292
  article-title: Total electron content variations due to nonclassical traveling ionospheric disturbances: Theory and Global Positioning System observations
  publication-title: J. Geophy. Res.
– volume: 35
  year: 2008
  article-title: Statistical analysis of the occurrence of medium‐scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all‐sky images
  publication-title: Geophys. Res. Lett.
– volume: 65
  start-page: 857
  year: 2003
  end-page: 869
  article-title: The influence of background winds and attenuation on the propagation of atmospheric gravity waves
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 111
  year: 2006
  article-title: On the physical explanation of the Perkins instability
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 11,539
  issue: A6
  year: 1997
  end-page: 11,547
  article-title: The electrodynamics of mid‐latitude spread F: 3. Electrobuoyancy waves? A new look at the role of electric fields and thermospheric gravity waves
  publication-title: J. Geophys. Res.
– volume: 64
  start-page: 1525
  year: 2002
  end-page: 1529
  article-title: The mid‐latitude F region at the mesoscale: Some progress at last
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 33
  start-page: 1867
  issue: 6
  year: 1998
  end-page: 1876
  article-title: An F region height change produced by gravity waves
  publication-title: Radio Sci.
– volume: 210
  start-page: 1209
  year: 1966
  end-page: 1210
  article-title: A mechanism for the generation of acoustic gravity waves during thunderstorm formation
  publication-title: Nature
– volume: 27
  start-page: 121
  year: 1973
  end-page: 123
  article-title: HF Doppler observation of ionospheric effects due to typhoons
  publication-title: Rep. Ionos. Space Res. Jpn.
– volume: 48
  start-page: 245
  year: 1986
  end-page: 260
  article-title: HF Doppler observations of medium‐scale travelling ionospheric disturbances at mid‐latitudes
  publication-title: J. Atmos. Terr. Phys.
– volume: 78
  start-page: 218
  year: 1973
  end-page: 226
  article-title: Spread F and ionospheric currents
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 219
  year: 2000
  end-page: 222
  article-title: Regional properties of travelling ionospheric disturbances observed in central China
  publication-title: Adv. Space Sci.
– volume: 40
  start-page: 1113
  year: 1978
  end-page: 1122
  article-title: Gravity wave observations at a southern hemisphere mid‐latitude station using the total electron content technique
  publication-title: J. Atmos. Terr. Phys.
– volume: 35
  year: 2008
  article-title: First three‐dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere
  publication-title: Geophys. Res. Lett.
– volume: 38
  start-page: 439
  issue: 4
  year: 1995
  end-page: 447
  article-title: Variation of medium‐scale traveling ionospheric disturbances at Wuhan
  publication-title: Chin. J. Geophys.
– volume: 25
  start-page: 3079
  year: 1998
  end-page: 3082
  article-title: High resolution mapping of TEC perturbations with the GSI GPS network over Japan
  publication-title: Geophys. Res. Lett.
– volume: 50
  start-page: 931
  year: 1988
  end-page: 935
  article-title: Direct radar observations of TIDs in the D‐ and E‐regions
  publication-title: J. Atmos. Terr. Phys.
– volume: 18
  start-page: 435
  year: 1983
  end-page: 451
  article-title: A differential‐Doppler study of traveling ionospheric disturbances from Millstone Hill
  publication-title: Radio Sci.
– volume: 30
  start-page: 735
  year: 1968
  end-page: 746
  article-title: HF Doppler studies of traveling ionospheric disturbances
  publication-title: J. Atmos. Terr. Phys.
– volume: 105
  start-page: 18,417
  year: 2000
  end-page: 18,427
  article-title: Mesoscale structure of the midlatitude ionosphere during high geomagnetic activity: Airglow and GPS observations
  publication-title: J. Geophys. Res.
– volume: 34
  year: 2007
  article-title: Medium‐scale traveling ionospheric disturbances detected with dense and wide TEC maps over USA
  publication-title: Geophys. Res. Lett.
– volume: 32
  start-page: 321
  issue: 3–4
  year: 1997
  end-page: 327
  article-title: TID observation using a short baseline network of GPS receivers
  publication-title: Acta Geodyn. Geophys. Hung.
– volume: 42
  start-page: 1276
  year: 2008
  end-page: 1280
  article-title: Occurrence of medium‐scale travelling ionospheric disturbances identified in the Tasman international geospace environment radar observations
  publication-title: Adv. Space Res.
– volume: 111
  year: 2006
  article-title: Climatological study of GPS total electron content variations caused by medium‐scale traveling ionospheric disturbances
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Morphological features of ionospheric response to typhoon
  publication-title: J. Geophys. Res.
– volume: 46
  start-page: 217
  year: 1984
  end-page: 231
  article-title: The effects of neutral winds on the propagation of medium scale atmospheric gravity waves at mid‐latitudes
  publication-title: J. Atmos. Terr. Phys.
– volume: 100
  start-page: 1653
  issue: A2
  year: 1995
  end-page: 1665
  article-title: Observation of traveling ionospheric disturbances with a satellite‐beacon radio interferometer: Seasonal and local time behavior
  publication-title: J. Geophys. Res.
– volume: 14
  start-page: 75
  issue: 1
  year: 1979
  end-page: 84
  article-title: Detection of traveling ionospheric disturbances with auroral zone incoherent scatter radar
  publication-title: Radio Sci.
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816915
Score 2.3872595
Snippet The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a...
Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
SubjectTerms Atmospheric sciences
Climatology
GPS
Gravity waves
medium-scale traveling ionospheric disturbance
Solstices
Summer
Winter
Title Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China
URI https://api.istex.fr/ark:/67375/WNG-HHT8JQDF-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JA016545
https://www.proquest.com/docview/895823616
https://www.proquest.com/docview/1024654746
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbN7qWX0ifZJg0qlJwq4ockS6eweewuhi5pmtDchF4Gk8ZO17uQ_PtoZGdJL70JbJDQJ82MvhnpQ-ib45qnxjnCpWGEFp4TUSWGOJpWMnHW5lG078eSL65pecNuhtqcbiirfLaJ0VC71gJHfiQkA23ulB_f_yUgGgXJ1UFBYweNgwUWYoTGJ-fLi8styQKqEjKqGGShQWQukqH4PcnkEfi-chrv8wTXMoZpffgn0HwZrkZ_M3uL3gyBIp72yL5Dr3zzHu1OO6Cu27tHfIhju2cmug-oPv1Th-gzsuS4rTAkzTd3pAsYeLwGkSG4eI7hEkMHTwnUFrswls3KAO4dbg3ws95h84g1nl_8wk1fIY7rBg8lnDiqbX9E17Pzq9MFGXQUSB1OT5TooqLeVYVJU8uEZjYYW5sJrxNqC6ZTHg7UediHRofDh2S54bJwPAvwmkRUOss_oVHTNn4XYe6tTB0zhmtLhUyl8NZIq4vcC5fncoIO4zSq-_6tDKVXt1A6VjD1ezlXi8WVKH-ezVQ5QXvP86yGXdOpLcYT9HX7NSx3yGHoxrebTgXg4AW4goZ_vkd4tl3FdHom1UtYVTm_nGbBT9PP_-1wD73uyWIoHttHo_Vq47-EaGNtDtCOmM0PhpX1BFxD1T4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuiKcaWmCRoCes-rFeew8IRS1J6rYRj1T0tuzLkkVrlzgR5EfxH5lZO1G5cOttJVtae2d23jMfIW8sVzzS1gZc6DRgmeNBXoY6sCwqRWiNSTxo3_mUTy5YcZlebpE_614YLKtcy0QvqG1jMEZ-mIsUsbkj_uHmZ4CgUZhcXSNodFxx6la_wGNr358cA3nfxvHo4-xoEvSgAkEFrgQLVFYyZ8tMR5FJc5UakDwmzp0KmclSFXHwLhNgSq3AEhdpornILI_hX3WYlwrnHIDE32EJKHJsTB-NNyEdxLAQHjMhhkUgkjzsS-3DWByipi2GvnsIFNkOEvH3P2btbePYa7fRQ_KgN0vpsOOjR2TL1Y_J7rDFQHlzvaIH1K-7OEj7hFRHVxXYuj4mT5uSYop-eR20QHFHFwhphG3uFFsmWhxcUBlq4VuWc41c1tJGYzTYWapXVNHxp6-07urRaVXTvmCUemzvp-TiTg74Gdmum9rtEsqdEZFNtebKsFxEIndGC6OyxOUWCDAgB_4Y5U03mUOq-Q8sVMtS-W06lpPJLC8-H49kMSB763OW_R1t5YajBuT15ilcLsyYqNo1y1YC4XDeXMbgnXeePJutfPI-FvI2WWUx_jKMwSpgz_-74StybzI7P5NnJ9PTPXK_C1Nj2do-2V7Ml-4F2DkL_dJzFyXf75qd_wJcYREH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamVkK8IK5aGRcjwZ6wmqtjPyBU1rVdBlUZm9ib8S1SBEtG0wr60_h3-DhpNV5425ulRHLi8_n4-Nw-hF4bKmmojCGUq5QkmaWEFYEiJgkLHhitY0_a92lOZxdJfple7qE_21oYSKvc6kSvqE2twUc-ZDwFbu6QDosuK2Ixnry__kmAQAoCrVs2jRYhp3bzy93emncnYyfqN1E0OT4_mpGOYICU7lqREJkViTVFpsJQp0ym2mkhHTErg0RnqQypu2nGDqBKOqucp7GiPDM0cv-tAlZI6HngtH8_g0tRD_U_HM8XZzsHDzBacM-gELkB4TELusT7IOJDOHfzka8lcsdaH0T6-x8j96ap7M-6yX10rzNS8ahF1QO0Z6uHaH_UgNu8vtrgQ-zHrVekeYTKox-ls3y9hx7XBYaA_fqKNE7-Fq-A4AiK3jEUUDTQxqDU2LhvWS8VYK7BtQLfsDVYbbDE08UXXLXZ6biscJc-ij3T92N0cStL_AT1qrqy-whTq3loUqWo1AnjIWdWK65lFltm4pgP0KFfRnHd9ukQcvkd0tayVHydT8Vsds7yz-OJyAfoYLvOotuxjdjha4Be7Z66rQbxE1nZet0IJzjoPpcl7p23Xjy7qXwoP-LiplhFPj0bRc5GSJ7-d8KX6I6Dsvh4Mj89QHdbnzXksD1DvdVybZ87o2elXnTwwujbbSP6L3S-Fpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climatology+of+medium-scale+traveling+ionospheric+disturbances+observed+by+a+GPS+network+in+central+China&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Ding%2C+Feng&rft.au=Wan%2C+Weixing&rft.au=Xu%2C+Guirong&rft.au=Yu%2C+Tao&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=116&rft.issue=9&rft_id=info:doi/10.1029%2F2011JA016545&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2473786971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon