On the origin of brown dwarfs and free-floating planetary-mass objects
Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 346; no. 2; pp. 369 - 380 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.12.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km s−1, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free-floating planetary-mass objects (FFLOPs), namely the removal of accretion envelopes from low-mass protostars via photo-evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavour, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 M⊙ can be reproduced via photo-evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo-evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo-evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 M⊙. The required number of embryo-ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo-evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km s−1. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo-evaporated BDs contribute. This non-universal scenario would thus imply that the Galactic field BD population may mostly stem from TA-like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 ± 0.04 BDs per star. |
---|---|
AbstractList | Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus-Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km/s, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free-floating planetary-mass objects (FFLOPs), namely the removal of accretion envelopes from low-mass protostars via photo-evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavor, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 solar mass can be reproduced via photo-evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo-evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo-evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 solar masses. The required number of embryo-ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo-evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km/s. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo-evaporated BDs contribute. This non-universal scenario would thus imply that the Galactic field BD population may mostly stem from TA-like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 +/- 0.04 BDs per star. ABSTRACT Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre‐main‐sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star‐like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km s−1, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free‐floating planetary‐mass objects (FFLOPs), namely the removal of accretion envelopes from low‐mass protostars via photo‐evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavour, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 M⊙ can be reproduced via photo‐evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo‐evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo‐evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 M⊙. The required number of embryo‐ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo‐evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km s−1. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo‐evaporated BDs contribute. This non‐universal scenario would thus imply that the Galactic field BD population may mostly stem from TA‐like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 ± 0.04 BDs per star. Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the central region of the Orion Nebula cluster (ONC). Also, BDs have binary properties that are not compatible with a star-like formation history. It is shown here that these results can be understood if BDs are produced as ejected embryos with a dispersion of ejection velocities of about 2 km s−1, and if the number of ejected embryos is about one per four stars born in TA and the ONC. The Briceno et al. observation is thus compatible with a universal BD production mechanism and a universal initial mass function (IMF), but the required number of BDs per star is much too small to account for the one BD per star deduced to be present in the Galactic field. There are two other mechanisms for producing BDs and free-floating planetary-mass objects (FFLOPs), namely the removal of accretion envelopes from low-mass protostars via photo-evaporation through nearby massive stars, and hyperbolic collisions between protostars in dense clusters. The third BD flavour, the collisional BDs, can be neglected in the ONC. It is shown that the observed IMF with a flattening near 0.5 M⊙ can be reproduced via photo-evaporation of protostars if these are distributed according to a featureless Salpeter mass function above the substellar mass limit, and that the photo-evaporated BDs should have a smaller velocity dispersion than the stars. The number of photo-evaporated BDs per star should increase with cluster mass, peaking in globular clusters that would have contained many stars as massive as 150 M⊙. The required number of embryo-ejected BDs in TA and the ONC can be as low as six ejected BDs per 100 stars if the central ONC contains 0.23 photo-evaporated BDs per star. Alternatively, if the assumption is discarded that embryo ejection must operate equally in all environments, then it can be argued that TA produced about one ejected BD per star, leading to consistency with the Galactic field observations. The dispersion of ejection velocities would be about 3 km s−1. In the central ONC the number of ejected BDs per star would then be at most 0.37, or less if photo-evaporated BDs contribute. This non-universal scenario would thus imply that the Galactic field BD population may mostly stem from TA-like star formation or modest clusters, the ONC not being able to contribute more than about 0.25 ± 0.04 BDs per star. |
Author | Bouvier, Jerome Kroupa, Pavel |
Author_xml | – sequence: 1 givenname: Pavel surname: Kroupa fullname: Kroupa, Pavel email: pavel@astrophysik.uni-kiel.de, pavel@astrophysik.uni-kiel.de organization: Laboratoire d'Astrophysique de l'Observatoire de Grenoble, BP 53, F-38041 Grenoble Cedex 9, France – sequence: 2 givenname: Jerome surname: Bouvier fullname: Bouvier, Jerome organization: Laboratoire d'Astrophysique de l'Observatoire de Grenoble, BP 53, F-38041 Grenoble Cedex 9, France |
BookMark | eNo9kE9PwkAUxDcGEwH9Dnvy1vr2T3e3Bw8KIiYoCcHEeNls2y0Wyxa7JcC3txXD6U0yMy-T3wD1XOUsQphASICLu3VImIgCGgsRUgAWgqSUh4cL1D8bPdRvnShQkpArNPB-DQCcUdFHk7nDzZfFVV2sCoerHCd1tXc425s699i4DOe1tUFeVqYp3ApvS-NsY-pjsDHe4ypZ27Tx1-gyN6W3N_93iN4nT8vRNJjNn19GD7OgYDHlQQ4JAUOzxIDlKZNMpaAoSJKlEQHJ4iiRylJqsjRVubQR4RHPRGaVAJkIyYbo9vR3W1c_O-sbvSl8astuVLXzmsoYJKeiDd6fgvuitEe9rYtNu1kT0B01vdYdHN3B0R01_UdNH_Tr26JTbT849Qvf2MO5b-pv3c6QkZ5-fGrFxsvxQj1qyn4B2_9zJA |
ContentType | Journal Article |
DBID | BSCLL 8FD H8D L7M |
DOI | 10.1046/j.1365-2966.2003.07224.x |
DatabaseName | Istex Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 380 |
ExternalDocumentID | MNR7224 ark_67375_HXZ_83DTDR8B_2 |
Genre | article |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHTB AAIJN AAJKP AAJQQ AAKDD AAMMB AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABVLG ABXVV ABZBJ ACBWZ ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEFGJ AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGQPQ AGSYK AGXDD AHXPO AIDQK AIDYY AJAOE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAHHS ABFSI ABJNI ABSMQ ABTAH ACBNA ACCFJ ACFRR ACUTJ ADRIX AEEZP AEQDE AFXEN AGMDO AIWBW AJBDE ASAOO ATDFG BCRHZ CXTWN DFGAJ E.L EAD EAP ESX H13 MBTAY O0~ OHT RHF RNP ROX UQL WRC 8FD H8D L7M |
ID | FETCH-LOGICAL-i3924-f0b10a2dba0e4c3738c082071dc5107395b78e22adcc8f7e51454d6de8607b673 |
IEDL.DBID | DR2 |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 14:55:16 EDT 2025 Wed Jan 22 16:30:10 EST 2025 Tue Aug 05 16:49:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3924-f0b10a2dba0e4c3738c082071dc5107395b78e22adcc8f7e51454d6de8607b673 |
Notes | Heisenberg Fellow istex:B25012C2F471365A184AE1772B601B85E577E6D8 ark:/67375/HXZ-83DTDR8B-2 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/346/2/369/4289051/346-2-369.pdf |
PQID | 27907426 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_27907426 wiley_primary_10_1046_j_1365_2966_2003_07224_x_MNR7224 istex_primary_ark_67375_HXZ_83DTDR8B_2 |
PublicationCentury | 2000 |
PublicationDate | December 2003 |
PublicationDateYYYYMMDD | 2003-12-01 |
PublicationDate_xml | – month: 12 year: 2003 text: December 2003 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: 23 Ainslie Place , Edinburgh EH3 6AJ , UK . Telephone 226 7232 Fax 226 3803 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAlternate | Mon. Not. R. Astron. Soc |
PublicationYear | 2003 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | 1981; 101 2000; 533 2002; 393 1996; 464 2003; 594 2003; 593 2000; 290 2001; 375 2003; 409 2000 2002; 580 2000; 120 2003; 126 2003; 125 2003; 400 1993; 410 2000; 319 2001; 122 2001; 322 2001; 321 2003; 339 2002; 571 2002; 295 2000; 314 2002; 333 2002; 573 2002; 332 1998; 339 2002; 336 1999; 4 1998; 499 2003 2002 1998; 336 1998; 496 1995; 273 2001; 325 2001; 551 2000; 38 1986; 62 1995; 304 2002; 567 2000; 540 2003; 346 2003; 587 1999; 118 2001; 558 2003; 585 2003; 342 2003; 582 1999; 515 |
References_xml | – volume: 125 start-page: 2029 year: 2003 publication-title: AJ – volume: 580 start-page: 317 year: 2002 publication-title: ApJ – volume: 342 start-page: 314 year: 2003 publication-title: MNRAS – volume: 273 start-page: 1041 year: 1995 publication-title: MNRAS – volume: 4 start-page: 531 year: 1999 publication-title: New Astron. – volume: 126 start-page: 1526 year: 2003 publication-title: AJ – volume: 375 start-page: 989 year: 2001 publication-title: A&A – volume: 332 start-page: L65 year: 2002 publication-title: MNRAS – volume: 515 start-page: 669 year: 1999 publication-title: ApJ – volume: 339 start-page: 577 year: 2003 publication-title: MNRAS – volume: 322 start-page: 231 year: 2001 publication-title: MNRAS – volume: 400 start-page: 1031 year: 2003 publication-title: A&A – volume: 319 start-page: 457 year: 2000 publication-title: MNRAS – volume: 333 start-page: 547 year: 2002 publication-title: MNRAS – volume: 410 start-page: 696 year: 1993 publication-title: ApJ – start-page: 3 year: 2003 – volume: 582 start-page: 893 year: 2003 publication-title: ApJ – volume: 540 start-page: 236 year: 2000 publication-title: ApJ – volume: 533 start-page: 358 year: 2000 publication-title: ApJ – volume: 290 start-page: 103 year: 2000 publication-title: Sci – volume: 118 start-page: 235 year: 1999 publication-title: AJ – volume: 101 start-page: 134 year: 1981 publication-title: A&A – volume: 593 start-page: 1093 year: 2003 publication-title: ApJ – volume: 304 start-page: L9 year: 1995 publication-title: A&A – volume: 499 start-page: 758 year: 1998 publication-title: ApJ – volume: 558 start-page: L51 year: 2001 publication-title: ApJ – volume: 409 start-page: 147 year: 2003 publication-title: A&A – volume: 325 start-page: 449 year: 2001 publication-title: MNRAS – volume: 122 start-page: 432 year: 2001 publication-title: AJ – volume: 400 start-page: 891 year: 2003 publication-title: A&A – volume: 336 start-page: 1188 year: 2002 publication-title: MNRAS – volume: 321 start-page: 699 year: 2001 publication-title: MNRAS – volume: 125 start-page: 3302 year: 2003 publication-title: AJ – volume: 336 start-page: 150 year: 1998 publication-title: A&A – volume: 464 start-page: 256 year: 1996 publication-title: ApJ – volume: 582 start-page: 1109 year: 2003 publication-title: ApJ – volume: 4 start-page: 495 year: 1999 publication-title: New Astron. – volume: 322 start-page: L1 year: 2001 publication-title: MNRAS – volume: 567 start-page: 304 year: 2002 publication-title: ApJ – volume: 551 start-page: L167 year: 2001 publication-title: ApJ – volume: 62 start-page: 519 year: 1986 publication-title: ApJS – start-page: 147 year: 2002 – year: 2000 – volume: 120 start-page: 3177 year: 2000 publication-title: AJ – volume: 587 start-page: 407 year: 2003 publication-title: ApJ – volume: 38 start-page: 337 year: 2000 publication-title: ARA&A – volume: 325 start-page: 221 year: 2001 publication-title: MNRAS – volume: 346 start-page: 354 year: 2003 publication-title: MNRAS – volume: 573 start-page: 366 year: 2002 publication-title: ApJ – volume: 571 start-page: L155 year: 2002 publication-title: ApJ – volume: 314 start-page: 858 year: 2000 publication-title: MNRAS – volume: 585 start-page: 372 year: 2003 publication-title: ApJ – volume: 496 start-page: L109 year: 1998 publication-title: ApJ – volume: 38 start-page: 485 year: 2000 publication-title: ARA&A – volume: 393 start-page: 597 year: 2002 publication-title: A&A – volume: 346 start-page: 343 year: 2003 publication-title: MNRAS – volume: 342 start-page: 926 year: 2003 publication-title: MNRAS – volume: 339 start-page: 95 year: 1998 publication-title: A&A – volume: 594 start-page: 525 year: 2003 publication-title: ApJ – volume: 295 start-page: 82 year: 2002 publication-title: Sci |
SSID | ssj0004326 |
Score | 2.1115072 |
Snippet | Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre-main-sequence stellar groups than in the... ABSTRACT Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus–Auriga (TA) pre‐main‐sequence stellar groups than in... Briceno et al. report a significantly smaller number of brown dwarfs (BDs) per star in the Taurus-Auriga (TA) pre-main-sequence stellar groups than in the... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 369 |
SubjectTerms | binaries: general brown dwarfs Galaxy: stellar content open clusters and associations: general stars: formation stars: low-mass stars: low‐mass, brown dwarfs |
Title | On the origin of brown dwarfs and free-floating planetary-mass objects |
URI | https://api.istex.fr/ark:/67375/HXZ-83DTDR8B-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-2966.2003.07224.x https://www.proquest.com/docview/27907426 |
Volume | 346 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9swGLYmTlzGYEN0MObDxC2Vk7i2OXYFVCEVpKpI1S6WvyKhQlI1rQSc-An7jfslvK-TMph2QlwiJ1asOK8_Hr9-_LyE_IBZRPWc5ElhhU-4KmyiclEkqZHOZMwAxMfzzqMLMbzi59PetOU_4VmYRh_i2eGGPSOO19jBjW2ikLCobrtmaAFej7KeXSZhOuoinsQMxEfjv0pSPI-R16JCI6wR0pbU025w_rcggKv4p-9eYc-XCDZOQWdbZLb--IZ5MuuulrbrHv7RdXyf2n0iH1ukSvtN09omH0K5Q_b6NfrOq9t7ekRjunGN1DukMwL8XS2imx4yBzfXAIbj3WdyfllSQJq0CcNFq4JaXP5TjBhd1NSUnhaLEP48_i5uKoNMbDpHFu4SKgAPbwHh08qiy6j-Qq7OTieDYdJGcUiuAXtBI2A2ZSbz1rDAHQopOYQdMvUOxgPcJ7RShSwz3jlVyAAIrse98EEJJq2Q-S7ZKKsy7KHFjD8WIUst85zn0h4HL5xlziiXGmE75ChaTM8bpQ5tFjMkrsmeHk5_aZWfTE7G6qfOOuT72qQauhPukUCdqlWtMxm9BaJDRDTPc1Fxs57jwTY0jEbDYAjPXEfD6Ds9uhhj6utbX9wnmw1REKkyB2RjuViFbwB4lvYwNmW4Ti6nT1lA9vs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswECWK9NBe0mZDnGbhIchNjhaaZI5pFrhp7ACGAxi9ENwEGHGkwLKBJKd8Qr-xX9IZSlnRU5EbJUGEqOHy-OZxhpBdWEVkxwoW5Ya7iMncRDLjeZRoYXUaa4D4eN651-fdS3Y26oyadEB4FqaOD_FEuOHICPM1DnAkpPcbt2Q9yoNECwB7iOvZjgWsR20AlB8xwXfYXw2eY0mxLOReCzEaYZeQNLKexsX5z5oAsOK_vn2FPl9i2LAInX4hk8fPr7UnV-35zLTt_ZvIju_Uvq9ksQGr9LDuXUvkgy-WyfphhfR5eX1H92go1-xItUxaPYDg5TQw9fDwaDIGPByuVsjZRUEBbNI6Exctc2qQAaCYNDqvqC4czafe_3n4nU9KjWJseoNC3Bm0AG5eA8inpUHWqFoll6cnw6Nu1CRyiMYAv6AfxCaJdeqMjj2zGEvJIvIQibMwJaCr0Ajp01Q7a2UuPIC4DnPcecljYbjI1shCURZ-HU2m3QH3aWJix1gmzIF33JrYamkTzU2L7AWTqZs6WIfS0yvUromO6o5-KZkdD48H8rtKW2Tn0aYKRhS6SaBN5bxSqQiEAW8RHuzzVFXw1zM824aGUWgYzOKZqWAYdat6_QGWNv73xR3yqTvsnavzH_2f38jnWjeIyplNsjCbzv0W4J-Z2Q79-i_5GPn6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkRAXHgXULY_6gHrL4iRe2z2WLqulsAtatdKKi-WnVG2brDa7UtsTP4HfyC9hxknLQ5wQNydRrDgzY3-e-TxDyGtYRdTASZ5FK3zGVbSZKkXMciOdKZgBiI_nnSdTMT7lx_PBvOM_4VmYNj_ErcMNLSPN12jgSx_fdFHJ1sgTQwvwekrr2WcSlqM-4Mm7XDCFGj6c_UwlxctUei2laIRNQt6xeroI5197AryKv_ryN_D5K4RNa9DoIVncfH1LPVn0N2vbd9d_JHb8P8N7RB50UJUetrr1mNwJ1TbZOWzQeV5fXNF9mtqtb6TZJr0JAPB6lfz08PDo_AzQcLp6Qo4_VRSgJm3rcNE6Uov7f4olo2NDTeVpXIXw_eu3eF4bpGLTJdJw1zAAuHkBEJ_WFn1GzVNyOnp3cjTOujIO2RmAL9ACZnNmCm8NC9xhJiWHuEPm3sGEgIFCK1UoCuOdU1EGgHAD7oUPSjBphSyfka2qrsIOSsz4AxGK3DLPeSntQfDCWeaMcrkRtkf2k8T0sk3Voc1qgcw1OdDj-RetyuHJcKbe6qJH9m5EqsGeMEgCY6o3jS5kcheIHhFJPLddpWg9x5NtKBiNgsEanqVOgtGXejKdYWv3X1_cI_c-D0f64_vph-fkfksaRNrMC7K1Xm3CSwA_a_sqafUPJW34sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+origin+of+brown+dwarfs+and+free%E2%80%90floating+planetary%E2%80%90mass+objects&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Kroupa%2C+Pavel&rft.au=Bouvier%2C+Jerome&rft.date=2003-12-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=346&rft.issue=2&rft.spage=369&rft.epage=380&rft_id=info:doi/10.1046%2Fj.1365-2966.2003.07224.x&rft.externalDBID=10.1046%252Fj.1365-2966.2003.07224.x&rft.externalDocID=MNR7224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |