A Hitchhiker's guide to statistical tests for assessing randomized algorithms in software engineering

SUMMARYRandomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and validation with a strong emphasis on test automation. However, randomized algorithms are affected by chance and so require the use of appropriate s...

Full description

Saved in:
Bibliographic Details
Published inSoftware testing, verification & reliability Vol. 24; no. 3; pp. 219 - 250
Main Authors Arcuri, Andrea, Briand, Lionel
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.05.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARYRandomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and validation with a strong emphasis on test automation. However, randomized algorithms are affected by chance and so require the use of appropriate statistical tests to be properly analysed in a sound manner. This paper features a systematic review regarding recent publications in 2009 and 2010 showing that, overall, empirical analyses involving randomized algorithms in software engineering tend to not properly account for the random nature of these algorithms. Many of the novel techniques presented clearly appear promising, but the lack of soundness in their empirical evaluations casts unfortunate doubts on their actual usefulness. In software engineering, although there are guidelines on how to carry out empirical analyses involving human subjects, those guidelines are not directly and fully applicable to randomized algorithms. Furthermore, many of the textbooks on statistical analysis are written from the viewpoints of social and natural sciences, which present different challenges from randomized algorithms. To address the questionable overall quality of the empirical analyses reported in the systematic review, this paper provides guidelines on how to carry out and properly analyse randomized algorithms applied to solve software engineering tasks, with a particular focus on software testing, which is by far the most frequent application area of randomized algorithms within software engineering. Copyright © 2012 John Wiley & Sons, Ltd. Randomized algorithms are widely used to address many types of software engineering problems, but they are affected by chance and so require the use of appropriate statistical tests to be properly analysed. To address this issue, this paper provides guidelines on how to carry out and properly analyse randomized algorithms applied to solve software engineering tasks, with a particular focus on software testing.
AbstractList SUMMARY Randomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and validation with a strong emphasis on test automation. However, randomized algorithms are affected by chance and so require the use of appropriate statistical tests to be properly analysed in a sound manner. This paper features a systematic review regarding recent publications in 2009 and 2010 showing that, overall, empirical analyses involving randomized algorithms in software engineering tend to not properly account for the random nature of these algorithms. Many of the novel techniques presented clearly appear promising, but the lack of soundness in their empirical evaluations casts unfortunate doubts on their actual usefulness. In software engineering, although there are guidelines on how to carry out empirical analyses involving human subjects, those guidelines are not directly and fully applicable to randomized algorithms. Furthermore, many of the textbooks on statistical analysis are written from the viewpoints of social and natural sciences, which present different challenges from randomized algorithms. To address the questionable overall quality of the empirical analyses reported in the systematic review, this paper provides guidelines on how to carry out and properly analyse randomized algorithms applied to solve software engineering tasks, with a particular focus on software testing, which is by far the most frequent application area of randomized algorithms within software engineering. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Randomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and validation with a strong emphasis on test automation. However, randomized algorithms are affected by chance and so require the use of appropriate statistical tests to be properly analysed in a sound manner. This paper features a systematic review regarding recent publications in 2009 and 2010 showing that, overall, empirical analyses involving randomized algorithms in software engineering tend to not properly account for the random nature of these algorithms. Many of the novel techniques presented clearly appear promising, but the lack of soundness in their empirical evaluations casts unfortunate doubts on their actual usefulness. In software engineering, although there are guidelines on how to carry out empirical analyses involving human subjects, those guidelines are not directly and fully applicable to randomized algorithms. Furthermore, many of the textbooks on statistical analysis are written from the viewpoints of social and natural sciences, which present different challenges from randomized algorithms. To address the questionable overall quality of the empirical analyses reported in the systematic review, this paper provides guidelines on how to carry out and properly analyse randomized algorithms applied to solve software engineering tasks, with a particular focus on software testing, which is by far the most frequent application area of randomized algorithms within software engineering. Copyright copyright 2012 John Wiley & Sons, Ltd. Randomized algorithms are widely used to address many types of software engineering problems, but they are affected by chance and so require the use of appropriate statistical tests to be properly analysed. To address this issue, this paper provides guidelines on how to carry out and properly analyse randomized algorithms applied to solve software engineering tasks, with a particular focus on software testing.
SUMMARYRandomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and validation with a strong emphasis on test automation. However, randomized algorithms are affected by chance and so require the use of appropriate statistical tests to be properly analysed in a sound manner. This paper features a systematic review regarding recent publications in 2009 and 2010 showing that, overall, empirical analyses involving randomized algorithms in software engineering tend to not properly account for the random nature of these algorithms. Many of the novel techniques presented clearly appear promising, but the lack of soundness in their empirical evaluations casts unfortunate doubts on their actual usefulness. In software engineering, although there are guidelines on how to carry out empirical analyses involving human subjects, those guidelines are not directly and fully applicable to randomized algorithms. Furthermore, many of the textbooks on statistical analysis are written from the viewpoints of social and natural sciences, which present different challenges from randomized algorithms. To address the questionable overall quality of the empirical analyses reported in the systematic review, this paper provides guidelines on how to carry out and properly analyse randomized algorithms applied to solve software engineering tasks, with a particular focus on software testing, which is by far the most frequent application area of randomized algorithms within software engineering. Copyright © 2012 John Wiley & Sons, Ltd. Randomized algorithms are widely used to address many types of software engineering problems, but they are affected by chance and so require the use of appropriate statistical tests to be properly analysed. To address this issue, this paper provides guidelines on how to carry out and properly analyse randomized algorithms applied to solve software engineering tasks, with a particular focus on software testing.
Author Briand, Lionel
Arcuri, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  surname: Arcuri
  fullname: Arcuri, Andrea
  email: Correspondence to: Andrea Arcuri, Simula Research Laboratory, P.O. Box 134, Lysaker, Norway., arcuri@simula.no
  organization: Simula Research Laboratory, P.O. Box 134, Lysaker, Norway
– sequence: 2
  givenname: Lionel
  surname: Briand
  fullname: Briand, Lionel
  organization: SnT Centre, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
BookMark eNpdkE1PGzEQhi0EEiH0wD-w1EO5LNhrx2sfAZXQlg-ppUXqxfLuziaGjU09Tin99XWUqoee3jk878zoOSC7IQYg5IizE85YfYr5ZzrhUqsdMuHMmIorbXbJhBnFKqaF2CcHiI-MMWWUmRA4o1c-d8ulf4L0Duli7XugOVLMLnvMvnMjzYAZ6RATdYiA6MOCJhf6uPK_oaduXMTk83KF1AeKccgvLgGFsPABIBX6kOwNbkR48zen5Ovl-_uLq-r6bv7h4uy68sLMVOVYo5weTKO1Y7UcQHUgB2navhW1bnk_SCdkJ0GDapUWupamAweDMZ1rpRJTcrzd-5zij3X52q48djCOLkBco-UzyaWoa9UU9O1_6GNcp1C-KxQXtWKqxJScbqkXP8KrfU5-5dKr5cxubNuNbbuxbb_cf_u8GUqj2jaKPPj1r-HSky1Xm5l9uJ3b7_PLm-b85pP9KP4Aj5yHxA
CODEN JTREET
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/stvr.1486
DatabaseName Istex
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1099-1689
EndPage 250
ExternalDocumentID 3268180491
STVR1486
ark_67375_WNG_ZGFM7BMK_J
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M61
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WWW
WXSBR
WYISQ
WZISG
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
7SC
8FD
ADMLS
AEYWJ
AGQPQ
AGYGG
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i3956-a076a8f9788a024fe6ce4f49bdb328b1df4a34c4e8e6b6838249ceaef99cab463
IEDL.DBID DR2
ISSN 0960-0833
IngestDate Fri Jul 11 16:35:19 EDT 2025
Fri Jul 25 12:18:41 EDT 2025
Wed Jan 22 16:48:54 EST 2025
Wed Oct 30 09:55:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3956-a076a8f9788a024fe6ce4f49bdb328b1df4a34c4e8e6b6838249ceaef99cab463
Notes istex:B61E34EA07D120E2B2DB95EFDCB8CFA4CB10C092
ark:/67375/WNG-ZGFM7BMK-J
This paper is an extension of a conference paper published in the International Conference on Software Engineering (ICSE), 2011.
ArticleID:STVR1486
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://orbilu.uni.lu/bitstream/10993/1071/1/paper_stvr_icse_2012.pdf
PQID 1513260651
PQPubID 1046350
PageCount 32
ParticipantIDs proquest_miscellaneous_1541432267
proquest_journals_1513260651
wiley_primary_10_1002_stvr_1486_STVR1486
istex_primary_ark_67375_WNG_ZGFM7BMK_J
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Software testing, verification & reliability
PublicationTitleAlternate Softw. Test. Verif. Reliab
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kruskal W, Wallis W. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 1952; 47(260):583-621.
Zhao R, Lyu M, Min Y. Automatic string test data generation for detecting domain errors. Software Testing, Verification and Reliability (STVR) 2010; 20(3):209-236.
Sawilowsky S, Blair R. A more realistic look at the robustness and type II error properties of the t test to departures from population normality. Psychological Bulletin 1992; 111(2):352-360.
Klein J, Moeschberger M. Survival Analysis: Techniques for Censored and Truncated Data. Springer Verlag: Berlin, 2003.
Do H, Mirarab S, Tahvildari L, Rothermel G. The effects of time constraints on test case prioritization: a series of controlled experiments. IEEE Transactions on Software Engineering (TSE) 2010; 36(5):593-617.
Wohlin C. Experimentation in Software Engineering: An Introduction. Vol. 6, Springer Netherlands: Berlin, 2000.
Vargha A, Delaney HD. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 2000; 25(2):101-132.
Duran JW, Ntafos SC. An evaluation of random testing. IEEE Transactions on Software Engineering (TSE) 1984; 10(4):438-444.
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1997; 1(1):67-82.
Yuan X, Memon AM. Generating event sequence-based test cases using GUI runtime state feedback. IEEE Transactions on Software Engineering (TSE) 2010; 36(1):81-95.
Grissom R, Kim J. Effect Sizes for Research: A Broad Practical Approach. Lawrence Erlbaum: London, 2005.
Carrano EG, Wanner EF, Takahashi RHC. A multicriteria statistical based comparison methodology for evaluating evolutionary algorithms. IEEE Transactions on Evolutionary Computation (TEC) 2011; 15(6):848-870.
García L. Escaping the Bonferroni iron claw in ecological studies. Oikos 2004; 105(3):657-663.
White J, Doughtery B, Schmidt D. ASCENT: an algorithmic technique for designing hardware and software in tandem. IEEE Transactions on Software Engineering (TSE) 2010; 36(6).
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2008. ISBN 3-900051-07-0.
Nakagawa S, Cuthill I. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews 2007; 82(4):591-605.
Emberson P, Bate I. Stressing search with scenarios for flexible solutions to real-time task allocation problems. IEEE Transactions on Software Engineering (TSE) 2010; 36(5):704-718.
Feller W. An Introduction to Probability Theory and Its Applications. 3rd ed. Vol. 1, Wiley: Hoboken, 1968.
Polo M, Piattini M, García-Rodríguez I. Decreasing the cost of mutation testing with second-order mutants. Software Testing, Verification and Reliability (STVR) 2009; 19(2):111-131.
Griesmayer A, Bloem RP, Byron C. Repair of Boolean programs with an application to C. Computer Aided Verification 2006; 358-371.
Alshraideh M, Bottaci L. Search-based software test data generation for string data using program-specific search operators. Software Testing, Verification and Reliability (STVR) 2006; 16(3):175-203.
Rice JA. Mathematical Statistics and Data Analysis, 2nd ed. Duxbury Press: Forest Lodge Road Pacific Grove, CA, 1994.
Siegmund D. Sequential Analysis: Tests and Confidence Intervals. Springer: Berlin, 1985.
Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 1994; 5(1):96-101.
Khoshgoftaar T, Yi L, Seliya N. A multiobjective module-order model for software quality enhancement. IEEE Transactions on Evolutionary Computation (TEC) 2004; 8(6):593-608.
Abraham R, Erwig M. Mutation operators for spreadsheets. IEEE Transactions on Software Engineering (TSE) 2009; 35(1):94-108.
McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004; 14(2):105-156.
Perneger T. What's wrong with Bonferroni adjustments. British Medical Journal 1998; 316:1236-1238.
Wilcox R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy. Springer Verlag: Berlin, 2001.
Motwani M, Raghavan P. Randomized Algorithms. Cambridge University Press: Cambridge, 1995.
Garousi V. A genetic algorithm-based stress test requirements generator tool and its empirical evaluation. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):778-797.
Poulding S, Clark J. Efficient software verification: statistical testing using automated search. IEEE Transactions on Software Engineering (TSE) 36(6):763-777.
Mitchell BS, Mancoridis S. On the automatic modularization of software systems using the bunch tool. IEEE Transactions on Software Engineering (TSE) 2006; 32(3):193-208.
Goodman S. Toward evidence-based medical statistics. 1: the P value fallacy. Annals of Internal Medicine 1999; 130(12):995-1004.
Glass G, Peckham P, Sanders J. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Review of Educational Research 1972; 42(3):237-288.
Ngo-The A, Ruhe G. Optimized resource allocation for software release planning. IEEE Transactions on Software Engineering (TSE) 2009; 35(1):109-123.
Khan K, Kunz R, Kleijnen J, Antes G. Systematic Reviews to Support Evidence-Based Medicine: How to Review and Apply Findings of Healthcare Research. RSM Press: London, 2004.
Bagnall AJ, Rayward-Smith VJ, Whittley IM. The next release problem. Information and Software Technology 2001; 43(14):883-890.
Aguilar-Ruiz J, Ramos I, Riquelme JC, Toro M. An evolutionary approach to estimating software development projects. Information and Software Technology 2001; 43:875-882.
Kampenes V, Dybå T, Hannay J, Sjøberg D. A systematic review of effect size in software engineering experiments. Information and Software Technology (IST) 2007; 49(11-12):1073-1086.
Ali S, Briand L, Hemmati H, Panesar-Walawege R. A systematic review of the application and empirical investigation of search-based test-case generation. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):742-762.
Simons CL, Parmee IC, Gwynllyw R. Interactive, evolutionary search in upstream object-oriented class design. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):798-816.
Nijssen S, Back T. An analysis of the behavior of simplified evolutionary algorithms on trap functions. IEEE Transactions on Evolutionary Computation (TEC) 2003; 7(1):11-22.
Arcuri A, Yao X. Search based software testing of object-oriented containers. Information Sciences 2008; 178(15):3075-3095.
Harman M, McMinn P. A theoretical and empirical study of search based testing: local, global and hybrid search. IEEE Transactions on Software Engineering (TSE) 2010; 36(2):226-247.
Arcuri A, Briand L. Formal analysis of the probability of interaction fault detection using random testing. IEEE Transactions on Software Engineering (TSE) 2012; 38(5):1088-1099.
Artzi S, Kiezun A, Dolby J, Tip F, Dig D, Paradkar A, Ernst MD. Finding bugs in web applications using dynamic test generation and explicit-state model checking. IEEE Transactions on Software Engineering (TSE) 2010; 36(4):474-494.
Bryce R, Colbourn C. A density-based greedy algorithm for higher strength covering arrays. Software Testing, Verification and Reliability (STVR) 2009; 19(1):37-53.
Masood A, Bhatti R, Ghafoor A, Mathur A. Scalable and effective test generation for role-based access control systems. IEEE Transactions on Software Engineering (TSE) 2009; 35(5):654-668.
Kitchenham B, Pearl Brereton O, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature reviews in software engineering-a systematic literature review. Information and Software Technology (IST) 2009; 51(1):7-15.
Beckman NE, Nori AV, Rajamani SK, Simmons RJ, Tetali SD, Thakur AV. Proofs from tests. IEEE Transactions on Software Engineering (TSE) 2010; 36(4):495-508.
Freitag G, Lange S, Munk A. Non-parametric assessment of non-inferiority with censored data. Statistics in Medicine 2006; 25(7):1201-1217.
Mitchell T. Machine Learning. McGraw Hill: New York City, 1997.
Ruxton G. The unequal variance t-test is an underused alternative to student's t-test and the Mann-Whitney U test. Behavioral Ecology 2006; 17(4):688-690.
Dybå T, Kampenes V, Sjøberg D. A systematic review of statistical power in software engineering experiments. Information and Software Technology (IST) 2006; 48(8):745-755.
Ribeiro JCB, Zenha-Rela MA, de Vega FF. Test case evaluation and input domain reduction strategies for the evolutionary testing of object-oriented software. Information and Software Technology 2009; 51(11):1534-1548.
Schneidewind N. Integrating testing with reliability. Software Testing, Verification and Reliability (STVR) 2009; 19(3):175-198.
Antunes J, Neves N, Correia M, Verissimo P, Neves R. Vulnerability discovery with attack injection. IEEE Transactions on Software Engineering (TSE) 2010; 36(3):357-370.
Cowles M, Davis C. On the origins of the .05 level of statistical significance. American Psychologist 1982; 37(5):553-558.
Arcuri A, Iqbal MZ, Briand L. Random testing: theoretical results and practical implications. IEEE Transactions on Software Engineering (TSE) 2012; 38(2):258-277.
Goodman S. P values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate. American Journal of Epidemiology 1993; 137(5):485-496.
Huo J, Petrenko A. Transition covering tests for systems with queues. Software Testing, Verification and Reliability (STVR) 2009; 19(1):55-83.
Katz M. Multivariable Analysis: A Practical Guide for Clinicians. Cambridge University Press: Cambridge, 2006.
Bowman M, Briand LC, Labiche Y. Solving the class responsibility assignment problem in object-oriented analysis with multi-objective genetic algorithms. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):817-837.
Fay M, Proschan M. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpr
2000; 6
2006; 32
1968; 1
2004; 8
1998; 316
1997; 1
1972; 42
2011; 15
2001; 43
2010; 20
2009; 51
2001
1992; 111
1984; 10
2003; 7
2006; 25
1985
1999; 130
2009; 19
1993; 137
2010; 4
1988
1982; 37
2004; 105
2010; 36
2012
2000; 25
2011
2010
2006; 16
2006; 17
2009
2008
1997
1996
2007
1995
2006
2005
1994
2004
2012; 38
2003
2011; 37
2002
1999
36
2009; 35
1952; 47
2004; 14
2004; 15
2006; 48
2007; 82
2008; 178
1994; 5
2007; 49
References_xml – reference: Grissom R, Kim J. Effect Sizes for Research: A Broad Practical Approach. Lawrence Erlbaum: London, 2005.
– reference: Katz M. Multivariable Analysis: A Practical Guide for Clinicians. Cambridge University Press: Cambridge, 2006.
– reference: Antunes J, Neves N, Correia M, Verissimo P, Neves R. Vulnerability discovery with attack injection. IEEE Transactions on Software Engineering (TSE) 2010; 36(3):357-370.
– reference: Shousha M, Briand L, Labiche Y. A UML/MARTE model analysis method for uncovering scenarios leading to starvation and deadlocks in concurrent systems. IEEE Transactions on Software Engineering (TSE) 2012; 38(2):354-374.
– reference: Sawilowsky S, Blair R. A more realistic look at the robustness and type II error properties of the t test to departures from population normality. Psychological Bulletin 1992; 111(2):352-360.
– reference: Kruskal W, Wallis W. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 1952; 47(260):583-621.
– reference: Cowles M, Davis C. On the origins of the .05 level of statistical significance. American Psychologist 1982; 37(5):553-558.
– reference: Klein J, Moeschberger M. Survival Analysis: Techniques for Censored and Truncated Data. Springer Verlag: Berlin, 2003.
– reference: Do H, Mirarab S, Tahvildari L, Rothermel G. The effects of time constraints on test case prioritization: a series of controlled experiments. IEEE Transactions on Software Engineering (TSE) 2010; 36(5):593-617.
– reference: Nakagawa S, Cuthill I. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews 2007; 82(4):591-605.
– reference: Arcuri A, Yao X. Search based software testing of object-oriented containers. Information Sciences 2008; 178(15):3075-3095.
– reference: Alshraideh M, Bottaci L. Search-based software test data generation for string data using program-specific search operators. Software Testing, Verification and Reliability (STVR) 2006; 16(3):175-203.
– reference: Vargha A, Delaney HD. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 2000; 25(2):101-132.
– reference: Goodman S. P values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate. American Journal of Epidemiology 1993; 137(5):485-496.
– reference: Motwani M, Raghavan P. Randomized Algorithms. Cambridge University Press: Cambridge, 1995.
– reference: Arcuri A, Iqbal MZ, Briand L. Random testing: theoretical results and practical implications. IEEE Transactions on Software Engineering (TSE) 2012; 38(2):258-277.
– reference: Aguilar-Ruiz J, Ramos I, Riquelme JC, Toro M. An evolutionary approach to estimating software development projects. Information and Software Technology 2001; 43:875-882.
– reference: Garousi V. A genetic algorithm-based stress test requirements generator tool and its empirical evaluation. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):778-797.
– reference: Fraser G, Arcuri A. Whole test suite generation. IEEE Transactions on Software Engineering (TSE) 2012. DOI: 10.1109/TSE.2012.14.
– reference: Poulding S, Clark J. Efficient software verification: statistical testing using automated search. IEEE Transactions on Software Engineering (TSE) 36(6):763-777.
– reference: Dybå T, Kampenes V, Sjøberg D. A systematic review of statistical power in software engineering experiments. Information and Software Technology (IST) 2006; 48(8):745-755.
– reference: Harman M, McMinn P. A theoretical and empirical study of search based testing: local, global and hybrid search. IEEE Transactions on Software Engineering (TSE) 2010; 36(2):226-247.
– reference: R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2008. ISBN 3-900051-07-0.
– reference: Rice JA. Mathematical Statistics and Data Analysis, 2nd ed. Duxbury Press: Forest Lodge Road Pacific Grove, CA, 1994.
– reference: Siegmund D. Sequential Analysis: Tests and Confidence Intervals. Springer: Berlin, 1985.
– reference: Duran JW, Ntafos SC. An evaluation of random testing. IEEE Transactions on Software Engineering (TSE) 1984; 10(4):438-444.
– reference: Arcuri A, Briand L. Formal analysis of the probability of interaction fault detection using random testing. IEEE Transactions on Software Engineering (TSE) 2012; 38(5):1088-1099.
– reference: Wohlin C. Experimentation in Software Engineering: An Introduction. Vol. 6, Springer Netherlands: Berlin, 2000.
– reference: Goodman S. Toward evidence-based medical statistics. 1: the P value fallacy. Annals of Internal Medicine 1999; 130(12):995-1004.
– reference: Carrano EG, Wanner EF, Takahashi RHC. A multicriteria statistical based comparison methodology for evaluating evolutionary algorithms. IEEE Transactions on Evolutionary Computation (TEC) 2011; 15(6):848-870.
– reference: Huo J, Petrenko A. Transition covering tests for systems with queues. Software Testing, Verification and Reliability (STVR) 2009; 19(1):55-83.
– reference: Schneidewind N. Integrating testing with reliability. Software Testing, Verification and Reliability (STVR) 2009; 19(3):175-198.
– reference: Simons CL, Parmee IC, Gwynllyw R. Interactive, evolutionary search in upstream object-oriented class design. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):798-816.
– reference: Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1997; 1(1):67-82.
– reference: Wilcox R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy. Springer Verlag: Berlin, 2001.
– reference: Feller W. An Introduction to Probability Theory and Its Applications. 3rd ed. Vol. 1, Wiley: Hoboken, 1968.
– reference: Bagnall AJ, Rayward-Smith VJ, Whittley IM. The next release problem. Information and Software Technology 2001; 43(14):883-890.
– reference: Perneger T. What's wrong with Bonferroni adjustments. British Medical Journal 1998; 316:1236-1238.
– reference: Kitchenham B, Pearl Brereton O, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature reviews in software engineering-a systematic literature review. Information and Software Technology (IST) 2009; 51(1):7-15.
– reference: Andrews JH, Menzies T, Li FC. Genetic algorithms for randomized unit testing. IEEE Transactions on Software Engineering (TSE) 2011; 37(1):80-94.
– reference: McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004; 14(2):105-156.
– reference: Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 1994; 5(1):96-101.
– reference: White J, Doughtery B, Schmidt D. ASCENT: an algorithmic technique for designing hardware and software in tandem. IEEE Transactions on Software Engineering (TSE) 2010; 36(6).
– reference: Beckman NE, Nori AV, Rajamani SK, Simmons RJ, Tetali SD, Thakur AV. Proofs from tests. IEEE Transactions on Software Engineering (TSE) 2010; 36(4):495-508.
– reference: Artzi S, Kiezun A, Dolby J, Tip F, Dig D, Paradkar A, Ernst MD. Finding bugs in web applications using dynamic test generation and explicit-state model checking. IEEE Transactions on Software Engineering (TSE) 2010; 36(4):474-494.
– reference: Kampenes V, Dybå T, Hannay J, Sjøberg D. A systematic review of effect size in software engineering experiments. Information and Software Technology (IST) 2007; 49(11-12):1073-1086.
– reference: Bryce R, Colbourn C. A density-based greedy algorithm for higher strength covering arrays. Software Testing, Verification and Reliability (STVR) 2009; 19(1):37-53.
– reference: Polo M, Piattini M, García-Rodríguez I. Decreasing the cost of mutation testing with second-order mutants. Software Testing, Verification and Reliability (STVR) 2009; 19(2):111-131.
– reference: Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis. Chapman & Hall/CRC: London, 2003.
– reference: Khan K, Kunz R, Kleijnen J, Antes G. Systematic Reviews to Support Evidence-Based Medicine: How to Review and Apply Findings of Healthcare Research. RSM Press: London, 2004.
– reference: Freitag G, Lange S, Munk A. Non-parametric assessment of non-inferiority with censored data. Statistics in Medicine 2006; 25(7):1201-1217.
– reference: Emberson P, Bate I. Stressing search with scenarios for flexible solutions to real-time task allocation problems. IEEE Transactions on Software Engineering (TSE) 2010; 36(5):704-718.
– reference: Nakagawa S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology 2004; 15(6):1044-1045.
– reference: García L. Escaping the Bonferroni iron claw in ecological studies. Oikos 2004; 105(3):657-663.
– reference: Fay M, Proschan M. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys 2010; 4:1-39.
– reference: Glass G, Peckham P, Sanders J. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Review of Educational Research 1972; 42(3):237-288.
– reference: Griesmayer A, Bloem RP, Byron C. Repair of Boolean programs with an application to C. Computer Aided Verification 2006; 358-371.
– reference: Ruxton G. The unequal variance t-test is an underused alternative to student's t-test and the Mann-Whitney U test. Behavioral Ecology 2006; 17(4):688-690.
– reference: Abraham R, Erwig M. Mutation operators for spreadsheets. IEEE Transactions on Software Engineering (TSE) 2009; 35(1):94-108.
– reference: Yuan X, Memon AM. Generating event sequence-based test cases using GUI runtime state feedback. IEEE Transactions on Software Engineering (TSE) 2010; 36(1):81-95.
– reference: Masood A, Bhatti R, Ghafoor A, Mathur A. Scalable and effective test generation for role-based access control systems. IEEE Transactions on Software Engineering (TSE) 2009; 35(5):654-668.
– reference: Ngo-The A, Ruhe G. Optimized resource allocation for software release planning. IEEE Transactions on Software Engineering (TSE) 2009; 35(1):109-123.
– reference: Ribeiro JCB, Zenha-Rela MA, de Vega FF. Test case evaluation and input domain reduction strategies for the evolutionary testing of object-oriented software. Information and Software Technology 2009; 51(11):1534-1548.
– reference: Bowman M, Briand LC, Labiche Y. Solving the class responsibility assignment problem in object-oriented analysis with multi-objective genetic algorithms. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):817-837.
– reference: Nijssen S, Back T. An analysis of the behavior of simplified evolutionary algorithms on trap functions. IEEE Transactions on Evolutionary Computation (TEC) 2003; 7(1):11-22.
– reference: Mitchell BS, Mancoridis S. On the automatic modularization of software systems using the bunch tool. IEEE Transactions on Software Engineering (TSE) 2006; 32(3):193-208.
– reference: Ali S, Briand L, Hemmati H, Panesar-Walawege R. A systematic review of the application and empirical investigation of search-based test-case generation. IEEE Transactions on Software Engineering (TSE) 2010; 36(6):742-762.
– reference: Mitchell T. Machine Learning. McGraw Hill: New York City, 1997.
– reference: Zhao R, Lyu M, Min Y. Automatic string test data generation for detecting domain errors. Software Testing, Verification and Reliability (STVR) 2010; 20(3):209-236.
– reference: Khoshgoftaar T, Yi L, Seliya N. A multiobjective module-order model for software quality enhancement. IEEE Transactions on Evolutionary Computation (TEC) 2004; 8(6):593-608.
– volume: 32
  start-page: 193
  issue: 3
  year: 2006
  end-page: 208
  article-title: On the automatic modularization of software systems using the bunch tool
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 327
  year: 2011
  end-page: 336
– volume: 51
  start-page: 1534
  issue: 11
  year: 2009
  end-page: 1548
  article-title: Test case evaluation and input domain reduction strategies for the evolutionary testing of object‐oriented software
  publication-title: Information and Software Technology
– volume: 35
  start-page: 654
  issue: 5
  year: 2009
  end-page: 668
  article-title: Scalable and effective test generation for role‐based access control systems
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 162
  year: 2008
  end-page: 168
– year: 2005
– start-page: 1
  year: 1999
  end-page: 9
– start-page: 419
  year: 2009
  end-page: 429
– volume: 36
  start-page: 593
  issue: 5
  year: 2010
  end-page: 617
  article-title: The effects of time constraints on test case prioritization: a series of controlled experiments
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 36
  start-page: 495
  issue: 4
  year: 2010
  end-page: 508
  article-title: Proofs from tests
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 153
  year: 2010
  end-page: 162
– volume: 37
  start-page: 80
  issue: 1
  year: 2011
  end-page: 94
  article-title: Genetic algorithms for randomized unit testing
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 316
  start-page: 1236
  year: 1998
  end-page: 1238
  article-title: What's wrong with Bonferroni adjustments
  publication-title: British Medical Journal
– start-page: 435
  year: 2010
  end-page: 444
– start-page: 57
  year: 2010
  end-page: 66
– start-page: 215
  year: 2010
  end-page: 224
– start-page: 59
  year: 2009
  end-page: 68
– volume: 36
  start-page: 798
  issue: 6
  year: 2010
  end-page: 816
  article-title: Interactive, evolutionary search in upstream object‐oriented class design
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 262
  year: 2011
  end-page: 277
– start-page: 1
  year: 2011
  end-page: 10
– start-page: 358
  year: 2006
  end-page: 371
  article-title: Repair of Boolean programs with an application to C
  publication-title: Computer Aided Verification
– start-page: 101
  year: 2010
  end-page: 110
– year: 2012
  article-title: Whole test suite generation
  publication-title: IEEE Transactions on Software Engineering (TSE)
– year: 2008
– start-page: 3
  year: 2010
  end-page: 8
– volume: 38
  start-page: 258
  issue: 2
  year: 2012
  end-page: 277
  article-title: Random testing: theoretical results and practical implications
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 3
  year: 2009
  end-page: 12
– volume: 10
  start-page: 438
  issue: 4
  year: 1984
  end-page: 444
  article-title: An evaluation of random testing
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 25
  start-page: 101
  issue: 2
  year: 2000
  end-page: 132
  article-title: A critique and improvement of the CL common language effect size statistics of McGraw and Wong
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 82
  start-page: 591
  issue: 4
  year: 2007
  end-page: 605
  article-title: Effect size, confidence interval and statistical significance: a practical guide for biologists
  publication-title: Biological Reviews
– start-page: 143
  year: 2010
  end-page: 152
– volume: 130
  start-page: 995
  issue: 12
  year: 1999
  end-page: 1004
  article-title: Toward evidence‐based medical statistics. 1: the P value fallacy
  publication-title: Annals of Internal Medicine
– volume: 105
  start-page: 657
  issue: 3
  year: 2004
  end-page: 663
  article-title: Escaping the Bonferroni iron claw in ecological studies
  publication-title: Oikos
– volume: 43
  start-page: 883
  issue: 14
  year: 2001
  end-page: 890
  article-title: The next release problem
  publication-title: Information and Software Technology
– start-page: 9
  year: 2010
  end-page: 18
– start-page: 540
  year: 2009
  end-page: 550
– start-page: 213
  year: 2005
  end-page: 223
– volume: 1
  year: 1968
– start-page: 19
  year: 2010
  end-page: 28
– volume: 36
  start-page: 778
  issue: 6
  year: 2010
  end-page: 797
  article-title: A genetic algorithm‐based stress test requirements generator tool and its empirical evaluation
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 137
  start-page: 485
  issue: 5
  year: 1993
  end-page: 496
  article-title: P values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate
  publication-title: American Journal of Epidemiology
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 51
  start-page: 7
  issue: 1
  year: 2009
  end-page: 15
  article-title: Systematic literature reviews in software engineering—a systematic literature review
  publication-title: Information and Software Technology (IST)
– volume: 178
  start-page: 3075
  issue: 15
  year: 2008
  end-page: 3095
  article-title: Search based software testing of object‐oriented containers
  publication-title: Information Sciences
– volume: 19
  start-page: 175
  issue: 3
  year: 2009
  end-page: 198
  article-title: Integrating testing with reliability
  publication-title: Software Testing, Verification and Reliability (STVR)
– start-page: 13
  year: 2009
  end-page: 22
– start-page: 35
  year: 2005
  end-page: 49
– start-page: 225
  year: 2010
  end-page: 234
– year: 2002
– start-page: 23
  year: 2009
  end-page: 32
– year: 1995
– start-page: 134
  year: 2008
  end-page: 253
– volume: 19
  start-page: 55
  issue: 1
  year: 2009
  end-page: 83
  article-title: Transition covering tests for systems with queues
  publication-title: Software Testing, Verification and Reliability (STVR)
– start-page: 150
  year: 2011
  end-page: 159
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  end-page: 621
  article-title: Use of ranks in one‐criterion variance analysis
  publication-title: Journal of the American Statistical Association
– volume: 15
  start-page: 1044
  issue: 6
  year: 2004
  end-page: 1045
  article-title: A farewell to Bonferroni: the problems of low statistical power and publication bias
  publication-title: Behavioral Ecology
– year: 1985
– year: 2009
– start-page: 31
  year: 2011
  end-page: 40
– volume: 38
  start-page: 354
  issue: 2
  year: 2012
  end-page: 374
  article-title: A UML/MARTE model analysis method for uncovering scenarios leading to starvation and deadlocks in concurrent systems
  publication-title: IEEE Transactions on Software Engineering (TSE)
– year: 2001
– start-page: 355
  year: 2010
  end-page: 364
– volume: 16
  start-page: 175
  issue: 3
  year: 2006
  end-page: 203
  article-title: Search‐based software test data generation for string data using program‐specific search operators
  publication-title: Software Testing, Verification and Reliability (STVR)
– start-page: 47
  year: 2010
  end-page: 56
– volume: 36
  start-page: 817
  issue: 6
  year: 2010
  end-page: 837
  article-title: Solving the class responsibility assignment problem in object‐oriented analysis with multi‐objective genetic algorithms
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 15
  start-page: 848
  issue: 6
  year: 2011
  end-page: 870
  article-title: A multicriteria statistical based comparison methodology for evaluating evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation (TEC)
– volume: 19
  start-page: 37
  issue: 1
  year: 2009
  end-page: 53
  article-title: A density‐based greedy algorithm for higher strength covering arrays
  publication-title: Software Testing, Verification and Reliability (STVR)
– start-page: 199
  year: 2009
  end-page: 209
– start-page: 49
  year: 2009
  end-page: 58
– start-page: 69
  year: 2009
  end-page: 78
– volume: 43
  start-page: 875
  year: 2001
  end-page: 882
  article-title: An evolutionary approach to estimating software development projects
  publication-title: Information and Software Technology
– year: 1994
– volume: 36
  start-page: 704
  issue: 5
  year: 2010
  end-page: 718
  article-title: Stressing search with scenarios for flexible solutions to real‐time task allocation problems
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 4
  start-page: 1
  year: 2010
  end-page: 39
  article-title: Wilcoxon–Mann–Whitney or t‐test? On assumptions for hypothesis tests and multiple interpretations of decision rules
  publication-title: Statistics Surveys
– volume: 36
  start-page: 474
  issue: 4
  year: 2010
  end-page: 494
  article-title: Finding bugs in web applications using dynamic test generation and explicit‐state model checking
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 36
  start-page: 763
  issue: 6
  end-page: 777
  article-title: Efficient software verification: statistical testing using automated search
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 20
  start-page: 209
  issue: 3
  year: 2010
  end-page: 236
  article-title: Automatic string test data generation for detecting domain errors
  publication-title: Software Testing, Verification and Reliability (STVR)
– volume: 36
  start-page: 742
  issue: 6
  year: 2010
  end-page: 762
  article-title: A systematic review of the application and empirical investigation of search‐based test‐case generation
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 35
  start-page: 109
  issue: 1
  year: 2009
  end-page: 123
  article-title: Optimized resource allocation for software release planning
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 405
  year: 2010
  end-page: 414
– volume: 6
  year: 2000
– volume: 36
  start-page: 81
  issue: 1
  year: 2010
  end-page: 95
  article-title: Generating event sequence‐based test cases using GUI runtime state feedback
  publication-title: IEEE Transactions on Software Engineering (TSE)
– year: 2004
– year: 1997
– start-page: 103
  year: 2009
  end-page: 112
– volume: 25
  start-page: 1201
  issue: 7
  year: 2006
  end-page: 1217
  article-title: Non‐parametric assessment of non‐inferiority with censored data
  publication-title: Statistics in Medicine
– volume: 36
  issue: 6
  year: 2010
  article-title: ASCENT: an algorithmic technique for designing hardware and software in tandem
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 178
  year: 2012
  end-page: 188
– start-page: 55
  year: 2010
  end-page: 64
– start-page: 1069
  year: 2005
  end-page: 1075
– start-page: 122
  year: 2009
  end-page: 131
– volume: 5
  start-page: 96
  issue: 1
  year: 1994
  end-page: 101
  article-title: Convergence analysis of canonical genetic algorithms
  publication-title: IEEE Transactions on Neural Networks
– volume: 8
  start-page: 593
  issue: 6
  year: 2004
  end-page: 608
  article-title: A multiobjective module‐order model for software quality enhancement
  publication-title: IEEE Transactions on Evolutionary Computation (TEC)
– year: 2003
– year: 1996
– start-page: 111
  year: 2010
  end-page: 119
– volume: 14
  start-page: 105
  issue: 2
  year: 2004
  end-page: 156
  article-title: Search‐based software test data generation: a survey
  publication-title: Software Testing, Verification and Reliability
– start-page: 255
  year: 2010
  end-page: 264
– start-page: 67
  year: 2010
  end-page: 76
– start-page: 113
  year: 2009
  end-page: 121
– volume: 48
  start-page: 745
  issue: 8
  year: 2006
  end-page: 755
  article-title: A systematic review of statistical power in software engineering experiments
  publication-title: Information and Software Technology (IST)
– start-page: 254
  year: 2009
  end-page: 264
– start-page: 364
  year: 2009
  end-page: 374
– start-page: 15
  year: 2010
  end-page: 24
– volume: 38
  start-page: 1088
  issue: 5
  year: 2012
  end-page: 1099
  article-title: Formal analysis of the probability of interaction fault detection using random testing
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 474
  year: 2009
  end-page: 484
– start-page: 75
  year: 2007
  end-page: 84
– volume: 111
  start-page: 352
  issue: 2
  year: 1992
  end-page: 360
  article-title: A more realistic look at the robustness and type II error properties of the t test to departures from population normality
  publication-title: Psychological Bulletin
– volume: 17
  start-page: 688
  issue: 4
  year: 2006
  end-page: 690
  article-title: The unequal variance t‐test is an underused alternative to student's t‐test and the Mann–Whitney U test
  publication-title: Behavioral Ecology
– volume: 35
  start-page: 94
  issue: 1
  year: 2009
  end-page: 108
  article-title: Mutation operators for spreadsheets
  publication-title: IEEE Transactions on Software Engineering (TSE)
– start-page: 119
  year: 2004
  end-page: 128
– year: 1988
– volume: 36
  start-page: 226
  issue: 2
  year: 2010
  end-page: 247
  article-title: A theoretical and empirical study of search based testing: local, global and hybrid search
  publication-title: IEEE Transactions on Software Engineering (TSE)
– year: 2006
– start-page: 95
  year: 2010
  end-page: 110
– volume: 7
  start-page: 11
  issue: 1
  year: 2003
  end-page: 22
  article-title: An analysis of the behavior of simplified evolutionary algorithms on trap functions
  publication-title: IEEE Transactions on Evolutionary Computation (TEC)
– start-page: 33
  year: 2011
  end-page: 47
– volume: 49
  start-page: 1073
  issue: 11–12
  year: 2007
  end-page: 1086
  article-title: A systematic review of effect size in software engineering experiments
  publication-title: Information and Software Technology (IST)
– start-page: 133
  year: 2010
  end-page: 142
– start-page: 156
  year: 2009
  end-page: 168
– volume: 36
  start-page: 357
  issue: 3
  year: 2010
  end-page: 370
  article-title: Vulnerability discovery with attack injection
  publication-title: IEEE Transactions on Software Engineering (TSE)
– volume: 42
  start-page: 237
  issue: 3
  year: 1972
  end-page: 288
  article-title: Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance
  publication-title: Review of Educational Research
– start-page: 235
  year: 2010
  end-page: 244
– start-page: 345
  year: 2010
  end-page: 354
– volume: 19
  start-page: 111
  issue: 2
  year: 2009
  end-page: 131
  article-title: Decreasing the cost of mutation testing with second‐order mutants
  publication-title: Software Testing, Verification and Reliability (STVR)
– volume: 37
  start-page: 553
  issue: 5
  year: 1982
  end-page: 558
  article-title: On the origins of the .05 level of statistical significance
  publication-title: American Psychologist
– year: 1999
SSID ssj0006969
Score 2.5219386
Snippet SUMMARYRandomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and...
SUMMARY Randomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and...
Randomized algorithms are widely used to address many types of software engineering problems, especially in the area of software verification and validation...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 219
SubjectTerms Algorithms
Bonferroni adjustment
Computer programs
confidence interval
effect size
Empirical analysis
Guidelines
nonparametric test
parametric test
Software
Software engineering
statistical difference
Statistical tests
survey
systematic review
Tasks
Title A Hitchhiker's guide to statistical tests for assessing randomized algorithms in software engineering
URI https://api.istex.fr/ark:/67375/WNG-ZGFM7BMK-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstvr.1486
https://www.proquest.com/docview/1513260651
https://www.proquest.com/docview/1541432267
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Nb9QwEIatqiculE-xtEVGQsAl7SZ2HUecCmK7KtoeSgsVQrLseNxGS5MqyQLqr2cm2ewCJ8QtUpzEyng8j-3xa8Ze2JBoUr2LZPA6kirPIqTWOBIyjOPcJhACzUPOTtT0XB5fHFxssDfDXpheH2I14Uae0fXX5ODWNftr0dCm_V6jn2uS26ZcLQKi07V0lMpUr7OnKF9LiEFVaJzsr55EIKV_-fMPuvydUbsgM9liX4fq9bkl871F6_by27-UG_-z_vfY3SV88sO-tdxnG1A-YFvDwQ586ecPGRzyaYHmvCrmUL9q-OWi8MDbitP2o07ZGd-CjNo2HJmX227hGGMgx8Dnq-viFjy33y6rumivrhtelLzB3v6HrYHDWv_wETufvD97N42W5zFEhSC5QjtOldUBx53aYmgPoHKQQWbOO5FoF_sgrZC5BA3KKS00Du1ysBCyLLdOKvGYbZZVCU8Yd8566aUTKgaZ-1hbnYc0ofFyCFrqEXvZWcbc9JobxtZzSkFLD8znkyPz5WgyS9_OPpjjEdsZTGeW3tcYpBikUoSreMSer26j39BiiC2hWlAZiaiI8JmO2OvOTqtv9UrOiSELGbKQ-Xj26ZQunv570W12B9lK9rmRO2yzrRewi_zSumddQ_0FY3DwVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpRzg0vJUtxRqJARc0m4S13EkLoWyXdruHsoWKiRk-dlG2yYoyQLqX8842ewCJ8QtUpzneDyf7fHPAC-ki7hXvQuoMzygTKcBUmsYxNT1Qy0j65wfhxyN2fCMHp3vna_Am24tTKsPsRhw857RtNfewf2A9O5SNbSqv5fo6Jzdgtt-R2-vnH9wuhSPYilrlfaYz9iK405XqB_tLi5FJPV_8-cffPk7pTZhZrAOX7sXbLNLpjuzWu3om7-0G__3C-7B2pw_yX5bYe7Dis0fwHq3twOZu_pDsPtkmKFFL7OpLV9V5GKWGUvqgvgVSI24M94FMbWuCGIvkc3cMYZBgrHPFNfZjTVEXl0UZVZfXlcky0mFDf4PWVpilxKIj-Bs8H7ybhjMt2QIstgrFsp-wiR32PXkEqO7s0xb6miqjIojrkLjqIypppZbphiPOfbutJXWpamWirL4MazmRW43gCglDTVUxSy0VJuQS65dEvkus3Oc8h68bEwjvrWyG0KWU5-FluyJz-ND8eVwMErejo7FUQ-2OtuJuQNWAkEGwRT5KuzB88VpdB0_HyJzW8x8GYq0iPyZ9OB1Y6jFs1ox50h4CwlvIfFx8unUH2z-e9FtuDOcjE7EyYfx8RO4i6hF21TJLVity5l9ijhTq2dNrf0FWRj0cQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPY0iIl42fomMDIyHgJVsTe46jPY2Nrmy0QmODCSFZdmxvUVkyJSmg_fU7J00LPCHeIsX5eT7fx_b5a4CXykXCq94FzBkRMJ4mAVJrGFDm-mGqIuucH4ccjfnwlB2ebZ8twU63FqbVh5gPuHnPaNpr7-BXxm0tREOr-keJfi74LbjNeD_x-zbsHy-0o3jCW6E97hO2KO1khfrR1vxSJFL_M3_9gZe_Q2oTZQar8K17vza5ZLI5rfVmev2XdON_fsA9WJnRJ9ltq8t9WLL5A1jtdnYgM0d_CHaXDDO050U2seXripxPM2NJXRC__qiRdsa7IKTWFUHoJaqZOcYgSDDymeIyu7aGqO_nRZnVF5cVyXJSYXP_U5WW2IUA4iM4Hbw72RsGsw0Zgox6vULVj7kSDjueQmFsd5anljmWaKNpJHRoHFOUpcwKyzUXVGDfLrXKuiRJlWacPoblvMjtEyBaK8MM05SHlqUmFEqkLo58h9k5wUQPXjWWkVet6IZU5cTnoMXb8sv4QH49GIzit6MjediD9c50cuZ-lUSMQSxFugp78GJ-Gh3Hz4ao3BZTX4YhKyJ9xj1409hp_qxWyjmS3kLSW0h-Ovl87A_W_r3oc7jzcX8gP7wfHz2Fu8hZrM2TXIflupzaDWSZWj9r6uwNlw_zIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hitchhiker%27s+guide+to+statistical+tests+for+assessing+randomized+algorithms+in+software+engineering&rft.jtitle=Software+testing%2C+verification+%26+reliability&rft.au=Arcuri%2C+Andrea&rft.au=Briand%2C+Lionel&rft.date=2014-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0960-0833&rft.eissn=1099-1689&rft.volume=24&rft.issue=3&rft.spage=219&rft_id=info:doi/10.1002%2Fstvr.1486&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3268180491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0833&client=summon