Studies of anomalous diffusion in the human brain using fractional order calculus

It is well known that diffusion‐induced MR signal loss deviates from monoexponential decay, particularly at high b‐values (e.g., >1500 sec/mm2 for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to ti...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 63; no. 3; pp. 562 - 569
Main Authors Zhou, Xiaohong Joe, Gao, Qing, Abdullah, Osama, Magin, Richard L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is well known that diffusion‐induced MR signal loss deviates from monoexponential decay, particularly at high b‐values (e.g., >1500 sec/mm2 for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to tissue structures. Recently, a new diffusion model was proposed by solving the Bloch‐Torrey equation using fractional order calculus with respect to time and space (Magin et al., J Magn Reson 2008;190:255‐270; Zhou et al., Proc Int'l Soc Magn Reson Med 2008). Using a spatial Laplacian ∇2β, this model yields a new set of parameters to describe anomalous diffusion: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). In this study, we demonstrate that the fractional calculus model can be successfully applied to analyzing diffusion images of healthy human brain tissues in vivo. Five human volunteers were scanned on a commercial 3‐T scanner using a customized single‐shot echo‐planar imaging diffusion sequence with 15 b values ranging from 0 to 4700 sec/mm2. The set of images was analyzed using the fractional calculus model, producing spatially resolved maps of D, β, and μ. The β and μ maps showed notable contrast between white and gray matter. The contrast has been attributed to the varying degree of complexity of the underlying tissue structures and microenvironment. Although the biophysical basis of β and μ remains elusive, the potential utility of these parameters to characterize the environment for molecular diffusion, as a complement to apparent diffusion coefficient, may lead to a new way to investigate tissue structural changes in disease progression, intervention, and regression. Magn Reson Med 63:562–569, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList It is well known that diffusion‐induced MR signal loss deviates from monoexponential decay, particularly at high b‐values (e.g., >1500 sec/mm2 for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to tissue structures. Recently, a new diffusion model was proposed by solving the Bloch‐Torrey equation using fractional order calculus with respect to time and space (Magin et al., J Magn Reson 2008;190:255‐270; Zhou et al., Proc Int'l Soc Magn Reson Med 2008). Using a spatial Laplacian ∇2β, this model yields a new set of parameters to describe anomalous diffusion: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). In this study, we demonstrate that the fractional calculus model can be successfully applied to analyzing diffusion images of healthy human brain tissues in vivo. Five human volunteers were scanned on a commercial 3‐T scanner using a customized single‐shot echo‐planar imaging diffusion sequence with 15 b values ranging from 0 to 4700 sec/mm2. The set of images was analyzed using the fractional calculus model, producing spatially resolved maps of D, β, and μ. The β and μ maps showed notable contrast between white and gray matter. The contrast has been attributed to the varying degree of complexity of the underlying tissue structures and microenvironment. Although the biophysical basis of β and μ remains elusive, the potential utility of these parameters to characterize the environment for molecular diffusion, as a complement to apparent diffusion coefficient, may lead to a new way to investigate tissue structural changes in disease progression, intervention, and regression. Magn Reson Med 63:562–569, 2010. © 2010 Wiley‐Liss, Inc.
It is well known that diffusion-induced MR signal loss deviates from monoexponential decay, particularly at high b-values (e.g., >1500 sec/mm(2) for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to tissue structures. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (Magin et al., J Magn Reson 2008;190:255-270; Zhou et al., Proc Int'l Soc Magn Reson Med 2008). Using a spatial Laplacian [symbol: see text], this model yields a new set of parameters to describe anomalous diffusion: diffusion coefficient D, fractional order derivative in space beta, and a spatial parameter mu (in units of microm). In this study, we demonstrate that the fractional calculus model can be successfully applied to analyzing diffusion images of healthy human brain tissues in vivo. Five human volunteers were scanned on a commercial 3-T scanner using a customized single-shot echo-planar imaging diffusion sequence with 15 b values ranging from 0 to 4700 sec/mm(2). The set of images was analyzed using the fractional calculus model, producing spatially resolved maps of D, beta, and mu. The beta and mu maps showed notable contrast between white and gray matter. The contrast has been attributed to the varying degree of complexity of the underlying tissue structures and microenvironment. Although the biophysical basis of beta and mu remains elusive, the potential utility of these parameters to characterize the environment for molecular diffusion, as a complement to apparent diffusion coefficient, may lead to a new way to investigate tissue structural changes in disease progression, intervention, and regression.It is well known that diffusion-induced MR signal loss deviates from monoexponential decay, particularly at high b-values (e.g., >1500 sec/mm(2) for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to tissue structures. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (Magin et al., J Magn Reson 2008;190:255-270; Zhou et al., Proc Int'l Soc Magn Reson Med 2008). Using a spatial Laplacian [symbol: see text], this model yields a new set of parameters to describe anomalous diffusion: diffusion coefficient D, fractional order derivative in space beta, and a spatial parameter mu (in units of microm). In this study, we demonstrate that the fractional calculus model can be successfully applied to analyzing diffusion images of healthy human brain tissues in vivo. Five human volunteers were scanned on a commercial 3-T scanner using a customized single-shot echo-planar imaging diffusion sequence with 15 b values ranging from 0 to 4700 sec/mm(2). The set of images was analyzed using the fractional calculus model, producing spatially resolved maps of D, beta, and mu. The beta and mu maps showed notable contrast between white and gray matter. The contrast has been attributed to the varying degree of complexity of the underlying tissue structures and microenvironment. Although the biophysical basis of beta and mu remains elusive, the potential utility of these parameters to characterize the environment for molecular diffusion, as a complement to apparent diffusion coefficient, may lead to a new way to investigate tissue structural changes in disease progression, intervention, and regression.
It is well known that diffusion-induced MR signal loss deviates from monoexponential decay, particularly at high b-values (e.g., >1500 sec/mm(2) for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to tissue structures. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (Magin et al., J Magn Reson 2008;190:255-270; Zhou et al., Proc Int'l Soc Magn Reson Med 2008). Using a spatial Laplacian [symbol: see text], this model yields a new set of parameters to describe anomalous diffusion: diffusion coefficient D, fractional order derivative in space beta, and a spatial parameter mu (in units of microm). In this study, we demonstrate that the fractional calculus model can be successfully applied to analyzing diffusion images of healthy human brain tissues in vivo. Five human volunteers were scanned on a commercial 3-T scanner using a customized single-shot echo-planar imaging diffusion sequence with 15 b values ranging from 0 to 4700 sec/mm(2). The set of images was analyzed using the fractional calculus model, producing spatially resolved maps of D, beta, and mu. The beta and mu maps showed notable contrast between white and gray matter. The contrast has been attributed to the varying degree of complexity of the underlying tissue structures and microenvironment. Although the biophysical basis of beta and mu remains elusive, the potential utility of these parameters to characterize the environment for molecular diffusion, as a complement to apparent diffusion coefficient, may lead to a new way to investigate tissue structural changes in disease progression, intervention, and regression.
It is well known that diffusion-induced MR signal loss deviates from monoexponential decay, particularly at high b-values (e.g., >1500 sec/mm2 for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to tissue structures. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (Magin et al., J Magn Reson 2008; 190:255-270; Zhou et al., Proc Int'l Soc Magn Reson Med 2008). Using a spatial Laplacian {nabla}2 Delta *b, this model yields a new set of parameters to describe anomalous diffusion: diffusion coefficient D, fractional order derivative in space Delta *b, and a spatial parameter Delta *m (in units of Delta *mm). In this study, we demonstrate that the fractional calculus model can be successfully applied to analyzing diffusion images of healthy human brain tissues in vivo. Five human volunteers were scanned on a commercial 3-T scanner using a customized single-shot echo-planar imaging diffusion sequence with 15 b values ranging from 0 to 4700 sec/mm2. The set of images was analyzed using the fractional calculus model, producing spatially resolved maps of D, Delta *b, and Delta *m. The Delta *b and Delta *m maps showed notable contrast between white and gray matter. The contrast has been attributed to the varying degree of complexity of the underlying tissue structures and microenvironment. Although the biophysical basis of Delta *b and Delta *m remains elusive, the potential utility of these parameters to characterize the environment for molecular diffusion, as a complement to apparent diffusion coefficient, may lead to a new way to investigate tissue structural changes in disease progression, intervention, and regression. Magn Reson Med 63:562-569, 2010. [copy 2010 Wiley-Liss, Inc.
Author Magin, Richard L.
Zhou, Xiaohong Joe
Abdullah, Osama
Gao, Qing
Author_xml – sequence: 1
  givenname: Xiaohong Joe
  surname: Zhou
  fullname: Zhou, Xiaohong Joe
  email: xjzhou@uic.edu
  organization: Department of Radiology, University of Illinois Medical Center, Chicago, Illinois, USA
– sequence: 2
  givenname: Qing
  surname: Gao
  fullname: Gao, Qing
  organization: Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
– sequence: 3
  givenname: Osama
  surname: Abdullah
  fullname: Abdullah, Osama
  organization: Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
– sequence: 4
  givenname: Richard L.
  surname: Magin
  fullname: Magin, Richard L.
  organization: Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20187164$$D View this record in MEDLINE/PubMed
BookMark eNqFkTlPAzEQhS0EgnAU_AHkjmrB59ouUbgJIC5RWo4PMOwR7F0B_54NAVqqmdH73kgzbx0sN23jAdjGaA8jRPbrVO8RQiRfAiPMCSkIV2wZjJBgqKBYsTWwnvMLQkgpwVbBGkFYClyyEbi563oXfYZtgKZpa1O1fYYuhtDn2DYwNrB79vC5r00Dp8kM8yA0TzAkY7uBMBVsk_MJWlPZvurzJlgJpsp-66dugIfjo_vxaTG5PjkbH0yKSGXJC2WdQoqK4JksA3dYWDJvXRmmiDkamDFEqjJQ45yaSq6clZYyw4W0Jcd0A-wu9s5S-9b73Ok6ZuuryjR-uEFLSdH8GexfUlBKiBKcD-TOD9lPa-_0LMXapE_9-68B2F8A77Hyn386RnoehB6C0N9B6Mvby-9mcBQLR8yd__hzmPSqS0EF149XJ_pmfKEOLybnWtEvLyqLkg
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
(c) 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: (c) 2010 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
DOI 10.1002/mrm.22285
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 569
ExternalDocumentID 20187164
MRM22285
ark_67375_WNG_QCK9DKLJ_9
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH‐NIDDS
  funderid: R01 NS057514
– fundername: CCTS
– fundername: University of Illinois at Chicago
– fundername: NINDS NIH HHS
  grantid: R01 NS057514
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-i3865-9cd90937fe486f5d17c2e486d6fb04d3f4aa2896f3add9b859dc8c34a578c6513
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 04:42:22 EDT 2025
Fri Jul 11 07:05:05 EDT 2025
Mon Jul 21 05:59:09 EDT 2025
Wed Jan 22 16:21:14 EST 2025
Wed Oct 30 09:51:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License (c) 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3865-9cd90937fe486f5d17c2e486d6fb04d3f4aa2896f3add9b859dc8c34a578c6513
Notes CCTS
istex:5F9534ED18AE9A2503BAED6746EB0D6C4F375A56
ArticleID:MRM22285
ark:/67375/WNG-QCK9DKLJ-9
University of Illinois at Chicago
NIH-NIDDS - No. R01 NS057514
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20187164
PQID 733229755
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_883015224
proquest_miscellaneous_733229755
pubmed_primary_20187164
wiley_primary_10_1002_mrm_22285_MRM22285
istex_primary_ark_67375_WNG_QCK9DKLJ_9
PublicationCentury 2000
PublicationDate March 2010
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: March 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Özarslan E, Basser PJ, Shepherd TM, Thelwall PE, Vemuri BC, Blackband SJ. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J Magn Reson 2006; 183: 315-323.
Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, Reese TG, Weisskoff RM, Davis TL, Suwanwela N, Can U, Moreira JA, Copen WA, Look RB, Finklestein SP, Rosen BR, Koroshetz WJ. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 1996; 199: 391-401.
Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 2000, 472.
Sehy JV, Zhao L, Xu JQ, Rayala HJ, Ackerman JJH, Neil JJ. Effects of physiologic challenge on the ADC of intracellular water in the Xenopus oocyte. Magn Reson Med 2004; 52: 239-247.
Moseley ME, Cohen Y, Montorovitch J. Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2 weighted MRI and spectroscopy. J Magn Reson 1990; 14: 330-346.
Jensen JH, Helpern JA, Ramani A, Lu HZ, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440.
Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664-669.
van Zijl PCM, Moonen CTW, Faustino P, Pekar J, Kaplan O, Cohen JS. Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion weighted spectroscopy. Proc Natl Acad Sci U|S|A 1990; 88: 3228-3232.
Hall MG, Barrick TR. From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 2008; 59: 447-455.
Pfeuffer J, Provencher S, Gruetter R. Water diffusion in rat brain in vivo as detected at very large b values is multicompartmental. MAGMA 1999; 8: 98-108.
Sehy JV, Banks AA, Ackerman JJH, Neil JJ. Importance of intracellular water apparent diffusion to the measurement of membrane permeability. Biophys J 2002; 83: 2856-2863.
Özarslan E, Basser PJ. MR diffusion-"diffraction" phenomenon in multi-pulse-field-gradient experiments. J Magn Reson 2007; 188: 285-294.
Gao Q, Haldar JP, Rangwala N, Magin RL, Liang Z-P, Zhou XJ. Analysis of high b-value diffusion images using a fractional order diffusion model with denoising image reconstruction. Proc Int Soc Magn Reson Med 2009; 17: 1418.
Magin RL, Abdullah O, Baleanu D, Zhou XJ. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J Magn Reson 2008; 190: 255-270.
Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49: 177-182.
Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630.
Bennett KM, Schmainda KM, Bennett R, Rowe DB, Lu HB, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003; 50: 727-734.
Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9: 53-60.
Le Bihan D. The "wet mind": water and functional neuroimaging. Phys Med Biol 2007; 52: R57-R90.
Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CRG, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51-62.
Inglis BA, Bossart EL, Buckley DL, Wirth ED, Mareci TH. Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn Reson Med 2001; 45: 580-587.
Barboriak D. Imaging of brain tumors with diffusion-weighted and diffusion tensor MR imaging. Magn Reson Imaging Clin N Am 2003; 11: 379-401.
Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 2002; 23: 165-170.
Sehy JV, Ackerman JJH, Neil JJ. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 2002; 48: 765-770.
Clark CA, Hedehus M, Moseley ME. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med 2002; 47: 623-628.
Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 2000; 44: 852-859.
Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 1992; 23: 746-754.
2008; 190
1990; 14
2000; 44
2007; 188
2008; 59
2008
2007; 52
1999; 8
2001; 45
2003; 50
2003; 11
1999; 9
1999
2004; 52
2002; 47
1954; 94
2002; 48
1990; 88
2001
2000
2002; 83
2002; 23
1999; 12
2005; 53
2003; 49
1996; 199
2006; 183
1992; 23
2009; 17
References_xml – reference: Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 2000; 44: 852-859.
– reference: Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9: 53-60.
– reference: Jensen JH, Helpern JA, Ramani A, Lu HZ, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440.
– reference: Le Bihan D. The "wet mind": water and functional neuroimaging. Phys Med Biol 2007; 52: R57-R90.
– reference: Hall MG, Barrick TR. From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 2008; 59: 447-455.
– reference: Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 2000, 472.
– reference: van Zijl PCM, Moonen CTW, Faustino P, Pekar J, Kaplan O, Cohen JS. Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion weighted spectroscopy. Proc Natl Acad Sci U|S|A 1990; 88: 3228-3232.
– reference: Gao Q, Haldar JP, Rangwala N, Magin RL, Liang Z-P, Zhou XJ. Analysis of high b-value diffusion images using a fractional order diffusion model with denoising image reconstruction. Proc Int Soc Magn Reson Med 2009; 17: 1418.
– reference: Barboriak D. Imaging of brain tumors with diffusion-weighted and diffusion tensor MR imaging. Magn Reson Imaging Clin N Am 2003; 11: 379-401.
– reference: Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, Reese TG, Weisskoff RM, Davis TL, Suwanwela N, Can U, Moreira JA, Copen WA, Look RB, Finklestein SP, Rosen BR, Koroshetz WJ. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 1996; 199: 391-401.
– reference: Özarslan E, Basser PJ, Shepherd TM, Thelwall PE, Vemuri BC, Blackband SJ. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J Magn Reson 2006; 183: 315-323.
– reference: Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CRG, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51-62.
– reference: Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 1992; 23: 746-754.
– reference: Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49: 177-182.
– reference: Inglis BA, Bossart EL, Buckley DL, Wirth ED, Mareci TH. Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn Reson Med 2001; 45: 580-587.
– reference: Pfeuffer J, Provencher S, Gruetter R. Water diffusion in rat brain in vivo as detected at very large b values is multicompartmental. MAGMA 1999; 8: 98-108.
– reference: Özarslan E, Basser PJ. MR diffusion-"diffraction" phenomenon in multi-pulse-field-gradient experiments. J Magn Reson 2007; 188: 285-294.
– reference: Sehy JV, Zhao L, Xu JQ, Rayala HJ, Ackerman JJH, Neil JJ. Effects of physiologic challenge on the ADC of intracellular water in the Xenopus oocyte. Magn Reson Med 2004; 52: 239-247.
– reference: Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 2002; 23: 165-170.
– reference: Magin RL, Abdullah O, Baleanu D, Zhou XJ. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J Magn Reson 2008; 190: 255-270.
– reference: Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630.
– reference: Sehy JV, Banks AA, Ackerman JJH, Neil JJ. Importance of intracellular water apparent diffusion to the measurement of membrane permeability. Biophys J 2002; 83: 2856-2863.
– reference: Clark CA, Hedehus M, Moseley ME. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med 2002; 47: 623-628.
– reference: Sehy JV, Ackerman JJH, Neil JJ. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 2002; 48: 765-770.
– reference: Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664-669.
– reference: Bennett KM, Schmainda KM, Bennett R, Rowe DB, Lu HB, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003; 50: 727-734.
– reference: Moseley ME, Cohen Y, Montorovitch J. Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2 weighted MRI and spectroscopy. J Magn Reson 1990; 14: 330-346.
– volume: 83
  start-page: 2856
  year: 2002
  end-page: 2863
  article-title: Importance of intracellular water apparent diffusion to the measurement of membrane permeability
  publication-title: Biophys J
– volume: 190
  start-page: 255
  year: 2008
  end-page: 270
  article-title: Anomalous diffusion expressed through fractional order differential operators in the Bloch‐Torrey equation
  publication-title: J Magn Reson
– volume: 11
  start-page: 379
  year: 2003
  end-page: 401
  article-title: Imaging of brain tumors with diffusion‐weighted and diffusion tensor MR imaging
  publication-title: Magn Reson Imaging Clin N Am
– volume: 44
  start-page: 852
  year: 2000
  end-page: 859
  article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain
  publication-title: Magn Reson Med
– year: 2001
– volume: 94
  start-page: 630
  year: 1954
  article-title: Effects of diffusion on free precession in nuclear magnetic resonance experiments
  publication-title: Phys Rev
– volume: 23
  start-page: 165
  year: 2002
  end-page: 170
  article-title: Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 183
  start-page: 315
  year: 2006
  end-page: 323
  article-title: Observation of anomalous diffusion in excised tissue by characterizing the diffusion‐time dependence of the MR signal
  publication-title: J Magn Reson
– volume: 188
  start-page: 285
  year: 2007
  end-page: 294
  article-title: MR diffusion‐“diffraction” phenomenon in multi‐pulse‐field‐gradient experiments
  publication-title: J Magn Reson
– volume: 14
  start-page: 330
  year: 1990
  end-page: 346
  article-title: Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2 weighted MRI and spectroscopy
  publication-title: J Magn Reson
– volume: 59
  start-page: 447
  year: 2008
  end-page: 455
  article-title: From diffusion‐weighted MRI to anomalous diffusion imaging
  publication-title: Magn Reson Med
– volume: 199
  start-page: 391
  year: 1996
  end-page: 401
  article-title: Hyperacute stroke: evaluation with combined multisection diffusion‐weighted and hemodynamically weighted echo‐planar MR imaging
  publication-title: Radiology
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 45
  start-page: 580
  year: 2001
  end-page: 587
  article-title: Visualization of neural tissue water compartments using biexponential diffusion tensor MRI
  publication-title: Magn Reson Med
– volume: 17
  start-page: 1418
  year: 2009
  article-title: Analysis of high b‐value diffusion images using a fractional order diffusion model with denoising image reconstruction
  publication-title: Proc Int Soc Magn Reson Med
– volume: 50
  start-page: 727
  year: 2003
  end-page: 734
  article-title: Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model
  publication-title: Magn Reson Med
– start-page: 472
  year: 2000
– volume: 88
  start-page: 3228
  year: 1990
  end-page: 3232
  article-title: Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion weighted spectroscopy
  publication-title: Proc Natl Acad Sci U|S|A
– volume: 8
  start-page: 98
  year: 1999
  end-page: 108
  article-title: Water diffusion in rat brain in vivo as detected at very large b values is multicompartmental
  publication-title: MAGMA
– volume: 48
  start-page: 765
  year: 2002
  end-page: 770
  article-title: Evidence that both fast and slow water ADC components arise from intracellular space
  publication-title: Magn Reson Med
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  article-title: Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo
  publication-title: Magn Reson Med
– volume: 52
  start-page: R57
  year: 2007
  end-page: R90
  article-title: The “wet mind”: water and functional neuroimaging
  publication-title: Phys Med Biol
– volume: 12
  start-page: 51
  year: 1999
  end-page: 62
  article-title: Multi‐component apparent diffusion coefficients in human brain
  publication-title: NMR Biomed
– volume: 23
  start-page: 746
  year: 1992
  end-page: 754
  article-title: Mechanism of detection of acute cerebral ischemia in rats by diffusion‐weighted magnetic resonance microscopy
  publication-title: Stroke
– volume: 52
  start-page: 239
  year: 2004
  end-page: 247
  article-title: Effects of physiologic challenge on the ADC of intracellular water in the oocyte
  publication-title: Magn Reson Med
– volume: 47
  start-page: 623
  year: 2002
  end-page: 628
  article-title: In vivo mapping of the fast and slow diffusion tensors in human brain
  publication-title: Magn Reson Med
– volume: 50
  start-page: 664
  year: 2003
  end-page: 669
  article-title: Statistical model for diffusion attenuated MR signal
  publication-title: Magn Reson Med
– volume: 9
  start-page: 53
  year: 1999
  end-page: 60
  article-title: Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas
  publication-title: J Magn Reson Imaging
– start-page: 36
  year: 2008
– year: 1999
SSID ssj0009974
Score 2.3965533
Snippet It is well known that diffusion‐induced MR signal loss deviates from monoexponential decay, particularly at high b‐values (e.g., >1500 sec/mm2 for human brain...
It is well known that diffusion-induced MR signal loss deviates from monoexponential decay, particularly at high b-values (e.g., >1500 sec/mm(2) for human...
It is well known that diffusion-induced MR signal loss deviates from monoexponential decay, particularly at high b-values (e.g., >1500 sec/mm2 for human brain...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 562
SubjectTerms Algorithms
anomalous diffusion
Brain
Brain - anatomy & histology
Calculus
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
diffusion model
Echo-Planar Imaging - methods
fractional order calculus
high b value
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Mathematical models
Microenvironments
N.M.R
Neuroimaging
Reproducibility of Results
Sensitivity and Specificity
Substantia grisea
Title Studies of anomalous diffusion in the human brain using fractional order calculus
URI https://api.istex.fr/ark:/67375/WNG-QCK9DKLJ-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22285
https://www.ncbi.nlm.nih.gov/pubmed/20187164
https://www.proquest.com/docview/733229755
https://www.proquest.com/docview/883015224
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD4sBcUXq23VrRfyIOLLbGdnkkmCT1KtS-sWtrjYByHkMlNK3dmyFyj-es9JdrdUKohvgUnITE5y5svJl-8AvJXSizq3ecZd8BkPVmUKgXOW-6L0vHSuiGTM4Wk1GPPjc3HegQ_ruzBJH2ITcKOVEf01LXDr5ge3oqGT2aRH4Qu6YE5cLQJEZ7fSUVonBWbJyc9ovlYVyouDTUsEpDSWN_ehy7tgNf5tjrbhx_o9E8nkqrdcuJ7_9YeE439-yBN4vEKh7GOaNk-hU7c78HC4OmffgQeRGOrnuzBaEQ3ZtGG2nU7sz-lyziitypLibOyyZQghWUz1xxzlm2BEpb9gzSxdmcBuorwnw8lAocb5HoyPPn87HGSrNAzZJSUEzbQPOkcU09RcVY0IfekLKoaqcTkPZcOtxW1b1ZToK7VTQgevfMktOgNfiX75DLbaaVu_ACZDrYL2iJH7gdvSOqkRYyDo5DqvlJBdeBcNYq6T1Iaxsytinklhvp9-MaPDE_3p5Oux0V1ga4sZXA90yGHbGgfAyBJdlJZC_L2KUujVEHfyLjxPxt70V1COQtxBduF9NNnmQVJ3Lgway0RjmeHZMBb2_73qS3iUyAdEYXsFW4vZsn6NmGbh3sTJ-xt_B_Ew
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlD4ufaRtsn3qUEov3ji2ZEnQS0mabrPrhYSE5hKELNklJOsN-4CSX58ZaXdDSwulN4ElZGuk8afRp28A3kvpRJ3aNOGVdwn3ViUKgXOSuix3PK-qLJAxy2HRO-EHp-J0DT4t78JEfYhVwI1WRvDXtMApIL19qxo6moy6FL8Qd-AuZfQm5fy9o1vxKK2jBrPk5Gk0X-oKpdn2qilCUhrNn3_Cl7_C1fC_2X8MZ8s3jTSTi-58VnXd9W8ijv_7KU_g0QKIss9x5jyFtbrdgPvl4qh9A-4FbqibPoPDBdeQjRtm2_HIXo7nU0aZVeYUamPnLUMUyUK2P1ZRyglGbPofrJnEWxPYTVD4ZDgfKNo4fQ4n-1-Od3vJIhNDck45QRPtvE4RyDQ1V0Uj_I50GRV90VQp93nDrcWdW9Hk6C51pYT2TrmcW_QHDk2Tv4D1dtzWW8Ckr5XXDmHyjuc2t5XUCDMQd3KdFkrIDnwIFjFXUW3D2MkFkc-kMN-HX83hbl_v9QcHRneALU1mcEnQOYdtaxwAI3P0UloK8fcqSqFjQ-jJO7AZrb3qL6M0hbiJ7MDHYLPVgyjwnBk0lgnGMuVRGQov_73qO3jQOy4HZvBt2H8FDyMXgRhtr2F9NpnXbxDizKq3YSbfAJSQ9Uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIiouPMorPH1AiMumm117bYsTagilaSJaUdEDkuXHLqpKNlUeEuLXM2MnqUAgIW6W1pZ3Pfbs5_HnbwBeSulFnds84y74jAerMoXAOct9UXpeOldEMuZoXB2c8sMzcbYFb9Z3YZI-xCbgRisj-mta4Jeh2bsSDZ3MJl0KX4hrcJ1Xuaa8Df2TK-0orZMEs-TkaDRfywrlxd6mKSJSGszvf4KXv6LV-LsZ3IYv6xdNLJOL7nLhuv7HbxqO__kld-DWCoayt2ne3IWtut2FndHqoH0XbkRmqJ_fg-MV05BNG2bb6cR-my7njPKqLCnQxs5bhhiSxVx_zFHCCUZc-q-smaU7E9hN1PdkOBso1ji_D6eDd5_2D7JVHobsnDKCZtoHnSOMaWquqkaEnvQFFUPVuJyHsuHW4r6takp0ltopoYNXvuQWvYGvRK98ANvttK0fAZOhVkF7BMm9wG1pndQIMhB1cp1XSsgOvIoGMZdJa8PY2QVRz6Qwn8fvzfH-UPeHR4dGd4CtLWZwQdAph21rHAAjS_RRWgrx9ypKoVtD4Mk78DAZe9NfQUkKcQvZgdfRZJsHSd65MGgsE41lRiejWHj871VfwM7H_sAcfRgPn8DNREQgOttT2F7MlvUzxDcL9zzO45_AtvP7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Studies+of+anomalous+diffusion+in+the+human+brain+using+fractional+order+calculus&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhou%2C+Xiaohong+Joe&rft.au=Gao%2C+Qing&rft.au=Abdullah%2C+Osama&rft.au=Magin%2C+Richard+L&rft.date=2010-03-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=63&rft.issue=3&rft.spage=562&rft_id=info:doi/10.1002%2Fmrm.22285&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon