Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs

Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained, Segmented‐Constrained, and Bayesian‐Probability) for computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Met...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 75; no. 5; pp. 2175 - 2184
Main Authors Barbieri, Sebastiano, Donati, Olivio F., Froehlich, Johannes M., Thoeny, Harriet C.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.05.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained, Segmented‐Constrained, and Bayesian‐Probability) for computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Methods Following the acquisition of abdominal diffusion‐weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel‐incoherent‐motion‐related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter‐reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. Results A Bayesian‐Probability based approach was associated with very low inter‐reader variability (average Intraclass Correlation Coefficients: 96.5–99.6%), the lowest inter‐subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt: 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4–12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp: 15.5% on average; for the pseudodiffusion coefficient Dp: 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions. Conclusion The Bayesian‐Probability algorithm should be preferred when computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Magn Reson Med 75:2175–2184, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-D sub(p), Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Methods Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. Results A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient D sub(t): 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction F sub(p): 15.5% on average; for the pseudodiffusion coefficient D sub(p): 25.8% on average), and the highest precision and accuracy. Results differed significantly (P<0.05) across algorithms in all anatomical regions. Conclusion The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Magn Reson Med 75:2175-2184, 2016.
Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained, Segmented‐Constrained, and Bayesian‐Probability) for computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Methods Following the acquisition of abdominal diffusion‐weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel‐incoherent‐motion‐related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter‐reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. Results A Bayesian‐Probability based approach was associated with very low inter‐reader variability (average Intraclass Correlation Coefficients: 96.5–99.6%), the lowest inter‐subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt: 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4–12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp: 15.5% on average; for the pseudodiffusion coefficient Dp: 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions. Conclusion The Bayesian‐Probability algorithm should be preferred when computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Magn Reson Med 75:2175–2184, 2016. © 2015 Wiley Periodicals, Inc.
PURPOSETo compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs.METHODSFollowing the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data.RESULTSA Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt : 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp : 15.5% on average; for the pseudodiffusion coefficient Dp : 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions.CONCLUSIONThe Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs.
To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt : 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp : 15.5% on average; for the pseudodiffusion coefficient Dp : 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions. The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs.
Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp, Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Methods Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. Results A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt: 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp: 15.5% on average; for the pseudodiffusion coefficient Dp: 25.8% on average), and the highest precision and accuracy. Results differed significantly (P<0.05) across algorithms in all anatomical regions. Conclusion The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Magn Reson Med 75:2175-2184, 2016. © 2015 Wiley Periodicals, Inc.
Author Donati, Olivio F.
Thoeny, Harriet C.
Froehlich, Johannes M.
Barbieri, Sebastiano
Author_xml – sequence: 1
  givenname: Sebastiano
  surname: Barbieri
  fullname: Barbieri, Sebastiano
  organization: Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland
– sequence: 2
  givenname: Olivio F.
  surname: Donati
  fullname: Donati, Olivio F.
  organization: Department of Diagnostic and Interventional Radiology, University Hospital, Zürich, Switzerland
– sequence: 3
  givenname: Johannes M.
  surname: Froehlich
  fullname: Froehlich, Johannes M.
  organization: Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland
– sequence: 4
  givenname: Harriet C.
  surname: Thoeny
  fullname: Thoeny, Harriet C.
  email: Correspondence address: Correspondence to: Harriet C. Thoeny, MD; Inselspital, Freiburgstrasse 10, CH-3010 Bern, Switzerland. Harriet.Thoeny@insel.ch
  organization: Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26059232$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLdbDrwAssSFS9qxHcfrI1SwLOpCW7VwtBxnsuuS2CFx1PbtSXdLD5yYi8fy941l_0fkIMSAhLxhcMIA-GnbtydcqkK-IDMmOc-41PkBmYHKIRNM54fkaBhuAUBrlb8ih7wAqbngM9Kt2s66RGNN0xaps40bG5t8DNQ2m9j7tG3ptCk93nfTrSF529Dap-TD5tGqfF2Pw8Rnd-g324QVXV-tqA907DrsqS2r2PowSbHf2DAck5e1bQZ8_bTOyc3nT9dnX7Lz78vV2YfzzIuFlBlyRKcgr6qKF9yCclhKy8AqrXNdcgC3UK7G2vFKL0CUvJSOaRAVV7LQtZiT9_u5XR9_jzgk0_rBYdPYgHEcDFMLpRVjqvgflEmxqzl59w96G8d-et2eAi0EyIl6-0SNZYuV6Xrf2v7B_P32CTjdA3e-wYfncwbmMU8z5Wl2eZr11XrXTEa2N_yQ8P7ZsP0vUyihpPn5bWl-fC2u8-Xlhfko_gBVoqNL
CODEN MRMEEN
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25765
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database

MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2184
ExternalDocumentID 4022848831
26059232
MRM25765
ark_67375_WNG_VJ6T4GQP_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Propter Homines Foundation
– fundername: Carigest (Geneva, Switzerland), representing an anonymous donor
– fundername: Nano‐Tera
– fundername: Maiores Foundation
– fundername: Foundation Fürstlicher Kommerzienrat Guido Feger
– fundername: Kurt and Senta Herrmann Foundation
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AGHNM
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-i3855-e2eec704ddd262a07ceb5a10a79949b200c87cfefc2d9803b2b5c1903d27569f3
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Thu Jul 10 23:11:47 EDT 2025
Fri Jul 11 13:11:14 EDT 2025
Fri Jul 25 12:32:41 EDT 2025
Thu Apr 03 07:08:03 EDT 2025
Wed Jan 22 16:38:34 EST 2025
Wed Oct 30 09:52:13 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords abdominal
least-squares
segmented
intravoxel-incoherent-motion
Bayesian
algorithm
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3855-e2eec704ddd262a07ceb5a10a79949b200c87cfefc2d9803b2b5c1903d27569f3
Notes Propter Homines Foundation
ark:/67375/WNG-VJ6T4GQP-B
Maiores Foundation
Kurt and Senta Herrmann Foundation
Foundation Fürstlicher Kommerzienrat Guido Feger
Carigest (Geneva, Switzerland), representing an anonymous donor
Nano-Tera
istex:2503B223388E759AD59929148B04C69E5AB122B2
ArticleID:MRM25765
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25765
PMID 26059232
PQID 1781093305
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_1787971176
proquest_miscellaneous_1781533333
proquest_journals_1781093305
pubmed_primary_26059232
wiley_primary_10_1002_mrm_25765_MRM25765
istex_primary_ark_67375_WNG_VJ6T4GQP_B
PublicationCentury 2000
PublicationDate 2016-05
May 2016
2016-May
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013;23:428-434.
Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 2014;103:323-333.
Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 2011;259:25-38.
Dyvorne HA, Galea N, Nevers T, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters-a pilot study. Radiology 2013;266:920-929.
Wittsack HJ, Lanzman RS, Mathys C, Janssen H, Mödder U, Blondin D. Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 2010;64:616-622.
Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 2011;46:285-291.
Thoeny HC, Binser T, Roth B, Kessler TM, Vermathen P. Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 2009;252:721-728.
Döpfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29:1053-1058.
Jerome NP, Orton MR, d'Arcy JA, Collins DJ, Koh DM, Leach MO. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: effect on ADC and IVIM statistics. J Magn Reson Imaging 2014;39:235-240.
Donati OF, Afaq A, Vargas HA, Mazaheri Y, Zheng J, Moskowitz CS, Hricak H, Akin O. Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score. Clin Cancer Res 2014;20:3705-3711.
Byrd RH, Schnabel RB, Shultz GA. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math Program 1988;40:247-263.
Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 2014;71:411-420.
Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407.
Joo I, Lee JM, Yoon JH, Jang JJ, Han JK, Choi BI. Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion-weighted MR imaging-an experimental study in a rabbit model. Radiology 2014;270:131-140.
Ahn CB, Lee SY, Nalcioglu O, Cho ZH. The effects of random directional distributed flow in nuclear magnetic resonance imaging. Med Phys 1987;14:43-48.
Sigmund EE, Vivier PH, Sui D, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 2012;263:758-769.
Sijbers J, Poot D, den Dekker AJ, Pintjens W. Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Phys Med Biol 2007;52:1335-1348.
King MD, van Bruggen N, Busza AL, Houseman J, Williams SR, Gadian DG. Perfusion and diffusion MR imaging. Magn Reson Med 1992;24:288-301.
Neil JJ, Bretthorst GL. On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 1993;29:642-647.
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505.
Moré J, Sorensen D. Computing a trust region step. SIAM J Sci Stat Comput 1983;3:553-572.
Kwee TC, Takahara T, Koh DM, Nievelstein RAJ, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008;28:1141-1148.
Donati OF, Chong D, Nanz D, Boss A, Froehlich JM, Andres E, Seifert B, Thoeny HC. Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2014;270:454-463.
Bretthorst GL, Hutton WC, Garbow JR, Ackerman JJH. Exponential parameter estimation (in NMR) using Bayesian probability theory. Concepts Magn Reson Part A 2005;27A:55-63.
Freiman M, Voss SD, Mulkern RV, Perez-Rossello JM, Callahan MJ, Warfield SK. In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Med Phys 2012;39:4832-4839.
Neal RM. Slice sampling. Ann Stat 2003;31:705-767.
Heusch P, Wittsack HJ, Pentang G, Buchbender C, Miese F, Schek J, Kröpil P, Antoch G, Lanzman RS. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiol 2013;54:1210-1217.
Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010;64:1580-1585.
Luciani A, Vignaud A, Cavet M, Nhieu JTV, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 2008;249:891-899.
Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 2012;265:96-103.
Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014;270:444-453.
Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168.
Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31:589-600.
Wurnig MC, Donati OF, Ulbrich E, Filli L, Kenkel D, Thoeny HC, Boss A. Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 2015;74:1414-1422.
Mazaheri Y, Afaq A, Rowe DB, Lu Y, Shukla-Dave A, Grover J. Diffusion-weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling. J Comput Assist Tomogr 2012;36:695-703.
Branch MA, Coleman TF, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 1999;21:1-23.
Lemke A, Laun FB, Klauss M, Re TJ, Simon D, Delorme S, Schad LR, Stieltjes B. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 2009;44:769-775.
Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431-441.
Pekar J, Moonen CT, van Zijl PC. On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 1992;23:122-129.
Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385.
Thoeny HC, Zumstein D, Simon-Zoula S, Eisenberger U, De Keyzer F, Hofmann L, Vock P, Boesch C, Frey FJ, Vermathen P. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006;241:812-821.
Shinmoto H, Tamura C, Soga S, Shiomi E, Yoshihara N, Kaji T, Mulkern RV. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 2012;199:W496-W500.
2011; 259
1987; 14
2009; 44
2010; 31
2012; 263
2012; 265
1993; 29
1983; 3
2013; 23
2015; 74
2013; 266
1988; 168
2008; 249
1999; 21
2005; 27A
2012; 39
2014; 270
2009; 252
2007; 52
2012; 36
2003; 31
2014; 20
1999
2010; 64
2012; 199
1963; 11
2013; 54
1986; 161
1944; 2
2008; 28
2006; 241
2011; 46
1992; 24
2015
1988; 40
2013
2014; 39
2011; 29
1992; 23
2014; 71
2014; 103
2007; 26
References_xml – reference: Kwee TC, Takahara T, Koh DM, Nievelstein RAJ, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008;28:1141-1148.
– reference: Shinmoto H, Tamura C, Soga S, Shiomi E, Yoshihara N, Kaji T, Mulkern RV. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 2012;199:W496-W500.
– reference: Byrd RH, Schnabel RB, Shultz GA. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math Program 1988;40:247-263.
– reference: Wurnig MC, Donati OF, Ulbrich E, Filli L, Kenkel D, Thoeny HC, Boss A. Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 2015;74:1414-1422.
– reference: Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010;64:1580-1585.
– reference: Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31:589-600.
– reference: Thoeny HC, Binser T, Roth B, Kessler TM, Vermathen P. Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 2009;252:721-728.
– reference: Neal RM. Slice sampling. Ann Stat 2003;31:705-767.
– reference: Moré J, Sorensen D. Computing a trust region step. SIAM J Sci Stat Comput 1983;3:553-572.
– reference: Bretthorst GL, Hutton WC, Garbow JR, Ackerman JJH. Exponential parameter estimation (in NMR) using Bayesian probability theory. Concepts Magn Reson Part A 2005;27A:55-63.
– reference: Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385.
– reference: Branch MA, Coleman TF, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 1999;21:1-23.
– reference: Sigmund EE, Vivier PH, Sui D, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 2012;263:758-769.
– reference: Pekar J, Moonen CT, van Zijl PC. On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 1992;23:122-129.
– reference: Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 2014;71:411-420.
– reference: Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505.
– reference: Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431-441.
– reference: Dyvorne HA, Galea N, Nevers T, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters-a pilot study. Radiology 2013;266:920-929.
– reference: Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 2011;259:25-38.
– reference: Ahn CB, Lee SY, Nalcioglu O, Cho ZH. The effects of random directional distributed flow in nuclear magnetic resonance imaging. Med Phys 1987;14:43-48.
– reference: Thoeny HC, Zumstein D, Simon-Zoula S, Eisenberger U, De Keyzer F, Hofmann L, Vock P, Boesch C, Frey FJ, Vermathen P. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006;241:812-821.
– reference: Freiman M, Voss SD, Mulkern RV, Perez-Rossello JM, Callahan MJ, Warfield SK. In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Med Phys 2012;39:4832-4839.
– reference: Heusch P, Wittsack HJ, Pentang G, Buchbender C, Miese F, Schek J, Kröpil P, Antoch G, Lanzman RS. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiol 2013;54:1210-1217.
– reference: King MD, van Bruggen N, Busza AL, Houseman J, Williams SR, Gadian DG. Perfusion and diffusion MR imaging. Magn Reson Med 1992;24:288-301.
– reference: Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013;23:428-434.
– reference: Lemke A, Laun FB, Klauss M, Re TJ, Simon D, Delorme S, Schad LR, Stieltjes B. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 2009;44:769-775.
– reference: Joo I, Lee JM, Yoon JH, Jang JJ, Han JK, Choi BI. Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion-weighted MR imaging-an experimental study in a rabbit model. Radiology 2014;270:131-140.
– reference: Jerome NP, Orton MR, d'Arcy JA, Collins DJ, Koh DM, Leach MO. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: effect on ADC and IVIM statistics. J Magn Reson Imaging 2014;39:235-240.
– reference: Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 2014;103:323-333.
– reference: Luciani A, Vignaud A, Cavet M, Nhieu JTV, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 2008;249:891-899.
– reference: Wittsack HJ, Lanzman RS, Mathys C, Janssen H, Mödder U, Blondin D. Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 2010;64:616-622.
– reference: Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014;270:444-453.
– reference: Neil JJ, Bretthorst GL. On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 1993;29:642-647.
– reference: Donati OF, Chong D, Nanz D, Boss A, Froehlich JM, Andres E, Seifert B, Thoeny HC. Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2014;270:454-463.
– reference: Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168.
– reference: Mazaheri Y, Afaq A, Rowe DB, Lu Y, Shukla-Dave A, Grover J. Diffusion-weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling. J Comput Assist Tomogr 2012;36:695-703.
– reference: Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407.
– reference: Sijbers J, Poot D, den Dekker AJ, Pintjens W. Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Phys Med Biol 2007;52:1335-1348.
– reference: Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 2012;265:96-103.
– reference: Döpfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29:1053-1058.
– reference: Donati OF, Afaq A, Vargas HA, Mazaheri Y, Zheng J, Moskowitz CS, Hricak H, Akin O. Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score. Clin Cancer Res 2014;20:3705-3711.
– reference: Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 2011;46:285-291.
– volume: 168
  start-page: 497
  year: 1988
  end-page: 505
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 3
  start-page: 553
  year: 1983
  end-page: 572
  article-title: Computing a trust region step
  publication-title: SIAM J Sci Stat Comput
– volume: 259
  start-page: 25
  year: 2011
  end-page: 38
  article-title: Diffusion‐weighted MR imaging of native and transplanted kidneys
  publication-title: Radiology
– volume: 64
  start-page: 616
  year: 2010
  end-page: 622
  article-title: Statistical evaluation of diffusion‐weighted imaging of the human kidney
  publication-title: Magn Reson Med
– volume: 71
  start-page: 411
  year: 2014
  end-page: 420
  article-title: Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling
  publication-title: Magn Reson Med
– volume: 39
  start-page: 4832
  year: 2012
  end-page: 4839
  article-title: In vivo assessment of optimal b‐value range for perfusion‐insensitive apparent diffusion coefficient imaging
  publication-title: Med Phys
– start-page: 179
  year: 1999
  end-page: 189
– volume: 44
  start-page: 769
  year: 2009
  end-page: 775
  article-title: Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b‐values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters
  publication-title: Invest Radiol
– volume: 64
  start-page: 1580
  year: 2010
  end-page: 1585
  article-title: An in vivo verification of the intravoxel incoherent motion effect in diffusion‐weighted imaging of the abdomen
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1141
  year: 2008
  end-page: 1148
  article-title: Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free‐breathing diffusion‐weighted MR imaging of the liver
  publication-title: J Magn Reson Imaging
– volume: 270
  start-page: 444
  year: 2014
  end-page: 453
  article-title: Intravoxel incoherent motion diffusion‐weighted MR imaging for characterization of focal pancreatic lesions
  publication-title: Radiology
– volume: 46
  start-page: 285
  year: 2011
  end-page: 291
  article-title: Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience
  publication-title: Invest Radiol
– volume: 23
  start-page: 428
  year: 2013
  end-page: 434
  article-title: Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion‐weighted MR imaging in normal liver and metastases
  publication-title: Eur Radiol
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An algorithm for least‐squares estimation of nonlinear parameters
  publication-title: J Soc Ind Appl Math
– volume: 31
  start-page: 705
  year: 2003
  end-page: 767
  article-title: Slice sampling
  publication-title: Ann Stat
– volume: 36
  start-page: 695
  year: 2012
  end-page: 703
  article-title: Diffusion‐weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling
  publication-title: J Comput Assist Tomogr
– volume: 263
  start-page: 758
  year: 2012
  end-page: 769
  article-title: Intravoxel incoherent motion and diffusion‐tensor imaging in renal tissue under hydration and furosemide flow challenges
  publication-title: Radiology
– volume: 270
  start-page: 131
  year: 2014
  end-page: 140
  article-title: Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion‐weighted MR imaging–an experimental study in a rabbit model
  publication-title: Radiology
– volume: 266
  start-page: 920
  year: 2013
  end-page: 929
  article-title: Diffusion‐weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters–a pilot study
  publication-title: Radiology
– volume: 265
  start-page: 96
  year: 2012
  end-page: 103
  article-title: Intravoxel incoherent motion diffusion‐weighted imaging in nonalcoholic fatty liver disease: a 3.0‐T MR study
  publication-title: Radiology
– volume: 54
  start-page: 1210
  year: 2013
  end-page: 1217
  article-title: Biexponential analysis of diffusion‐weighted imaging: comparison of three different calculation methods in transplanted kidneys
  publication-title: Acta Radiol
– volume: 21
  start-page: 1
  year: 1999
  end-page: 23
  article-title: A subspace, interior, and conjugate gradient method for large‐scale bound‐constrained minimization problems
  publication-title: SIAM J Sci Comput
– volume: 39
  start-page: 235
  year: 2014
  end-page: 240
  article-title: Comparison of free‐breathing with navigator‐controlled acquisition regimes in abdominal diffusion‐weighted magnetic resonance images: effect on ADC and IVIM statistics
  publication-title: J Magn Reson Imaging
– volume: 52
  start-page: 1335
  year: 2007
  end-page: 1348
  article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image
  publication-title: Phys Med Biol
– volume: 74
  start-page: 1414
  year: 2015
  end-page: 1422
  article-title: Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm
  publication-title: Magn Reson Med
– volume: 249
  start-page: 891
  year: 2008
  end-page: 899
  article-title: Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study
  publication-title: Radiology
– volume: 26
  start-page: 375
  year: 2007
  end-page: 385
  article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 589
  year: 2010
  end-page: 600
  article-title: Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast‐enhanced MRI alone and in combination: preliminary experience
  publication-title: J Magn Reson Imaging
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  article-title: A method for the solution of certain non‐linear problems in least squares
  publication-title: Q Appl Math
– volume: 199
  start-page: W496
  year: 2012
  end-page: W500
  article-title: An intravoxel incoherent motion diffusion‐weighted imaging study of prostate cancer
  publication-title: AJR Am J Roentgenol
– volume: 14
  start-page: 43
  year: 1987
  end-page: 48
  article-title: The effects of random directional distributed flow in nuclear magnetic resonance imaging
  publication-title: Med Phys
– volume: 20
  start-page: 3705
  year: 2014
  end-page: 3711
  article-title: Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score
  publication-title: Clin Cancer Res
– volume: 29
  start-page: 642
  year: 1993
  end-page: 647
  article-title: On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments
  publication-title: Magn Reson Med
– volume: 24
  start-page: 288
  year: 1992
  end-page: 301
  article-title: Perfusion and diffusion MR imaging
  publication-title: Magn Reson Med
– volume: 23
  start-page: 122
  year: 1992
  end-page: 129
  article-title: On the precision of diffusion/perfusion imaging by gradient sensitization
  publication-title: Magn Reson Med
– volume: 252
  start-page: 721
  year: 2009
  end-page: 728
  article-title: Noninvasive assessment of acute ureteral obstruction with diffusion‐weighted MR imaging: a prospective study
  publication-title: Radiology
– volume: 241
  start-page: 812
  year: 2006
  end-page: 821
  article-title: Functional evaluation of transplanted kidneys with diffusion‐weighted and BOLD MR imaging: initial experience
  publication-title: Radiology
– volume: 29
  start-page: 1053
  year: 2011
  end-page: 1058
  article-title: Investigation of prostate cancer using diffusion‐weighted intravoxel incoherent motion imaging
  publication-title: Magn Reson Imaging
– volume: 161
  start-page: 401
  year: 1986
  end-page: 407
  article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– volume: 103
  start-page: 323
  year: 2014
  end-page: 333
  article-title: Optimization of a free water elimination two‐compartment model for diffusion tensor imaging
  publication-title: Neuroimage
– volume: 270
  start-page: 454
  year: 2014
  end-page: 463
  article-title: Diffusion‐weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients
  publication-title: Radiology
– year: 2015
– volume: 27A
  start-page: 55
  year: 2005
  end-page: 63
  article-title: Exponential parameter estimation (in NMR) using Bayesian probability theory
  publication-title: Concepts Magn Reson Part A
– volume: 40
  start-page: 247
  year: 1988
  end-page: 263
  article-title: Approximate solution of the trust region problem by minimization over two‐dimensional subspaces
  publication-title: Math Program
– year: 2013
SSID ssj0009974
Score 2.4814208
Snippet Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained,...
To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained,...
Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp, Segmented-Unconstrained,...
PURPOSETo compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained,...
Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-D sub(p),...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2175
SubjectTerms Abdomen - diagnostic imaging
abdominal
Adult
algorithm
Algorithms
Bayes Theorem
Bayesian
Computer Simulation
Diffusion Magnetic Resonance Imaging
Healthy Volunteers
Humans
Image Interpretation, Computer-Assisted - methods
intravoxel-incoherent-motion
Kidney Cortex - diagnostic imaging
Kidney Medulla - diagnostic imaging
least-squares
Liver - diagnostic imaging
Male
Middle Aged
Motion
Pancreas - diagnostic imaging
Probability
Reproducibility of Results
segmented
Signal-To-Noise Ratio
Spleen - diagnostic imaging
Title Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs
URI https://api.istex.fr/ark:/67375/WNG-VJ6T4GQP-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25765
https://www.ncbi.nlm.nih.gov/pubmed/26059232
https://www.proquest.com/docview/1781093305
https://www.proquest.com/docview/1781533333
https://www.proquest.com/docview/1787971176
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LguKLl_Wy1VUiiPjS2UmbS4NPKu4Nuuiwq_sghFy1rNMOnSkuPvkT_I3-EpO000UREfvUkqSkPee0X07O-Q4ATzhlFFuCUoYcTTE3OpXYL1aoI4VHJ8Tlech3Lo_pwSk-OiNnG-D5Ohem54cYHW7BMuL3Ohi4VMvdS9LQeTufBLQcEsxDrFYARLNL6ijOewZmhsN3huM1q9A02x1HekAa3uXFn9Dlr2A1_m32boAP63n2QSbnk26lJvrrbxSO__kgN8H1AYXCF73a3AIbtt4CV8thn30LXImBoXp5G7SHMY0SNg56qAi9RPVQ8AvKzx-btlp9mkN_oSp7sWjqEHvkb-yqGE4dRoUKLF1wyf349v1L9MNaA8vZIaxq2C0WtoVSmSaWFoOxxNTyDjjde33y6iAd6jSkVV4QktrMWs2m2BiT0UxOmbaKSDSVjHPMlbdDXTDtrNOZ4cU0V5ki2gOR3ATuee7yu2Cz9jPcBtB6SVlMkSHIYZU56Rd4muVIMuOsV_oEPI0SE4uei0PI9jyEpjEi3h_vi3dH9ATvv30jXiZgZy1SMVjlUiBWoOjBIQl4PDZ7ewqbJLK2Tdf38RDYH3_twzhDiNEE3OvVZZxQWB960Jwl4FkU-tjQ80NnwotbRHGLclbGk_v_3vUBuOYRG-0jLnfA5qrt7EOPilbqUVT_n5tNCZI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgVKoICREOKSbR52HEtcANHulmYFqy30gizHsUtUNrvKbkTFiZ_Ab-SXYDvZVCCEEDklsh3ZGY_zzXj8DcATltAEKxL6NNSJj1khfYGNsZJokhp0QnQc2_PO2TgZHuGDY3K8Ac_XZ2Fafoje4WY1w63XVsGtQ3r3nDV0Vs8GFi6TC3DRZvR2BtXknDyKsZaDmWK70jC85hUKot2-qYGk9mue_Qlf_gpX3f9m7zp8XPe0DTM5HTSrfCC__kbi-L9DuQHXOiCKXrQz5yZsqGoLLmfdVvsWXHKxoXJ5C-qRO0mJ5hoZtIiMUGWX8wuJzyfzulx9miHzkJfqbDGvbPiRebEuXUS1bWWTsDTWK_fj2_cvzhWrCpRNRqisULNYqBqJvJi77GLIZZla3oajvdfTV0O_S9Xgl3FKiK8ipSQNcFEUURKJgEqVExEGgjKGWW5UUaZUaqVlVLA0iPMoJ9Jgkbiw9PNMx3dgszI9vAtIGVEpnIQFCTXOIy2MjSdpHApaaGXmvQdPncj4oqXj4KI-tdFplPAP433-_iCZ4v13b_lLD3bWMuWdYi55SNPQOXGIB4_7YqNSdp9EVGretHUMCjbXX-tQRsOQJh5st_Ol75A1EQ1ujjx45qTeF7QU0RE34uZO3DybZO7m3r9XfQRXhtPskB-Oxm_uw1UD4JI2AHMHNld1ox4YkLTKHzpd-AkehA2t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMqjgQJGQohLtnn4EYsTULbdwq7KqoUekKzEjxKVzUbZXVFx4ifwG_kl2M5uKhBCiJwS2Y7szIzzeTz-BuAJp4xiTeKQxYaGmCsZ5tguVqghmUUnxKSpO-88HNH9Y3xwQk7W4PnqLEzLD9E53Jxl-PnaGXitzM4FaeikmfQcWiaX4DKmUeZUend8wR3FeUvBzLCbaDhe0QpFyU7X1CJS9zHP_wQvf0Wr_nfTvw4fVx1to0zOeot50ZNff-Nw_M-R3IBrSxiKXrR6cxPWdLUJG8PlRvsmXPGRoXJ2C5qBP0eJpgZZrIisSOUy4xfKP59Om3L-aYLsQ1Hq83paueAj-2JT-nhq18qlYFk4n9yPb9-_eEesVmg4HqCyQou61g3KCzX1ucWQzzE1uw3H_ddHr_bDZaKGsEwzQkKdaC1ZhJVSCU3yiEldkDyOcsY55oU1RJkxabSRieJZlBZJQaRFIqly5PPcpHdgvbI93AKkraQ0prEiscFFYnK7wpMsjXOmjLZaH8BTLzFRt2QcIm_OXGwaI-LDaE-8P6BHeO_doXgZwPZKpGJpljMRsyz2LhwSwOOu2BqU2yXJKz1dtHUsBrbXX-swzuKY0QDuturSdcgtEC1qTgJ45oXeFbQE0Ymw4hZe3GI4Hvqbe_9e9RFsHO72xdvB6M19uGrRG22jL7dhfd4s9AOLkObFQ28JPwEP_Qxl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+the+calculation+algorithm+on+biexponential+fitting+of+diffusion-weighted+MRI+in+upper+abdominal+organs&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Barbieri%2C+Sebastiano&rft.au=Donati%2C+Olivio+F.&rft.au=Froehlich%2C+Johannes+M.&rft.au=Thoeny%2C+Harriet+C.&rft.date=2016-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=5&rft.spage=2175&rft.epage=2184&rft_id=info:doi/10.1002%2Fmrm.25765&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VJ6T4GQP_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon