Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China
The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The oc...
Saved in:
Published in | Journal of Geophysical Research: Space Physics Vol. 116; no. A9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 20–60 min, 100–400 m/s, 130°–270°, and 0.8–1.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 20–70 min, 50–230 m/s, 170°–300°, and 2–7%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer.
Key Points
Daytime MSTIDs have a peak at winter solstice and propagated southward
Nighttime MSTIDs have a peak at summer solstice and a southwestward direction
Comparing with HF Doppler observation, we find a height dependence of MSTIDs |
---|---|
AbstractList | Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing with HF Doppler observation, we find a height dependence of MSTIDs The 15-month climatology of medium-scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 2060 min, 100400 m/s, 130°270°, and 0.81.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 2070 min, 50230 m/s, 170°300°, and 27%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer. Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing with HF Doppler observation, we find a height dependence of MSTIDs The 15-month climatology of medium-scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 20-60 min, 100-400 m/s, 130 degree -270 degree , and 0.8-1.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 20-70 min, 50-230 m/s, 170 degree -300 degree , and 2-7%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer. The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a dense GPS receiver array in Central China. In total, 793 MSTID events are identified, with peaks in occurrence at 1500 LT and 0100 LT. The occurrence of MSTIDs decreases following an increase in geomagnetic activity, with 46% of the MSTIDS occurring in the daytime. Daytime MSTIDs are characterized by a major occurrence maximum around the winter solstice and by an equatorward propagation direction. The period, phase velocity, azimuth, and amplitude of daytime MSTIDs are 20–60 min, 100–400 m/s, 130°–270°, and 0.8–1.5%, respectively. The remaining 54% of the MSTIDs occurred at night, and were characterized by a peak in occurrence at the summer solstice and by a southwestward propagation direction. The period, phase velocity, azimuth, and amplitude of nighttime MSTIDs are 20–70 min, 50–230 m/s, 170°–300°, and 2–7%, respectively. The propagation directions and the seasonal behaviors support the view that daytime MSTIDs are an ionospheric manifestation of atmospheric gravity waves from the lower atmosphere, while a possible excitation mechanism of nighttime MSTIDs is the electrodynamics process caused by plasma instability in the F layer. Key Points Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing with HF Doppler observation, we find a height dependence of MSTIDs |
Author | Wan, Weixing Yang, Guanglin Wang, Jing-song Ding, Feng Xu, Guirong Yu, Tao |
Author_xml | – sequence: 1 givenname: Feng surname: Ding fullname: Ding, Feng email: dingf@mail.iggcas.ac.cn organization: Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Weixing surname: Wan fullname: Wan, Weixing organization: Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Guirong surname: Xu fullname: Xu, Guirong organization: Institute of Heavy Rain, China Meteorological Administration, Wuhan, China – sequence: 4 givenname: Tao surname: Yu fullname: Yu, Tao organization: National Center for Space Weather, China Meteorological Administration, Beijing, China – sequence: 5 givenname: Guanglin surname: Yang fullname: Yang, Guanglin organization: National Center for Space Weather, China Meteorological Administration, Beijing, China – sequence: 6 givenname: Jing-song surname: Wang fullname: Wang, Jing-song organization: National Center for Space Weather, China Meteorological Administration, Beijing, China |
BookMark | eNpdkEtvEzEUhS1UJELpjh9gsWIz1O-ZWUaBJkQVzyKWlu2507p17GDPtOTf11UQQtzN3Zzz6eh7iU5iioDQa0reUcL6c0Yo3S4JVVLIZ2jBqFQNY4SdoAWhomsIY-0LdFbKLaknpBKELpBfBb8zUwrp-oDTiHcw-HnXFGcC4Cmbewg-XmOfYir7G8je4cGXac7WRAcFJ1sg38OA7QEbvP7yHUeYHlK-wz5iB7EiAl7d-GheoeejCQXO_vxT9OPiw9Vq01x-Xn9cLS8bXweJxrSjgGFsLaVOdkY6MM6xDgwRrpWGKrCcK95ZI1vVS25V3w6KgQVLutEwforeHrn7nH7NUCa988VBCCZCmouuskR11ApVo2_-i96mOce6Tne97BhX9CnEj6EHH-Cg97n6yoeKeSL1-l_terv-tmSUE1FbzbFVZcHvvy2T77RqeSv1z09rvdlcdduv7y_0lj8CS42IRg |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. Copyright 2011 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: Copyright 2011 by American Geophysical Union |
DBID | BSCLL 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1029/2011JA016545 |
DatabaseName | Istex ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student Meteorological & Geoastrophysical Abstracts - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9402 |
EndPage | n/a |
ExternalDocumentID | 2473786971 JGRA21304 ark_67375_WNG_HHT8JQDF_J |
Genre | article Feature |
GeographicLocations | China, People's Rep |
GeographicLocations_xml | – name: China, People's Rep |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL 05W 0R~ 33P 3V. 50Y 52M 702 7TG 7XB 8-1 8FD 8FG 8FK AAESR AASGY AAZKR ACBWZ ACGOD ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AIURR ALVPJ ARAPS AZQEC AZVAB BFHJK BGLVJ BMXJE CCPQU D0L D1K DPXWK H8D HGLYW HZ~ K6- KL. L7M LEEKS LK5 M7R MY~ O9- P2W P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC Q9U R.K SUPJJ WBKPD |
ID | FETCH-LOGICAL-i4014-a7f4edf7b11c58a5ceacc28ea04c75a16eb33638ba576953b697d62ebeb08fa23 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9380 |
IngestDate | Fri Jul 11 03:54:44 EDT 2025 Sat Jul 26 01:02:45 EDT 2025 Wed Jan 22 16:52:09 EST 2025 Wed Oct 30 09:53:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | A9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4014-a7f4edf7b11c58a5ceacc28ea04c75a16eb33638ba576953b697d62ebeb08fa23 |
Notes | istex:EF1EA3B3ABF43449B1DDB9A634EB15AF4E531657 ark:/67375/WNG-HHT8JQDF-J ArticleID:2011JA016545 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011JA016545 |
PQID | 895823616 |
PQPubID | 54732 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1024654746 proquest_journals_895823616 wiley_primary_10_1029_2011JA016545_JGRA21304 istex_primary_ark_67375_WNG_HHT8JQDF_J |
PublicationCentury | 2000 |
PublicationDate | September 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of Geophysical Research: Space Physics |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Ding, F., W. Wan, and H. Yuan (2003), The influence of background winds and attenuation on the propagation of atmospheric gravity waves, J. Atmos. Sol. Terr. Phys., 65, 857-869, doi:10.1016/S1364-6826(03)00090-7. Xiao, Z., S. Xiao, Y. Hao, and D. Zhang (2007), Morphological features of ionospheric response to typhoon, J. Geophys. Res., 112, A04304, doi:10.1029/2006JA011671. MacDougall, J. W., and G. E. Hall (1998), An F region height change produced by gravity waves, Radio Sci., 33(6), 1867-1876, doi:10.1029/98RS01787. Seker, I., S. F. Fung, and J. D. Mathews (2011), Relation between magnetospheric state parameters and the occurrence of plasma depletion events in the nighttime midlatitude F region, J. Geophys. Res., 116, A04323, doi:10.1029/2010JA015521. Saito, A., S. Fukao, and S. Miyazaki (1998), High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25, 3079-3082, doi:10.1029/98GL52361. Bristow, W., and R. Greenwald (1996), Multiradar observations of medium-scale acoustic gravity waves using the Super Dual Auroral Radar Network, J. Geophys. Res., 101(A11), 24,499-24,511, doi:10.1029/96JA01494. Yokoyama, T., Y. Otsuka, T. Ogawa, M. Yamamoto, and D. L. Hysell (2008), First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 35, L03101, doi:10.1029/2007GL032496. Cowling, D. H., H. D. Webb, and K. C. Yeh (1971), Group rays of internal gravity waves in a wind-stratified atmosphere, J. Geophys. Res., 76, 213-220, doi:10.1029/JA076i001p00213. Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over USA, Geophys. Res. Lett., 34, L22101, doi:10.1029/2007GL031663. Afraimovich, E. L., E. A. Kosogorov, O. S. Lesyuta, I. I. Ushakov, and A. F. Yakovets (2001), Geomagnetic control of the spectrum of travelling ionospheric disturbances based on data from a global GPS Network, Ann. Geophys., 19, 723-731, doi:10.5194/angeo-19-723-2001. Kelley, M. C., J. J. Makela, and A. Saito (2002), The mid-latitude F region at the mesoscale: Some progress at last, J. Atmos. Sol. Terr. Phys., 64, 1525-1529, doi:10.1016/S1364-6826(02)00090-1. Adams, G. W., J. W. Brosnahan, and T. D. Halderman (1988), Direct radar observations of TIDs in the D- and E-regions, J. Atmos. Terr. Phys., 50, 931-935. Candido, C. M. N., I. S. Batista, F. Becker-Guedes, M. A. Abdu, J. H. A. Sobral, and H. Takahashi (2011), Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity, J. Geophys. Res., 116, A06316, doi:10.1029/2010JA016374. Kelley, M. C., and J. J. Makela (2001), Resolution of the discrepancy between experiment and theory of midlatitude F region structures, Geophys. Res. Lett., 28, 2589-2592, doi:10.1029/2000GL012777. Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995, Ann. Geophys., 14, 917-940. Ibrahim, C., F. Chane-Ming, C. Barthe, and Y. Kuleshov (2010), Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean, Geophys. Res. Lett., 37, L09807, doi:10.1029/2010GL042938. Shiokawa, K., C. Ihara, Y. Otsuka, and T. Ogawa (2003), Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res., 108(A1), 1052, doi:10.1029/2002JA009491. Lee, C. C., Y. A. Liou, Y. Otsuka, F. D. Chu, T. K. Yeh, K. Hoshinoo, and K. Matunaga (2008), Nighttime medium-scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan, J. Geophys. Res., 113, A12316, doi:10.1029/2008JA013250. Ning, B. Q., L. Li, and J. Li (1995), Variation of medium-scale traveling ionospheric disturbances at Wuhan, Chin. J. Geophys., 38(4), 439-447. Buss, S., et al. (2004), Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland, Atmos. Chem. Phys., 4, 1183-1200, doi:10.5194/acp-4-1183-2004. Garcia, F. J., M. C. Kelley, J. J. Makela, P. J. Sultane, X. Pi, and S. Musman (2000), Mesoscale structure of the midlatitude ionosphere during high geomagnetic activity: Airglow and GPS observations, J. Geophys. Res., 105, 18,417-18,427, doi:10.1029/1999JA000306. Wan, W. X., B. Q. Ning, H. Yuan, J. N. Li, L. Li, and J. Liang (1997), TID observation using a short baseline network of GPS receivers, Acta Geodyn. Geophys. Hung., 32(3-4), 321-327. Morton, F. W., and E. A. Essex (1978), Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique, J. Atmos. Terr. Phys., 40, 1113-1122, doi:10.1016/0021-9169(78)90059-4. Martinis, C., J. Baumgardner, J. Wroten, and M. Mendillo (2010), Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo, Geophys. Res. Lett., 37, L11103, doi:10.1029/2010GL043569. Baker, D. M., and K. Davies (1969), F2 region acoustic waves from severe weather, J. Atmos. Terr. Phys., 31, 1345-1346, doi:10.1016/0021-9169(69)90118-4. Bertin, F., J. Testud, L. Kersley, and P. R. Rees (1978), The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: An experimental study, J. Atmos. Terr. Phys., 40, 1161-1183, doi:10.1016/0021-9169(78)90067-3. Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441-1481, doi:10.1139/p60-150. Hunsucker, R. D. (1982), Atmospheric gravity waves generated in the High-latitude ionosphere: A review, Rev. Geophys., 20, 293-315, doi:10.1029/RG020i002p00293. Kotake, N., et al. (2007), Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California, Earth Planets Space, 59, 95-102. Zhou, Q., and J. D. Mathews (2006), On the physical explanation of the Perkins instability, J. Geophys. Res., 111, A12309, doi:10.1029/2006JA011696. He, L., and J. Ping (2008), Occurrence of medium-scale travelling ionospheric disturbances identified in the Tasman international geospace environment radar observations, Adv. Space Res., 42, 1276-1280, doi:10.1016/j.asr.2007.06.010. Wan, W. X., H. Yuan, B. Ning, and J. Liang (1998), Travelling ionosphere disturbances associated with tropospheric vortexes around Qinghai-Tibet Plateau, Geophys. Res. Lett., 25, 3775-3778, doi:10.1029/1998GL900030. Waldock, J. A., and T. B. Jones (1984), The effects of neutral winds on the propagation of medium scale atmospheric gravity waves at mid-latitudes, J. Atmos. Terr. Phys., 46, 217-231, doi:10.1016/0021-9169(84)90149-1. Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131. Georges, T. M. (1968), HF Doppler studies of traveling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735-746, doi:10.1016/S0021-9169(68)80029-7. Pierce, A. D., and S. C. Coroniti (1966), A mechanism for the generation of acoustic gravity waves during thunderstorm formation, Nature, 210, 1209-1210, doi:10.1038/2101209a0. Kelley, M. C., and C. A. Miller (1997), The electrodynamics of mid-latitude spread F: 3. Electrobuoyancy waves? A new look at the role of electric fields and thermospheric gravity waves, J. Geophys. Res., 102(A6), 11,539-11,547. Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218-226, doi:10.1029/JA078i001p00218. Beach, T. L., M. C. Kelley, and P. M. Kintner (1997), Total electron content variations due to nonclassical traveling ionospheric disturbances: Theory and Global Positioning System observations, J. Geophy. Res., 102, 7279-7292. Pinger, W. H. (1979), Detection of traveling ionospheric disturbances with auroral zone incoherent scatter radar, Radio Sci., 14(1), 75-84, doi:10.1029/RS014i001p00075. She, C. Y., and R. P. Lowe (1998), Seasonal temperature variations in the mesopause region at mid-latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles, J. Atmos. Sol. Terr. Phys., 60, 1573-1583, doi:10.1016/S1364-6826(98)00082-0. Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418. Boška, J., and P. Šauli (2001), Observations of gravity waves of meteorological origin in the F region ionosphere, Phys. Chem. Earth, 26, 425-428. Jacobson, A. R., R. C. Carlos, R. S. Massey, and G. Wu (1995), Observation of traveling ionospheric disturbances with a satellite-beacon radio interferometer: Seasonal and local time behavior, J. Geophys. Res., 100(A2), 1653-1665, doi:10.1029/94JA02663. Tsutsui, M., and T. Ogawa (1973), HF Doppler observation of ionospheric effects due to typhoons, Rep. Ionos. Space Res. Jpn., 27, 121-123. Wang, M., et al. (2007), Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms, Earth Planets Space, 59, 1-13. Wan, W. X., H. Yuan, B. Ning, and J. Liang (2000), Regional properties of travelling ionospheric disturbances observed in central China, Adv. Space Sci., 25, 219-222. Ashkaliev, Y. F., et al. (2003), Comparison of travelling ionospheric disturbance measurements with thermosphere/ionosphere model results, Ann. Geophys., 21, 1031-1037, doi:10.5194/angeo-21-1031-2003. Waldock, J. A., and T. B. Jones (1986), HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes, J. Atmos. Terr. Phys., 48, 245-260, doi:10.1016/0021-9169(86)90099-1. Candido, C. M. N., A. A. Pimenta, J. A. Bittencourt, and F. Becker-Guedes (2008), Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images, Geophys. Res. Lett., 35, L17105, doi:10.1029/2008GL035043. Evans, J. V., J. M. Holt, and R. H. Wa 2011; 116 1987; 35 2010; 37 1966; 210 1979; 14 2000; 25 1995; 38 1973; 78 1960; 38 1969; 31 1984; 46 2004; 4 2008; 35 1988; 50 2001; 26 2001; 28 1998; 60 1996; 14 1983; 18 1996; 101 2007; 34 2006; 111 2007; 59 1998; 25 1997; 102 2007; 112 1971; 76 2003; 108 2002; 64 1997; 32 2000; 105 1978; 40 1982; 20 1978; 83 1973; 27 1986; 48 2001; 19 1995; 100 2008; 42 2008; 113 2003; 21 2003; 65 1998; 33 1968; 30 |
References_xml | – reference: Bristow, W., and R. Greenwald (1996), Multiradar observations of medium-scale acoustic gravity waves using the Super Dual Auroral Radar Network, J. Geophys. Res., 101(A11), 24,499-24,511, doi:10.1029/96JA01494. – reference: Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over USA, Geophys. Res. Lett., 34, L22101, doi:10.1029/2007GL031663. – reference: Evans, J. V., J. M. Holt, and R. H. Wand (1983), A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill, Radio Sci., 18, 435-451, doi:10.1029/RS018i003p00435. – reference: Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218-226, doi:10.1029/JA078i001p00218. – reference: Hunsucker, R. D. (1982), Atmospheric gravity waves generated in the High-latitude ionosphere: A review, Rev. Geophys., 20, 293-315, doi:10.1029/RG020i002p00293. – reference: Moore, P., and W. J. Boulton (1987), Some aspects of a global thermospheric density model deduced from the analysis of the orbit of intercosmos 13 rocket (1975-22b), Planet. Space Sci., 35(8), 1039-1052, doi:10.1016/0032-0633(87)90008-0. – reference: Georges, T. M. (1968), HF Doppler studies of traveling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735-746, doi:10.1016/S0021-9169(68)80029-7. – reference: Seker, I., S. F. Fung, and J. D. Mathews (2011), Relation between magnetospheric state parameters and the occurrence of plasma depletion events in the nighttime midlatitude F region, J. Geophys. Res., 116, A04323, doi:10.1029/2010JA015521. – reference: Kelley, M. C., J. J. Makela, and A. Saito (2002), The mid-latitude F region at the mesoscale: Some progress at last, J. Atmos. Sol. Terr. Phys., 64, 1525-1529, doi:10.1016/S1364-6826(02)00090-1. – reference: Kotake, N., et al. (2007), Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California, Earth Planets Space, 59, 95-102. – reference: Adams, G. W., J. W. Brosnahan, and T. D. Halderman (1988), Direct radar observations of TIDs in the D- and E-regions, J. Atmos. Terr. Phys., 50, 931-935. – reference: Wang, M., et al. (2007), Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms, Earth Planets Space, 59, 1-13. – reference: Afraimovich, E. L., E. A. Kosogorov, O. S. Lesyuta, I. I. Ushakov, and A. F. Yakovets (2001), Geomagnetic control of the spectrum of travelling ionospheric disturbances based on data from a global GPS Network, Ann. Geophys., 19, 723-731, doi:10.5194/angeo-19-723-2001. – reference: He, L., and J. Ping (2008), Occurrence of medium-scale travelling ionospheric disturbances identified in the Tasman international geospace environment radar observations, Adv. Space Res., 42, 1276-1280, doi:10.1016/j.asr.2007.06.010. – reference: Ibrahim, C., F. Chane-Ming, C. Barthe, and Y. Kuleshov (2010), Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean, Geophys. Res. Lett., 37, L09807, doi:10.1029/2010GL042938. – reference: Martinis, C., J. Baumgardner, J. Wroten, and M. Mendillo (2010), Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo, Geophys. Res. Lett., 37, L11103, doi:10.1029/2010GL043569. – reference: Candido, C. M. N., A. A. Pimenta, J. A. Bittencourt, and F. Becker-Guedes (2008), Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images, Geophys. Res. Lett., 35, L17105, doi:10.1029/2008GL035043. – reference: Ashkaliev, Y. F., et al. (2003), Comparison of travelling ionospheric disturbance measurements with thermosphere/ionosphere model results, Ann. Geophys., 21, 1031-1037, doi:10.5194/angeo-21-1031-2003. – reference: Ding, F., W. Wan, and H. Yuan (2003), The influence of background winds and attenuation on the propagation of atmospheric gravity waves, J. Atmos. Sol. Terr. Phys., 65, 857-869, doi:10.1016/S1364-6826(03)00090-7. – reference: Ning, B. Q., L. Li, and J. Li (1995), Variation of medium-scale traveling ionospheric disturbances at Wuhan, Chin. J. Geophys., 38(4), 439-447. – reference: Zhou, Q., and J. D. Mathews (2006), On the physical explanation of the Perkins instability, J. Geophys. Res., 111, A12309, doi:10.1029/2006JA011696. – reference: Wan, W. X., B. Q. Ning, H. Yuan, J. N. Li, L. Li, and J. Liang (1997), TID observation using a short baseline network of GPS receivers, Acta Geodyn. Geophys. Hung., 32(3-4), 321-327. – reference: Boška, J., and P. Šauli (2001), Observations of gravity waves of meteorological origin in the F region ionosphere, Phys. Chem. Earth, 26, 425-428. – reference: Yokoyama, T., Y. Otsuka, T. Ogawa, M. Yamamoto, and D. L. Hysell (2008), First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 35, L03101, doi:10.1029/2007GL032496. – reference: Beach, T. L., M. C. Kelley, and P. M. Kintner (1997), Total electron content variations due to nonclassical traveling ionospheric disturbances: Theory and Global Positioning System observations, J. Geophy. Res., 102, 7279-7292. – reference: Cowling, D. H., H. D. Webb, and K. C. Yeh (1971), Group rays of internal gravity waves in a wind-stratified atmosphere, J. Geophys. Res., 76, 213-220, doi:10.1029/JA076i001p00213. – reference: Candido, C. M. N., I. S. Batista, F. Becker-Guedes, M. A. Abdu, J. H. A. Sobral, and H. Takahashi (2011), Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity, J. Geophys. Res., 116, A06316, doi:10.1029/2010JA016374. – reference: Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441-1481, doi:10.1139/p60-150. – reference: Jacobson, A. R., R. C. Carlos, R. S. Massey, and G. Wu (1995), Observation of traveling ionospheric disturbances with a satellite-beacon radio interferometer: Seasonal and local time behavior, J. Geophys. Res., 100(A2), 1653-1665, doi:10.1029/94JA02663. – reference: Morton, F. W., and E. A. Essex (1978), Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique, J. Atmos. Terr. Phys., 40, 1113-1122, doi:10.1016/0021-9169(78)90059-4. – reference: Pinger, W. H. (1979), Detection of traveling ionospheric disturbances with auroral zone incoherent scatter radar, Radio Sci., 14(1), 75-84, doi:10.1029/RS014i001p00075. – reference: Lee, C. C., Y. A. Liou, Y. Otsuka, F. D. Chu, T. K. Yeh, K. Hoshinoo, and K. Matunaga (2008), Nighttime medium-scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan, J. Geophys. Res., 113, A12316, doi:10.1029/2008JA013250. – reference: MacDougall, J. W., and G. E. Hall (1998), An F region height change produced by gravity waves, Radio Sci., 33(6), 1867-1876, doi:10.1029/98RS01787. – reference: Xiao, Z., S. Xiao, Y. Hao, and D. Zhang (2007), Morphological features of ionospheric response to typhoon, J. Geophys. Res., 112, A04304, doi:10.1029/2006JA011671. – reference: Saito, A., S. Fukao, and S. Miyazaki (1998), High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25, 3079-3082, doi:10.1029/98GL52361. – reference: Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131. – reference: Pierce, A. D., and S. C. Coroniti (1966), A mechanism for the generation of acoustic gravity waves during thunderstorm formation, Nature, 210, 1209-1210, doi:10.1038/2101209a0. – reference: Garcia, F. J., M. C. Kelley, J. J. Makela, P. J. Sultane, X. Pi, and S. Musman (2000), Mesoscale structure of the midlatitude ionosphere during high geomagnetic activity: Airglow and GPS observations, J. Geophys. Res., 105, 18,417-18,427, doi:10.1029/1999JA000306. – reference: Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995, Ann. Geophys., 14, 917-940. – reference: Waldock, J. A., and T. B. Jones (1984), The effects of neutral winds on the propagation of medium scale atmospheric gravity waves at mid-latitudes, J. Atmos. Terr. Phys., 46, 217-231, doi:10.1016/0021-9169(84)90149-1. – reference: Wan, W. X., H. Yuan, B. Ning, and J. Liang (2000), Regional properties of travelling ionospheric disturbances observed in central China, Adv. Space Sci., 25, 219-222. – reference: Waldock, J. A., and T. B. Jones (1986), HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes, J. Atmos. Terr. Phys., 48, 245-260, doi:10.1016/0021-9169(86)90099-1. – reference: Wan, W. X., H. Yuan, B. Ning, and J. Liang (1998), Travelling ionosphere disturbances associated with tropospheric vortexes around Qinghai-Tibet Plateau, Geophys. Res. Lett., 25, 3775-3778, doi:10.1029/1998GL900030. – reference: Shiokawa, K., C. Ihara, Y. Otsuka, and T. Ogawa (2003), Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res., 108(A1), 1052, doi:10.1029/2002JA009491. – reference: Bertin, F., J. Testud, L. Kersley, and P. R. Rees (1978), The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: An experimental study, J. Atmos. Terr. Phys., 40, 1161-1183, doi:10.1016/0021-9169(78)90067-3. – reference: Kelley, M. C., and J. J. Makela (2001), Resolution of the discrepancy between experiment and theory of midlatitude F region structures, Geophys. Res. Lett., 28, 2589-2592, doi:10.1029/2000GL012777. – reference: Tsutsui, M., and T. Ogawa (1973), HF Doppler observation of ionospheric effects due to typhoons, Rep. Ionos. Space Res. Jpn., 27, 121-123. – reference: Baker, D. M., and K. Davies (1969), F2 region acoustic waves from severe weather, J. Atmos. Terr. Phys., 31, 1345-1346, doi:10.1016/0021-9169(69)90118-4. – reference: Kelley, M. C., and C. A. Miller (1997), The electrodynamics of mid-latitude spread F: 3. Electrobuoyancy waves? A new look at the role of electric fields and thermospheric gravity waves, J. Geophys. Res., 102(A6), 11,539-11,547. – reference: She, C. Y., and R. P. Lowe (1998), Seasonal temperature variations in the mesopause region at mid-latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles, J. Atmos. Sol. Terr. Phys., 60, 1573-1583, doi:10.1016/S1364-6826(98)00082-0. – reference: Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418. – reference: Buss, S., et al. (2004), Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland, Atmos. Chem. Phys., 4, 1183-1200, doi:10.5194/acp-4-1183-2004. – volume: 35 start-page: 1039 issue: 8 year: 1987 end-page: 1052 article-title: Some aspects of a global thermospheric density model deduced from the analysis of the orbit of intercosmos 13 rocket (1975–22b) publication-title: Planet. Space Sci. – volume: 28 start-page: 2589 year: 2001 end-page: 2592 article-title: Resolution of the discrepancy between experiment and theory of midlatitude region structures publication-title: Geophys. Res. Lett. – volume: 59 start-page: 95 year: 2007 end-page: 102 article-title: Statistical study of medium‐scale traveling ionospheric disturbances observed with the GPS networks in Southern California publication-title: Earth Planets Space – volume: 31 start-page: 1345 year: 1969 end-page: 1346 article-title: F2 region acoustic waves from severe weather publication-title: J. Atmos. Terr. Phys. – volume: 101 start-page: 24,499 issue: A11 year: 1996 end-page: 24,511 article-title: Multiradar observations of medium‐scale acoustic gravity waves using the Super Dual Auroral Radar Network publication-title: J. Geophys. Res. – volume: 37 year: 2010 article-title: Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean publication-title: Geophys. Res. Lett. – volume: 113 year: 2008 article-title: Nighttime medium‐scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan publication-title: J. Geophys. Res. – volume: 59 start-page: 1 year: 2007 end-page: 13 article-title: Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms publication-title: Earth Planets Space – volume: 20 start-page: 293 year: 1982 end-page: 315 article-title: Atmospheric gravity waves generated in the High‐latitude ionosphere: A review publication-title: Rev. Geophys. – volume: 14 start-page: 917 year: 1996 end-page: 940 article-title: A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995 publication-title: Ann. Geophys. – volume: 116 year: 2011 article-title: Relation between magnetospheric state parameters and the occurrence of plasma depletion events in the nighttime midlatitude F region publication-title: J. Geophys. Res. – volume: 83 start-page: 4131 year: 1978 end-page: 4145 article-title: Gravity wave generation, propagation, and dissipation in the thermosphere publication-title: J. Geophys. Res. – volume: 21 start-page: 1031 year: 2003 end-page: 1037 article-title: Comparison of travelling ionospheric disturbance measurements with thermosphere/ionosphere model results publication-title: Ann. Geophys. – volume: 26 start-page: 425 year: 2001 end-page: 428 article-title: Observations of gravity waves of meteorological origin in the region ionosphere publication-title: Phys. Chem. Earth – volume: 40 start-page: 1161 year: 1978 end-page: 1183 article-title: The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: An experimental study publication-title: J. Atmos. Terr. Phys. – volume: 60 start-page: 1573 year: 1998 end-page: 1583 article-title: Seasonal temperature variations in the mesopause region at mid‐latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles publication-title: J. Atmos. Sol. Terr. Phys. – volume: 116 year: 2011 article-title: Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity publication-title: J. Geophys. Res. – volume: 108 issue: A1 year: 2003 article-title: Statistical study of nighttime medium‐scale traveling ionospheric disturbances using midlatitude airglow images publication-title: J. Geophys. Res. – volume: 19 start-page: 723 year: 2001 end-page: 731 article-title: Geomagnetic control of the spectrum of travelling ionospheric disturbances based on data from a global GPS Network publication-title: Ann. Geophys. – volume: 38 start-page: 1441 year: 1960 end-page: 1481 article-title: Internal atmospheric gravity waves at ionospheric heights publication-title: Can. J. Phys. – volume: 25 start-page: 3775 year: 1998 end-page: 3778 article-title: Travelling ionosphere disturbances associated with tropospheric vortexes around Qinghai‐Tibet Plateau publication-title: Geophys. Res. Lett. – volume: 4 start-page: 1183 year: 2004 end-page: 1200 article-title: Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland publication-title: Atmos. Chem. Phys. – volume: 76 start-page: 213 year: 1971 end-page: 220 article-title: Group rays of internal gravity waves in a wind‐stratified atmosphere publication-title: J. Geophys. Res. – volume: 37 year: 2010 article-title: Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo publication-title: Geophys. Res. Lett. – volume: 102 start-page: 7279 year: 1997 end-page: 7292 article-title: Total electron content variations due to nonclassical traveling ionospheric disturbances: Theory and Global Positioning System observations publication-title: J. Geophy. Res. – volume: 35 year: 2008 article-title: Statistical analysis of the occurrence of medium‐scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all‐sky images publication-title: Geophys. Res. Lett. – volume: 65 start-page: 857 year: 2003 end-page: 869 article-title: The influence of background winds and attenuation on the propagation of atmospheric gravity waves publication-title: J. Atmos. Sol. Terr. Phys. – volume: 111 year: 2006 article-title: On the physical explanation of the Perkins instability publication-title: J. Geophys. Res. – volume: 102 start-page: 11,539 issue: A6 year: 1997 end-page: 11,547 article-title: The electrodynamics of mid‐latitude spread F: 3. Electrobuoyancy waves? A new look at the role of electric fields and thermospheric gravity waves publication-title: J. Geophys. Res. – volume: 64 start-page: 1525 year: 2002 end-page: 1529 article-title: The mid‐latitude F region at the mesoscale: Some progress at last publication-title: J. Atmos. Sol. Terr. Phys. – volume: 33 start-page: 1867 issue: 6 year: 1998 end-page: 1876 article-title: An F region height change produced by gravity waves publication-title: Radio Sci. – volume: 210 start-page: 1209 year: 1966 end-page: 1210 article-title: A mechanism for the generation of acoustic gravity waves during thunderstorm formation publication-title: Nature – volume: 27 start-page: 121 year: 1973 end-page: 123 article-title: HF Doppler observation of ionospheric effects due to typhoons publication-title: Rep. Ionos. Space Res. Jpn. – volume: 48 start-page: 245 year: 1986 end-page: 260 article-title: HF Doppler observations of medium‐scale travelling ionospheric disturbances at mid‐latitudes publication-title: J. Atmos. Terr. Phys. – volume: 78 start-page: 218 year: 1973 end-page: 226 article-title: Spread F and ionospheric currents publication-title: J. Geophys. Res. – volume: 25 start-page: 219 year: 2000 end-page: 222 article-title: Regional properties of travelling ionospheric disturbances observed in central China publication-title: Adv. Space Sci. – volume: 40 start-page: 1113 year: 1978 end-page: 1122 article-title: Gravity wave observations at a southern hemisphere mid‐latitude station using the total electron content technique publication-title: J. Atmos. Terr. Phys. – volume: 35 year: 2008 article-title: First three‐dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere publication-title: Geophys. Res. Lett. – volume: 38 start-page: 439 issue: 4 year: 1995 end-page: 447 article-title: Variation of medium‐scale traveling ionospheric disturbances at Wuhan publication-title: Chin. J. Geophys. – volume: 25 start-page: 3079 year: 1998 end-page: 3082 article-title: High resolution mapping of TEC perturbations with the GSI GPS network over Japan publication-title: Geophys. Res. Lett. – volume: 50 start-page: 931 year: 1988 end-page: 935 article-title: Direct radar observations of TIDs in the D‐ and E‐regions publication-title: J. Atmos. Terr. Phys. – volume: 18 start-page: 435 year: 1983 end-page: 451 article-title: A differential‐Doppler study of traveling ionospheric disturbances from Millstone Hill publication-title: Radio Sci. – volume: 30 start-page: 735 year: 1968 end-page: 746 article-title: HF Doppler studies of traveling ionospheric disturbances publication-title: J. Atmos. Terr. Phys. – volume: 105 start-page: 18,417 year: 2000 end-page: 18,427 article-title: Mesoscale structure of the midlatitude ionosphere during high geomagnetic activity: Airglow and GPS observations publication-title: J. Geophys. Res. – volume: 34 year: 2007 article-title: Medium‐scale traveling ionospheric disturbances detected with dense and wide TEC maps over USA publication-title: Geophys. Res. Lett. – volume: 32 start-page: 321 issue: 3–4 year: 1997 end-page: 327 article-title: TID observation using a short baseline network of GPS receivers publication-title: Acta Geodyn. Geophys. Hung. – volume: 42 start-page: 1276 year: 2008 end-page: 1280 article-title: Occurrence of medium‐scale travelling ionospheric disturbances identified in the Tasman international geospace environment radar observations publication-title: Adv. Space Res. – volume: 111 year: 2006 article-title: Climatological study of GPS total electron content variations caused by medium‐scale traveling ionospheric disturbances publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Morphological features of ionospheric response to typhoon publication-title: J. Geophys. Res. – volume: 46 start-page: 217 year: 1984 end-page: 231 article-title: The effects of neutral winds on the propagation of medium scale atmospheric gravity waves at mid‐latitudes publication-title: J. Atmos. Terr. Phys. – volume: 100 start-page: 1653 issue: A2 year: 1995 end-page: 1665 article-title: Observation of traveling ionospheric disturbances with a satellite‐beacon radio interferometer: Seasonal and local time behavior publication-title: J. Geophys. Res. – volume: 14 start-page: 75 issue: 1 year: 1979 end-page: 84 article-title: Detection of traveling ionospheric disturbances with auroral zone incoherent scatter radar publication-title: Radio Sci. |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816915 |
Score | 2.3872595 |
Snippet | The 15‐month climatology of medium‐scale traveling ionospheric disturbances (MSTIDs) during a solar minimum period has been constructed from observations of a... Daytime MSTIDs have a peak at winter solstice and propagated southward Nighttime MSTIDs have a peak at summer solstice and a southwestward direction Comparing... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
SubjectTerms | Atmospheric sciences Climatology GPS Gravity waves medium-scale traveling ionospheric disturbance Solstices Summer Winter |
Title | Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China |
URI | https://api.istex.fr/ark:/67375/WNG-HHT8JQDF-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JA016545 https://www.proquest.com/docview/895823616 https://www.proquest.com/docview/1024654746 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbN7qWX0ifZJg0qlJwq4ockS6eweewuhi5pmtDchF4Gk8ZO17uQ_PtoZGdJL70JbJDQJ82MvhnpQ-ib45qnxjnCpWGEFp4TUSWGOJpWMnHW5lG078eSL65pecNuhtqcbiirfLaJ0VC71gJHfiQkA23ulB_f_yUgGgXJ1UFBYweNgwUWYoTGJ-fLi8styQKqEjKqGGShQWQukqH4PcnkEfi-chrv8wTXMoZpffgn0HwZrkZ_M3uL3gyBIp72yL5Dr3zzHu1OO6Cu27tHfIhju2cmug-oPv1Th-gzsuS4rTAkzTd3pAsYeLwGkSG4eI7hEkMHTwnUFrswls3KAO4dbg3ws95h84g1nl_8wk1fIY7rBg8lnDiqbX9E17Pzq9MFGXQUSB1OT5TooqLeVYVJU8uEZjYYW5sJrxNqC6ZTHg7UediHRofDh2S54bJwPAvwmkRUOss_oVHTNn4XYe6tTB0zhmtLhUyl8NZIq4vcC5fncoIO4zSq-_6tDKVXt1A6VjD1ezlXi8WVKH-ezVQ5QXvP86yGXdOpLcYT9HX7NSx3yGHoxrebTgXg4AW4goZ_vkd4tl3FdHom1UtYVTm_nGbBT9PP_-1wD73uyWIoHttHo_Vq47-EaGNtDtCOmM0PhpX1BFxD1T4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuiKcaWmCRoCes-rFeew8IRS1J6rYRj1T0tuzLkkVrlzgR5EfxH5lZO1G5cOttJVtae2d23jMfIW8sVzzS1gZc6DRgmeNBXoY6sCwqRWiNSTxo3_mUTy5YcZlebpE_614YLKtcy0QvqG1jMEZ-mIsUsbkj_uHmZ4CgUZhcXSNodFxx6la_wGNr358cA3nfxvHo4-xoEvSgAkEFrgQLVFYyZ8tMR5FJc5UakDwmzp0KmclSFXHwLhNgSq3AEhdpornILI_hX3WYlwrnHIDE32EJKHJsTB-NNyEdxLAQHjMhhkUgkjzsS-3DWByipi2GvnsIFNkOEvH3P2btbePYa7fRQ_KgN0vpsOOjR2TL1Y_J7rDFQHlzvaIH1K-7OEj7hFRHVxXYuj4mT5uSYop-eR20QHFHFwhphG3uFFsmWhxcUBlq4VuWc41c1tJGYzTYWapXVNHxp6-07urRaVXTvmCUemzvp-TiTg74Gdmum9rtEsqdEZFNtebKsFxEIndGC6OyxOUWCDAgB_4Y5U03mUOq-Q8sVMtS-W06lpPJLC8-H49kMSB763OW_R1t5YajBuT15ilcLsyYqNo1y1YC4XDeXMbgnXeePJutfPI-FvI2WWUx_jKMwSpgz_-74StybzI7P5NnJ9PTPXK_C1Nj2do-2V7Ml-4F2DkL_dJzFyXf75qd_wJcYREH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamVkK8IK5aGRcjwZ6wmqtjPyBU1rVdBlUZm9ib8S1SBEtG0wr60_h3-DhpNV5425ulRHLi8_n4-Nw-hF4bKmmojCGUq5QkmaWEFYEiJgkLHhitY0_a92lOZxdJfple7qE_21oYSKvc6kSvqE2twUc-ZDwFbu6QDosuK2Ixnry__kmAQAoCrVs2jRYhp3bzy93emncnYyfqN1E0OT4_mpGOYICU7lqREJkViTVFpsJQp0ym2mkhHTErg0RnqQypu2nGDqBKOqucp7GiPDM0cv-tAlZI6HngtH8_g0tRD_U_HM8XZzsHDzBacM-gELkB4TELusT7IOJDOHfzka8lcsdaH0T6-x8j96ap7M-6yX10rzNS8ahF1QO0Z6uHaH_UgNu8vtrgQ-zHrVekeYTKox-ls3y9hx7XBYaA_fqKNE7-Fq-A4AiK3jEUUDTQxqDU2LhvWS8VYK7BtQLfsDVYbbDE08UXXLXZ6biscJc-ij3T92N0cStL_AT1qrqy-whTq3loUqWo1AnjIWdWK65lFltm4pgP0KFfRnHd9ukQcvkd0tayVHydT8Vsds7yz-OJyAfoYLvOotuxjdjha4Be7Z66rQbxE1nZet0IJzjoPpcl7p23Xjy7qXwoP-LiplhFPj0bRc5GSJ7-d8KX6I6Dsvh4Mj89QHdbnzXksD1DvdVybZ87o2elXnTwwujbbSP6L3S-Fpk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climatology+of+medium-scale+traveling+ionospheric+disturbances+observed+by+a+GPS+network+in+central+China&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Ding%2C+Feng&rft.au=Wan%2C+Weixing&rft.au=Xu%2C+Guirong&rft.au=Yu%2C+Tao&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=116&rft.issue=9&rft_id=info:doi/10.1029%2F2011JA016545&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2473786971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |