On the origin of brown dwarfs and free-floating planetary-mass objects

Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 346; no. 2; pp. 369 - 380
Main Authors Kroupa, Pavel, Bouvier, Jerome
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.12.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km s−1, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free-floating planetary-mass objects (FFLOPs), namely the removal of accretion envelopes from low-mass protostars via photo-evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavour, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 M⊙ can be reproduced via photo-evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo-evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo-evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 M⊙. The required number of embryo-ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo-evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km s−1. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo-evaporated BDs contribute. This non-universal scenario would thus imply that the Galactic field BD population may mostly stem from TA-like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 ± 0.04 BDs per star.
AbstractList Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus-Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km/s, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free-floating planetary-mass objects (FFLOPs), namely the removal of accretion envelopes from low-mass protostars via photo-evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavor, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 solar mass can be reproduced via photo-evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo-evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo-evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 solar masses. The required number of embryo-ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo-evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km/s. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo-evaporated BDs contribute. This non-universal scenario would thus imply that the Galactic field BD population may mostly stem from TA-like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 +/- 0.04 BDs per star.
ABSTRACT Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre‐main‐sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star‐like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km s−1, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free‐floating planetary‐mass objects (FFLOPs), namely the removal of accretion envelopes from low‐mass protostars via photo‐evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavour, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 M⊙ can be reproduced via photo‐evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo‐evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo‐evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 M⊙. The required number of embryo‐ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo‐evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km s−1. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo‐evaporated BDs contribute. This non‐universal scenario would thus imply that the Galactic field BD population may mostly stem from TA‐like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 ± 0.04 BDs per star.
Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km s−1, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free-floating planetary-mass objects (FFLOPs), namely the removal of accretion envelopes from low-mass protostars via photo-evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavour, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 M⊙ can be reproduced via photo-evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo-evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo-evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 M⊙. The required number of embryo-ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo-evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km s−1. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo-evaporated BDs contribute. This non-universal scenario would thus imply that the Galactic field BD population may mostly stem from TA-like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 ± 0.04 BDs per star.
Author Bouvier, Jerome
Kroupa, Pavel
Author_xml – sequence: 1
  givenname: Pavel
  surname: Kroupa
  fullname: Kroupa, Pavel
  email: pavel@astrophysik.uni-kiel.de, pavel@astrophysik.uni-kiel.de
  organization: Laboratoire d'Astrophysique de l'Observatoire de Grenoble, BP 53, F-38041 Grenoble Cedex 9, France
– sequence: 2
  givenname: Jerome
  surname: Bouvier
  fullname: Bouvier, Jerome
  organization: Laboratoire d'Astrophysique de l'Observatoire de Grenoble, BP 53, F-38041 Grenoble Cedex 9, France
BookMark eNo9kE9PwkAUxDcGEwH9Dnvy1vr2T3e3Bw8KIiYoCcHEeNls2y0Wyxa7JcC3txXD6U0yMy-T3wD1XOUsQphASICLu3VImIgCGgsRUgAWgqSUh4cL1D8bPdRvnShQkpArNPB-DQCcUdFHk7nDzZfFVV2sCoerHCd1tXc425s699i4DOe1tUFeVqYp3ApvS-NsY-pjsDHe4ypZ27Tx1-gyN6W3N_93iN4nT8vRNJjNn19GD7OgYDHlQQ4JAUOzxIDlKZNMpaAoSJKlEQHJ4iiRylJqsjRVubQR4RHPRGaVAJkIyYbo9vR3W1c_O-sbvSl8astuVLXzmsoYJKeiDd6fgvuitEe9rYtNu1kT0B01vdYdHN3B0R01_UdNH_Tr26JTbT849Qvf2MO5b-pv3c6QkZ5-fGrFxsvxQj1qyn4B2_9zJA
ContentType Journal Article
DBID BSCLL
8FD
H8D
L7M
DOI 10.1046/j.1365-2966.2003.07224.x
DatabaseName Istex
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 380
ExternalDocumentID MNR7224
ark_67375_HXZ_83DTDR8B_2
Genre article
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACBWZ
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGQPQ
AGSYK
AGXDD
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAHHS
ABFSI
ABJNI
ABSMQ
ABTAH
ACBNA
ACCFJ
ACFRR
ACUTJ
ADRIX
AEEZP
AEQDE
AFXEN
AGMDO
AIWBW
AJBDE
ASAOO
ATDFG
BCRHZ
CXTWN
DFGAJ
E.L
EAD
EAP
ESX
H13
MBTAY
O0~
OHT
RHF
RNP
ROX
UQL
WRC
8FD
H8D
L7M
ID FETCH-LOGICAL-i3924-f0b10a2dba0e4c3738c082071dc5107395b78e22adcc8f7e51454d6de8607b673
IEDL.DBID DR2
ISSN 0035-8711
IngestDate Fri Jul 11 14:55:16 EDT 2025
Wed Jan 22 16:30:10 EST 2025
Tue Aug 05 16:49:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3924-f0b10a2dba0e4c3738c082071dc5107395b78e22adcc8f7e51454d6de8607b673
Notes Heisenberg Fellow
istex:B25012C2F471365A184AE1772B601B85E577E6D8
ark:/67375/HXZ-83DTDR8B-2
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/346/2/369/4289051/346-2-369.pdf
PQID 27907426
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_27907426
wiley_primary_10_1046_j_1365_2966_2003_07224_x_MNR7224
istex_primary_ark_67375_HXZ_83DTDR8B_2
PublicationCentury 2000
PublicationDate December 2003
PublicationDateYYYYMMDD 2003-12-01
PublicationDate_xml – month: 12
  year: 2003
  text: December 2003
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: 23 Ainslie Place , Edinburgh EH3 6AJ , UK . Telephone 226 7232 Fax 226 3803
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAlternate Mon. Not. R. Astron. Soc
PublicationYear 2003
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References 1981; 101
2000; 533
2002; 393
1996; 464
2003; 594
2003; 593
2000; 290
2001; 375
2003; 409
2000
2002; 580
2000; 120
2003; 126
2003; 125
2003; 400
1993; 410
2000; 319
2001; 122
2001; 322
2001; 321
2003; 339
2002; 571
2002; 295
2000; 314
2002; 333
2002; 573
2002; 332
1998; 339
2002; 336
1999; 4
1998; 499
2003
2002
1998; 336
1998; 496
1995; 273
2001; 325
2001; 551
2000; 38
1986; 62
1995; 304
2002; 567
2000; 540
2003; 346
2003; 587
1999; 118
2001; 558
2003; 585
2003; 342
2003; 582
1999; 515
References_xml – volume: 125
  start-page: 2029
  year: 2003
  publication-title: AJ
– volume: 580
  start-page: 317
  year: 2002
  publication-title: ApJ
– volume: 342
  start-page: 314
  year: 2003
  publication-title: MNRAS
– volume: 273
  start-page: 1041
  year: 1995
  publication-title: MNRAS
– volume: 4
  start-page: 531
  year: 1999
  publication-title: New Astron.
– volume: 126
  start-page: 1526
  year: 2003
  publication-title: AJ
– volume: 375
  start-page: 989
  year: 2001
  publication-title: A&A
– volume: 332
  start-page: L65
  year: 2002
  publication-title: MNRAS
– volume: 515
  start-page: 669
  year: 1999
  publication-title: ApJ
– volume: 339
  start-page: 577
  year: 2003
  publication-title: MNRAS
– volume: 322
  start-page: 231
  year: 2001
  publication-title: MNRAS
– volume: 400
  start-page: 1031
  year: 2003
  publication-title: A&A
– volume: 319
  start-page: 457
  year: 2000
  publication-title: MNRAS
– volume: 333
  start-page: 547
  year: 2002
  publication-title: MNRAS
– volume: 410
  start-page: 696
  year: 1993
  publication-title: ApJ
– start-page: 3
  year: 2003
– volume: 582
  start-page: 893
  year: 2003
  publication-title: ApJ
– volume: 540
  start-page: 236
  year: 2000
  publication-title: ApJ
– volume: 533
  start-page: 358
  year: 2000
  publication-title: ApJ
– volume: 290
  start-page: 103
  year: 2000
  publication-title: Sci
– volume: 118
  start-page: 235
  year: 1999
  publication-title: AJ
– volume: 101
  start-page: 134
  year: 1981
  publication-title: A&A
– volume: 593
  start-page: 1093
  year: 2003
  publication-title: ApJ
– volume: 304
  start-page: L9
  year: 1995
  publication-title: A&A
– volume: 499
  start-page: 758
  year: 1998
  publication-title: ApJ
– volume: 558
  start-page: L51
  year: 2001
  publication-title: ApJ
– volume: 409
  start-page: 147
  year: 2003
  publication-title: A&A
– volume: 325
  start-page: 449
  year: 2001
  publication-title: MNRAS
– volume: 122
  start-page: 432
  year: 2001
  publication-title: AJ
– volume: 400
  start-page: 891
  year: 2003
  publication-title: A&A
– volume: 336
  start-page: 1188
  year: 2002
  publication-title: MNRAS
– volume: 321
  start-page: 699
  year: 2001
  publication-title: MNRAS
– volume: 125
  start-page: 3302
  year: 2003
  publication-title: AJ
– volume: 336
  start-page: 150
  year: 1998
  publication-title: A&A
– volume: 464
  start-page: 256
  year: 1996
  publication-title: ApJ
– volume: 582
  start-page: 1109
  year: 2003
  publication-title: ApJ
– volume: 4
  start-page: 495
  year: 1999
  publication-title: New Astron.
– volume: 322
  start-page: L1
  year: 2001
  publication-title: MNRAS
– volume: 567
  start-page: 304
  year: 2002
  publication-title: ApJ
– volume: 551
  start-page: L167
  year: 2001
  publication-title: ApJ
– volume: 62
  start-page: 519
  year: 1986
  publication-title: ApJS
– start-page: 147
  year: 2002
– year: 2000
– volume: 120
  start-page: 3177
  year: 2000
  publication-title: AJ
– volume: 587
  start-page: 407
  year: 2003
  publication-title: ApJ
– volume: 38
  start-page: 337
  year: 2000
  publication-title: ARA&A
– volume: 325
  start-page: 221
  year: 2001
  publication-title: MNRAS
– volume: 346
  start-page: 354
  year: 2003
  publication-title: MNRAS
– volume: 573
  start-page: 366
  year: 2002
  publication-title: ApJ
– volume: 571
  start-page: L155
  year: 2002
  publication-title: ApJ
– volume: 314
  start-page: 858
  year: 2000
  publication-title: MNRAS
– volume: 585
  start-page: 372
  year: 2003
  publication-title: ApJ
– volume: 496
  start-page: L109
  year: 1998
  publication-title: ApJ
– volume: 38
  start-page: 485
  year: 2000
  publication-title: ARA&A
– volume: 393
  start-page: 597
  year: 2002
  publication-title: A&A
– volume: 346
  start-page: 343
  year: 2003
  publication-title: MNRAS
– volume: 342
  start-page: 926
  year: 2003
  publication-title: MNRAS
– volume: 339
  start-page: 95
  year: 1998
  publication-title: A&A
– volume: 594
  start-page: 525
  year: 2003
  publication-title: ApJ
– volume: 295
  start-page: 82
  year: 2002
  publication-title: Sci
SSID ssj0004326
Score 2.1115072
Snippet Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the...
ABSTRACT Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre‐main‐sequence stellar groups than in...
Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus-Auriga (TA) pre-main-sequence stellar groups than in the...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 369
SubjectTerms binaries: general
brown dwarfs
Galaxy: stellar content
open clusters and associations: general
stars: formation
stars: low-mass
stars: low‐mass, brown dwarfs
Title On the origin of brown dwarfs and free-floating planetary-mass objects
URI https://api.istex.fr/ark:/67375/HXZ-83DTDR8B-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-2966.2003.07224.x
https://www.proquest.com/docview/27907426
Volume 346
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9swGLYmTlzGYEN0MObDxC2Vk7i2OXYFVCEVpKpI1S6WvyKhQlI1rQSc-An7jfslvK-TMph2QlwiJ1asOK8_Hr9-_LyE_IBZRPWc5ElhhU-4KmyiclEkqZHOZMwAxMfzzqMLMbzi59PetOU_4VmYRh_i2eGGPSOO19jBjW2ikLCobrtmaAFej7KeXSZhOuoinsQMxEfjv0pSPI-R16JCI6wR0pbU025w_rcggKv4p-9eYc-XCDZOQWdbZLb--IZ5MuuulrbrHv7RdXyf2n0iH1ukSvtN09omH0K5Q_b6NfrOq9t7ekRjunGN1DukMwL8XS2imx4yBzfXAIbj3WdyfllSQJq0CcNFq4JaXP5TjBhd1NSUnhaLEP48_i5uKoNMbDpHFu4SKgAPbwHh08qiy6j-Qq7OTieDYdJGcUiuAXtBI2A2ZSbz1rDAHQopOYQdMvUOxgPcJ7RShSwz3jlVyAAIrse98EEJJq2Q-S7ZKKsy7KHFjD8WIUst85zn0h4HL5xlziiXGmE75ChaTM8bpQ5tFjMkrsmeHk5_aZWfTE7G6qfOOuT72qQauhPukUCdqlWtMxm9BaJDRDTPc1Fxs57jwTY0jEbDYAjPXEfD6Ds9uhhj6utbX9wnmw1REKkyB2RjuViFbwB4lvYwNmW4Ti6nT1lA9vs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswECWK9NBe0mZDnGbhIchNjhaaZI5pFrhp7ACGAxi9ENwEGHGkwLKBJKd8Qr-xX9IZSlnRU5EbJUGEqOHy-OZxhpBdWEVkxwoW5Ya7iMncRDLjeZRoYXUaa4D4eN651-fdS3Y26oyadEB4FqaOD_FEuOHICPM1DnAkpPcbt2Q9yoNECwB7iOvZjgWsR20AlB8xwXfYXw2eY0mxLOReCzEaYZeQNLKexsX5z5oAsOK_vn2FPl9i2LAInX4hk8fPr7UnV-35zLTt_ZvIju_Uvq9ksQGr9LDuXUvkgy-WyfphhfR5eX1H92go1-xItUxaPYDg5TQw9fDwaDIGPByuVsjZRUEBbNI6Exctc2qQAaCYNDqvqC4czafe_3n4nU9KjWJseoNC3Bm0AG5eA8inpUHWqFoll6cnw6Nu1CRyiMYAv6AfxCaJdeqMjj2zGEvJIvIQibMwJaCr0Ajp01Q7a2UuPIC4DnPcecljYbjI1shCURZ-HU2m3QH3aWJix1gmzIF33JrYamkTzU2L7AWTqZs6WIfS0yvUromO6o5-KZkdD48H8rtKW2Tn0aYKRhS6SaBN5bxSqQiEAW8RHuzzVFXw1zM824aGUWgYzOKZqWAYdat6_QGWNv73xR3yqTvsnavzH_2f38jnWjeIyplNsjCbzv0W4J-Z2Q79-i_5GPn6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkRAXHgXULY_6gHrL4iRe2z2WLqulsAtatdKKi-WnVG2brDa7UtsTP4HfyC9hxknLQ5wQNydRrDgzY3-e-TxDyGtYRdTASZ5FK3zGVbSZKkXMciOdKZgBiI_nnSdTMT7lx_PBvOM_4VmYNj_ErcMNLSPN12jgSx_fdFHJ1sgTQwvwekrr2WcSlqM-4Mm7XDCFGj6c_UwlxctUei2laIRNQt6xeroI5197AryKv_ryN_D5K4RNa9DoIVncfH1LPVn0N2vbd9d_JHb8P8N7RB50UJUetrr1mNwJ1TbZOWzQeV5fXNF9mtqtb6TZJr0JAPB6lfz08PDo_AzQcLp6Qo4_VRSgJm3rcNE6Uov7f4olo2NDTeVpXIXw_eu3eF4bpGLTJdJw1zAAuHkBEJ_WFn1GzVNyOnp3cjTOujIO2RmAL9ACZnNmCm8NC9xhJiWHuEPm3sGEgIFCK1UoCuOdU1EGgHAD7oUPSjBphSyfka2qrsIOSsz4AxGK3DLPeSntQfDCWeaMcrkRtkf2k8T0sk3Voc1qgcw1OdDj-RetyuHJcKbe6qJH9m5EqsGeMEgCY6o3jS5kcheIHhFJPLddpWg9x5NtKBiNgsEanqVOgtGXejKdYWv3X1_cI_c-D0f64_vph-fkfksaRNrMC7K1Xm3CSwA_a_sqafUPJW34sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+origin+of+brown+dwarfs+and+free%E2%80%90floating+planetary%E2%80%90mass+objects&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Kroupa%2C+Pavel&rft.au=Bouvier%2C+Jerome&rft.date=2003-12-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=346&rft.issue=2&rft.spage=369&rft.epage=380&rft_id=info:doi/10.1046%2Fj.1365-2966.2003.07224.x&rft.externalDBID=10.1046%252Fj.1365-2966.2003.07224.x&rft.externalDocID=MNR7224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon