Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs
Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained, Segmented‐Constrained, and Bayesian‐Probability) for computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Met...
Saved in:
Published in | Magnetic resonance in medicine Vol. 75; no. 5; pp. 2175 - 2184 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.05.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained, Segmented‐Constrained, and Bayesian‐Probability) for computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs.
Methods
Following the acquisition of abdominal diffusion‐weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel‐incoherent‐motion‐related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter‐reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data.
Results
A Bayesian‐Probability based approach was associated with very low inter‐reader variability (average Intraclass Correlation Coefficients: 96.5–99.6%), the lowest inter‐subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt: 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4–12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp: 15.5% on average; for the pseudodiffusion coefficient Dp: 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions.
Conclusion
The Bayesian‐Probability algorithm should be preferred when computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Magn Reson Med 75:2175–2184, 2016. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-D sub(p), Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Methods Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. Results A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient D sub(t): 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction F sub(p): 15.5% on average; for the pseudodiffusion coefficient D sub(p): 25.8% on average), and the highest precision and accuracy. Results differed significantly (P<0.05) across algorithms in all anatomical regions. Conclusion The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Magn Reson Med 75:2175-2184, 2016. Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained, Segmented‐Constrained, and Bayesian‐Probability) for computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Methods Following the acquisition of abdominal diffusion‐weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel‐incoherent‐motion‐related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter‐reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. Results A Bayesian‐Probability based approach was associated with very low inter‐reader variability (average Intraclass Correlation Coefficients: 96.5–99.6%), the lowest inter‐subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt: 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4–12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp: 15.5% on average; for the pseudodiffusion coefficient Dp: 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions. Conclusion The Bayesian‐Probability algorithm should be preferred when computing intravoxel‐incoherent‐motion‐related parameters in upper abdominal organs. Magn Reson Med 75:2175–2184, 2016. © 2015 Wiley Periodicals, Inc. PURPOSETo compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs.METHODSFollowing the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data.RESULTSA Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt : 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp : 15.5% on average; for the pseudodiffusion coefficient Dp : 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions.CONCLUSIONThe Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt : 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp : 15.5% on average; for the pseudodiffusion coefficient Dp : 25.8% on average), and the highest precision and accuracy. Results differed significantly (P < 0.05) across algorithms in all anatomical regions. The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp, Segmented-Unconstrained, Segmented-Constrained, and Bayesian-Probability) for computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Methods Following the acquisition of abdominal diffusion-weighted magnetic resonance images of 10 healthy men, six distinct algorithms were employed to compute intravoxel-incoherent-motion-related parameters in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla. Algorithms were evaluated regarding inter-reader and intersubject variability. Comparability of results was assessed by analyses of variance. The algorithms' precision and accuracy were investigated on simulated data. Results A Bayesian-Probability based approach was associated with very low inter-reader variability (average Intraclass Correlation Coefficients: 96.5-99.6%), the lowest inter-subject variability (Coefficients of Variation [CV] for the pure diffusion coefficient Dt: 3.8% in the renal medulla, 6.6% in the renal cortex, 10.4-12.1% in the left and right liver lobe, 15.3% in the spleen, 15.8% in the pancreas; for the perfusion fraction Fp: 15.5% on average; for the pseudodiffusion coefficient Dp: 25.8% on average), and the highest precision and accuracy. Results differed significantly (P<0.05) across algorithms in all anatomical regions. Conclusion The Bayesian-Probability algorithm should be preferred when computing intravoxel-incoherent-motion-related parameters in upper abdominal organs. Magn Reson Med 75:2175-2184, 2016. © 2015 Wiley Periodicals, Inc. |
Author | Donati, Olivio F. Thoeny, Harriet C. Froehlich, Johannes M. Barbieri, Sebastiano |
Author_xml | – sequence: 1 givenname: Sebastiano surname: Barbieri fullname: Barbieri, Sebastiano organization: Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland – sequence: 2 givenname: Olivio F. surname: Donati fullname: Donati, Olivio F. organization: Department of Diagnostic and Interventional Radiology, University Hospital, Zürich, Switzerland – sequence: 3 givenname: Johannes M. surname: Froehlich fullname: Froehlich, Johannes M. organization: Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland – sequence: 4 givenname: Harriet C. surname: Thoeny fullname: Thoeny, Harriet C. email: Correspondence address: Correspondence to: Harriet C. Thoeny, MD; Inselspital, Freiburgstrasse 10, CH-3010 Bern, Switzerland. Harriet.Thoeny@insel.ch organization: Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26059232$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLdbDrwAssSFS9qxHcfrI1SwLOpCW7VwtBxnsuuS2CFx1PbtSXdLD5yYi8fy941l_0fkIMSAhLxhcMIA-GnbtydcqkK-IDMmOc-41PkBmYHKIRNM54fkaBhuAUBrlb8ih7wAqbngM9Kt2s66RGNN0xaps40bG5t8DNQ2m9j7tG3ptCk93nfTrSF529Dap-TD5tGqfF2Pw8Rnd-g324QVXV-tqA907DrsqS2r2PowSbHf2DAck5e1bQZ8_bTOyc3nT9dnX7Lz78vV2YfzzIuFlBlyRKcgr6qKF9yCclhKy8AqrXNdcgC3UK7G2vFKL0CUvJSOaRAVV7LQtZiT9_u5XR9_jzgk0_rBYdPYgHEcDFMLpRVjqvgflEmxqzl59w96G8d-et2eAi0EyIl6-0SNZYuV6Xrf2v7B_P32CTjdA3e-wYfncwbmMU8z5Wl2eZr11XrXTEa2N_yQ8P7ZsP0vUyihpPn5bWl-fC2u8-Xlhfko_gBVoqNL |
CODEN | MRMEEN |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25765 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2184 |
ExternalDocumentID | 4022848831 26059232 MRM25765 ark_67375_WNG_VJ6T4GQP_B |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Propter Homines Foundation – fundername: Carigest (Geneva, Switzerland), representing an anonymous donor – fundername: Nano‐Tera – fundername: Maiores Foundation – fundername: Foundation Fürstlicher Kommerzienrat Guido Feger – fundername: Kurt and Senta Herrmann Foundation |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AGHNM CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-i3855-e2eec704ddd262a07ceb5a10a79949b200c87cfefc2d9803b2b5c1903d27569f3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Thu Jul 10 23:11:47 EDT 2025 Fri Jul 11 13:11:14 EDT 2025 Fri Jul 25 12:32:41 EDT 2025 Thu Apr 03 07:08:03 EDT 2025 Wed Jan 22 16:38:34 EST 2025 Wed Oct 30 09:52:13 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | abdominal least-squares segmented intravoxel-incoherent-motion Bayesian algorithm |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3855-e2eec704ddd262a07ceb5a10a79949b200c87cfefc2d9803b2b5c1903d27569f3 |
Notes | Propter Homines Foundation ark:/67375/WNG-VJ6T4GQP-B Maiores Foundation Kurt and Senta Herrmann Foundation Foundation Fürstlicher Kommerzienrat Guido Feger Carigest (Geneva, Switzerland), representing an anonymous donor Nano-Tera istex:2503B223388E759AD59929148B04C69E5AB122B2 ArticleID:MRM25765 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25765 |
PMID | 26059232 |
PQID | 1781093305 |
PQPubID | 1016391 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1787971176 proquest_miscellaneous_1781533333 proquest_journals_1781093305 pubmed_primary_26059232 wiley_primary_10_1002_mrm_25765_MRM25765 istex_primary_ark_67375_WNG_VJ6T4GQP_B |
PublicationCentury | 2000 |
PublicationDate | 2016-05 May 2016 2016-May 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013;23:428-434. Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 2014;103:323-333. Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 2011;259:25-38. Dyvorne HA, Galea N, Nevers T, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters-a pilot study. Radiology 2013;266:920-929. Wittsack HJ, Lanzman RS, Mathys C, Janssen H, Mödder U, Blondin D. Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 2010;64:616-622. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 2011;46:285-291. Thoeny HC, Binser T, Roth B, Kessler TM, Vermathen P. Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 2009;252:721-728. Döpfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29:1053-1058. Jerome NP, Orton MR, d'Arcy JA, Collins DJ, Koh DM, Leach MO. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: effect on ADC and IVIM statistics. J Magn Reson Imaging 2014;39:235-240. Donati OF, Afaq A, Vargas HA, Mazaheri Y, Zheng J, Moskowitz CS, Hricak H, Akin O. Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score. Clin Cancer Res 2014;20:3705-3711. Byrd RH, Schnabel RB, Shultz GA. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math Program 1988;40:247-263. Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 2014;71:411-420. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407. Joo I, Lee JM, Yoon JH, Jang JJ, Han JK, Choi BI. Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion-weighted MR imaging-an experimental study in a rabbit model. Radiology 2014;270:131-140. Ahn CB, Lee SY, Nalcioglu O, Cho ZH. The effects of random directional distributed flow in nuclear magnetic resonance imaging. Med Phys 1987;14:43-48. Sigmund EE, Vivier PH, Sui D, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 2012;263:758-769. Sijbers J, Poot D, den Dekker AJ, Pintjens W. Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Phys Med Biol 2007;52:1335-1348. King MD, van Bruggen N, Busza AL, Houseman J, Williams SR, Gadian DG. Perfusion and diffusion MR imaging. Magn Reson Med 1992;24:288-301. Neil JJ, Bretthorst GL. On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 1993;29:642-647. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505. Moré J, Sorensen D. Computing a trust region step. SIAM J Sci Stat Comput 1983;3:553-572. Kwee TC, Takahara T, Koh DM, Nievelstein RAJ, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008;28:1141-1148. Donati OF, Chong D, Nanz D, Boss A, Froehlich JM, Andres E, Seifert B, Thoeny HC. Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2014;270:454-463. Bretthorst GL, Hutton WC, Garbow JR, Ackerman JJH. Exponential parameter estimation (in NMR) using Bayesian probability theory. Concepts Magn Reson Part A 2005;27A:55-63. Freiman M, Voss SD, Mulkern RV, Perez-Rossello JM, Callahan MJ, Warfield SK. In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Med Phys 2012;39:4832-4839. Neal RM. Slice sampling. Ann Stat 2003;31:705-767. Heusch P, Wittsack HJ, Pentang G, Buchbender C, Miese F, Schek J, Kröpil P, Antoch G, Lanzman RS. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiol 2013;54:1210-1217. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010;64:1580-1585. Luciani A, Vignaud A, Cavet M, Nhieu JTV, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 2008;249:891-899. Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 2012;265:96-103. Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014;270:444-453. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31:589-600. Wurnig MC, Donati OF, Ulbrich E, Filli L, Kenkel D, Thoeny HC, Boss A. Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 2015;74:1414-1422. Mazaheri Y, Afaq A, Rowe DB, Lu Y, Shukla-Dave A, Grover J. Diffusion-weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling. J Comput Assist Tomogr 2012;36:695-703. Branch MA, Coleman TF, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 1999;21:1-23. Lemke A, Laun FB, Klauss M, Re TJ, Simon D, Delorme S, Schad LR, Stieltjes B. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 2009;44:769-775. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431-441. Pekar J, Moonen CT, van Zijl PC. On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 1992;23:122-129. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385. Thoeny HC, Zumstein D, Simon-Zoula S, Eisenberger U, De Keyzer F, Hofmann L, Vock P, Boesch C, Frey FJ, Vermathen P. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006;241:812-821. Shinmoto H, Tamura C, Soga S, Shiomi E, Yoshihara N, Kaji T, Mulkern RV. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 2012;199:W496-W500. 2011; 259 1987; 14 2009; 44 2010; 31 2012; 263 2012; 265 1993; 29 1983; 3 2013; 23 2015; 74 2013; 266 1988; 168 2008; 249 1999; 21 2005; 27A 2012; 39 2014; 270 2009; 252 2007; 52 2012; 36 2003; 31 2014; 20 1999 2010; 64 2012; 199 1963; 11 2013; 54 1986; 161 1944; 2 2008; 28 2006; 241 2011; 46 1992; 24 2015 1988; 40 2013 2014; 39 2011; 29 1992; 23 2014; 71 2014; 103 2007; 26 |
References_xml | – reference: Kwee TC, Takahara T, Koh DM, Nievelstein RAJ, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008;28:1141-1148. – reference: Shinmoto H, Tamura C, Soga S, Shiomi E, Yoshihara N, Kaji T, Mulkern RV. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 2012;199:W496-W500. – reference: Byrd RH, Schnabel RB, Shultz GA. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math Program 1988;40:247-263. – reference: Wurnig MC, Donati OF, Ulbrich E, Filli L, Kenkel D, Thoeny HC, Boss A. Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 2015;74:1414-1422. – reference: Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010;64:1580-1585. – reference: Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31:589-600. – reference: Thoeny HC, Binser T, Roth B, Kessler TM, Vermathen P. Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 2009;252:721-728. – reference: Neal RM. Slice sampling. Ann Stat 2003;31:705-767. – reference: Moré J, Sorensen D. Computing a trust region step. SIAM J Sci Stat Comput 1983;3:553-572. – reference: Bretthorst GL, Hutton WC, Garbow JR, Ackerman JJH. Exponential parameter estimation (in NMR) using Bayesian probability theory. Concepts Magn Reson Part A 2005;27A:55-63. – reference: Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385. – reference: Branch MA, Coleman TF, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 1999;21:1-23. – reference: Sigmund EE, Vivier PH, Sui D, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 2012;263:758-769. – reference: Pekar J, Moonen CT, van Zijl PC. On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 1992;23:122-129. – reference: Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 2014;71:411-420. – reference: Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505. – reference: Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431-441. – reference: Dyvorne HA, Galea N, Nevers T, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters-a pilot study. Radiology 2013;266:920-929. – reference: Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 2011;259:25-38. – reference: Ahn CB, Lee SY, Nalcioglu O, Cho ZH. The effects of random directional distributed flow in nuclear magnetic resonance imaging. Med Phys 1987;14:43-48. – reference: Thoeny HC, Zumstein D, Simon-Zoula S, Eisenberger U, De Keyzer F, Hofmann L, Vock P, Boesch C, Frey FJ, Vermathen P. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006;241:812-821. – reference: Freiman M, Voss SD, Mulkern RV, Perez-Rossello JM, Callahan MJ, Warfield SK. In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Med Phys 2012;39:4832-4839. – reference: Heusch P, Wittsack HJ, Pentang G, Buchbender C, Miese F, Schek J, Kröpil P, Antoch G, Lanzman RS. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiol 2013;54:1210-1217. – reference: King MD, van Bruggen N, Busza AL, Houseman J, Williams SR, Gadian DG. Perfusion and diffusion MR imaging. Magn Reson Med 1992;24:288-301. – reference: Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013;23:428-434. – reference: Lemke A, Laun FB, Klauss M, Re TJ, Simon D, Delorme S, Schad LR, Stieltjes B. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 2009;44:769-775. – reference: Joo I, Lee JM, Yoon JH, Jang JJ, Han JK, Choi BI. Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion-weighted MR imaging-an experimental study in a rabbit model. Radiology 2014;270:131-140. – reference: Jerome NP, Orton MR, d'Arcy JA, Collins DJ, Koh DM, Leach MO. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: effect on ADC and IVIM statistics. J Magn Reson Imaging 2014;39:235-240. – reference: Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 2014;103:323-333. – reference: Luciani A, Vignaud A, Cavet M, Nhieu JTV, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 2008;249:891-899. – reference: Wittsack HJ, Lanzman RS, Mathys C, Janssen H, Mödder U, Blondin D. Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 2010;64:616-622. – reference: Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014;270:444-453. – reference: Neil JJ, Bretthorst GL. On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 1993;29:642-647. – reference: Donati OF, Chong D, Nanz D, Boss A, Froehlich JM, Andres E, Seifert B, Thoeny HC. Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2014;270:454-463. – reference: Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168. – reference: Mazaheri Y, Afaq A, Rowe DB, Lu Y, Shukla-Dave A, Grover J. Diffusion-weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling. J Comput Assist Tomogr 2012;36:695-703. – reference: Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407. – reference: Sijbers J, Poot D, den Dekker AJ, Pintjens W. Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Phys Med Biol 2007;52:1335-1348. – reference: Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 2012;265:96-103. – reference: Döpfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29:1053-1058. – reference: Donati OF, Afaq A, Vargas HA, Mazaheri Y, Zheng J, Moskowitz CS, Hricak H, Akin O. Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score. Clin Cancer Res 2014;20:3705-3711. – reference: Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 2011;46:285-291. – volume: 168 start-page: 497 year: 1988 end-page: 505 article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging publication-title: Radiology – volume: 3 start-page: 553 year: 1983 end-page: 572 article-title: Computing a trust region step publication-title: SIAM J Sci Stat Comput – volume: 259 start-page: 25 year: 2011 end-page: 38 article-title: Diffusion‐weighted MR imaging of native and transplanted kidneys publication-title: Radiology – volume: 64 start-page: 616 year: 2010 end-page: 622 article-title: Statistical evaluation of diffusion‐weighted imaging of the human kidney publication-title: Magn Reson Med – volume: 71 start-page: 411 year: 2014 end-page: 420 article-title: Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling publication-title: Magn Reson Med – volume: 39 start-page: 4832 year: 2012 end-page: 4839 article-title: In vivo assessment of optimal b‐value range for perfusion‐insensitive apparent diffusion coefficient imaging publication-title: Med Phys – start-page: 179 year: 1999 end-page: 189 – volume: 44 start-page: 769 year: 2009 end-page: 775 article-title: Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b‐values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters publication-title: Invest Radiol – volume: 64 start-page: 1580 year: 2010 end-page: 1585 article-title: An in vivo verification of the intravoxel incoherent motion effect in diffusion‐weighted imaging of the abdomen publication-title: Magn Reson Med – volume: 28 start-page: 1141 year: 2008 end-page: 1148 article-title: Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free‐breathing diffusion‐weighted MR imaging of the liver publication-title: J Magn Reson Imaging – volume: 270 start-page: 444 year: 2014 end-page: 453 article-title: Intravoxel incoherent motion diffusion‐weighted MR imaging for characterization of focal pancreatic lesions publication-title: Radiology – volume: 46 start-page: 285 year: 2011 end-page: 291 article-title: Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience publication-title: Invest Radiol – volume: 23 start-page: 428 year: 2013 end-page: 434 article-title: Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion‐weighted MR imaging in normal liver and metastases publication-title: Eur Radiol – volume: 11 start-page: 431 year: 1963 end-page: 441 article-title: An algorithm for least‐squares estimation of nonlinear parameters publication-title: J Soc Ind Appl Math – volume: 31 start-page: 705 year: 2003 end-page: 767 article-title: Slice sampling publication-title: Ann Stat – volume: 36 start-page: 695 year: 2012 end-page: 703 article-title: Diffusion‐weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling publication-title: J Comput Assist Tomogr – volume: 263 start-page: 758 year: 2012 end-page: 769 article-title: Intravoxel incoherent motion and diffusion‐tensor imaging in renal tissue under hydration and furosemide flow challenges publication-title: Radiology – volume: 270 start-page: 131 year: 2014 end-page: 140 article-title: Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion‐weighted MR imaging–an experimental study in a rabbit model publication-title: Radiology – volume: 266 start-page: 920 year: 2013 end-page: 929 article-title: Diffusion‐weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters–a pilot study publication-title: Radiology – volume: 265 start-page: 96 year: 2012 end-page: 103 article-title: Intravoxel incoherent motion diffusion‐weighted imaging in nonalcoholic fatty liver disease: a 3.0‐T MR study publication-title: Radiology – volume: 54 start-page: 1210 year: 2013 end-page: 1217 article-title: Biexponential analysis of diffusion‐weighted imaging: comparison of three different calculation methods in transplanted kidneys publication-title: Acta Radiol – volume: 21 start-page: 1 year: 1999 end-page: 23 article-title: A subspace, interior, and conjugate gradient method for large‐scale bound‐constrained minimization problems publication-title: SIAM J Sci Comput – volume: 39 start-page: 235 year: 2014 end-page: 240 article-title: Comparison of free‐breathing with navigator‐controlled acquisition regimes in abdominal diffusion‐weighted magnetic resonance images: effect on ADC and IVIM statistics publication-title: J Magn Reson Imaging – volume: 52 start-page: 1335 year: 2007 end-page: 1348 article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image publication-title: Phys Med Biol – volume: 74 start-page: 1414 year: 2015 end-page: 1422 article-title: Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm publication-title: Magn Reson Med – volume: 249 start-page: 891 year: 2008 end-page: 899 article-title: Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study publication-title: Radiology – volume: 26 start-page: 375 year: 2007 end-page: 385 article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters publication-title: J Magn Reson Imaging – volume: 31 start-page: 589 year: 2010 end-page: 600 article-title: Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast‐enhanced MRI alone and in combination: preliminary experience publication-title: J Magn Reson Imaging – volume: 2 start-page: 164 year: 1944 end-page: 168 article-title: A method for the solution of certain non‐linear problems in least squares publication-title: Q Appl Math – volume: 199 start-page: W496 year: 2012 end-page: W500 article-title: An intravoxel incoherent motion diffusion‐weighted imaging study of prostate cancer publication-title: AJR Am J Roentgenol – volume: 14 start-page: 43 year: 1987 end-page: 48 article-title: The effects of random directional distributed flow in nuclear magnetic resonance imaging publication-title: Med Phys – volume: 20 start-page: 3705 year: 2014 end-page: 3711 article-title: Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score publication-title: Clin Cancer Res – volume: 29 start-page: 642 year: 1993 end-page: 647 article-title: On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments publication-title: Magn Reson Med – volume: 24 start-page: 288 year: 1992 end-page: 301 article-title: Perfusion and diffusion MR imaging publication-title: Magn Reson Med – volume: 23 start-page: 122 year: 1992 end-page: 129 article-title: On the precision of diffusion/perfusion imaging by gradient sensitization publication-title: Magn Reson Med – volume: 252 start-page: 721 year: 2009 end-page: 728 article-title: Noninvasive assessment of acute ureteral obstruction with diffusion‐weighted MR imaging: a prospective study publication-title: Radiology – volume: 241 start-page: 812 year: 2006 end-page: 821 article-title: Functional evaluation of transplanted kidneys with diffusion‐weighted and BOLD MR imaging: initial experience publication-title: Radiology – volume: 29 start-page: 1053 year: 2011 end-page: 1058 article-title: Investigation of prostate cancer using diffusion‐weighted intravoxel incoherent motion imaging publication-title: Magn Reson Imaging – volume: 161 start-page: 401 year: 1986 end-page: 407 article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders publication-title: Radiology – volume: 103 start-page: 323 year: 2014 end-page: 333 article-title: Optimization of a free water elimination two‐compartment model for diffusion tensor imaging publication-title: Neuroimage – volume: 270 start-page: 454 year: 2014 end-page: 463 article-title: Diffusion‐weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients publication-title: Radiology – year: 2015 – volume: 27A start-page: 55 year: 2005 end-page: 63 article-title: Exponential parameter estimation (in NMR) using Bayesian probability theory publication-title: Concepts Magn Reson Part A – volume: 40 start-page: 247 year: 1988 end-page: 263 article-title: Approximate solution of the trust region problem by minimization over two‐dimensional subspaces publication-title: Math Program – year: 2013 |
SSID | ssj0009974 |
Score | 2.4814208 |
Snippet | Purpose
To compare the variability, precision, and accuracy of six different algorithms (Levenberg–Marquardt, Trust‐Region, Fixed‐Dp, Segmented‐Unconstrained,... To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained,... Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp, Segmented-Unconstrained,... PURPOSETo compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-Dp , Segmented-Unconstrained,... Purpose To compare the variability, precision, and accuracy of six different algorithms (Levenberg-Marquardt, Trust-Region, Fixed-D sub(p),... |
SourceID | proquest pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2175 |
SubjectTerms | Abdomen - diagnostic imaging abdominal Adult algorithm Algorithms Bayes Theorem Bayesian Computer Simulation Diffusion Magnetic Resonance Imaging Healthy Volunteers Humans Image Interpretation, Computer-Assisted - methods intravoxel-incoherent-motion Kidney Cortex - diagnostic imaging Kidney Medulla - diagnostic imaging least-squares Liver - diagnostic imaging Male Middle Aged Motion Pancreas - diagnostic imaging Probability Reproducibility of Results segmented Signal-To-Noise Ratio Spleen - diagnostic imaging |
Title | Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs |
URI | https://api.istex.fr/ark:/67375/WNG-VJ6T4GQP-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25765 https://www.ncbi.nlm.nih.gov/pubmed/26059232 https://www.proquest.com/docview/1781093305 https://www.proquest.com/docview/1781533333 https://www.proquest.com/docview/1787971176 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LguKLl_Wy1VUiiPjS2UmbS4NPKu4Nuuiwq_sghFy1rNMOnSkuPvkT_I3-EpO000UREfvUkqSkPee0X07O-Q4ATzhlFFuCUoYcTTE3OpXYL1aoI4VHJ8Tlech3Lo_pwSk-OiNnG-D5Ohem54cYHW7BMuL3Ohi4VMvdS9LQeTufBLQcEsxDrFYARLNL6ijOewZmhsN3huM1q9A02x1HekAa3uXFn9Dlr2A1_m32boAP63n2QSbnk26lJvrrbxSO__kgN8H1AYXCF73a3AIbtt4CV8thn30LXImBoXp5G7SHMY0SNg56qAi9RPVQ8AvKzx-btlp9mkN_oSp7sWjqEHvkb-yqGE4dRoUKLF1wyf349v1L9MNaA8vZIaxq2C0WtoVSmSaWFoOxxNTyDjjde33y6iAd6jSkVV4QktrMWs2m2BiT0UxOmbaKSDSVjHPMlbdDXTDtrNOZ4cU0V5ki2gOR3ATuee7yu2Cz9jPcBtB6SVlMkSHIYZU56Rd4muVIMuOsV_oEPI0SE4uei0PI9jyEpjEi3h_vi3dH9ATvv30jXiZgZy1SMVjlUiBWoOjBIQl4PDZ7ewqbJLK2Tdf38RDYH3_twzhDiNEE3OvVZZxQWB960Jwl4FkU-tjQ80NnwotbRHGLclbGk_v_3vUBuOYRG-0jLnfA5qrt7EOPilbqUVT_n5tNCZI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgVKoICREOKSbR52HEtcANHulmYFqy30gizHsUtUNrvKbkTFiZ_Ab-SXYDvZVCCEEDklsh3ZGY_zzXj8DcATltAEKxL6NNSJj1khfYGNsZJokhp0QnQc2_PO2TgZHuGDY3K8Ac_XZ2Fafoje4WY1w63XVsGtQ3r3nDV0Vs8GFi6TC3DRZvR2BtXknDyKsZaDmWK70jC85hUKot2-qYGk9mue_Qlf_gpX3f9m7zp8XPe0DTM5HTSrfCC__kbi-L9DuQHXOiCKXrQz5yZsqGoLLmfdVvsWXHKxoXJ5C-qRO0mJ5hoZtIiMUGWX8wuJzyfzulx9miHzkJfqbDGvbPiRebEuXUS1bWWTsDTWK_fj2_cvzhWrCpRNRqisULNYqBqJvJi77GLIZZla3oajvdfTV0O_S9Xgl3FKiK8ipSQNcFEUURKJgEqVExEGgjKGWW5UUaZUaqVlVLA0iPMoJ9Jgkbiw9PNMx3dgszI9vAtIGVEpnIQFCTXOIy2MjSdpHApaaGXmvQdPncj4oqXj4KI-tdFplPAP433-_iCZ4v13b_lLD3bWMuWdYi55SNPQOXGIB4_7YqNSdp9EVGretHUMCjbXX-tQRsOQJh5st_Ol75A1EQ1ujjx45qTeF7QU0RE34uZO3DybZO7m3r9XfQRXhtPskB-Oxm_uw1UD4JI2AHMHNld1ox4YkLTKHzpd-AkehA2t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMqjgQJGQohLtnn4EYsTULbdwq7KqoUekKzEjxKVzUbZXVFx4ifwG_kl2M5uKhBCiJwS2Y7szIzzeTz-BuAJp4xiTeKQxYaGmCsZ5tguVqghmUUnxKSpO-88HNH9Y3xwQk7W4PnqLEzLD9E53Jxl-PnaGXitzM4FaeikmfQcWiaX4DKmUeZUend8wR3FeUvBzLCbaDhe0QpFyU7X1CJS9zHP_wQvf0Wr_nfTvw4fVx1to0zOeot50ZNff-Nw_M-R3IBrSxiKXrR6cxPWdLUJG8PlRvsmXPGRoXJ2C5qBP0eJpgZZrIisSOUy4xfKP59Om3L-aYLsQ1Hq83paueAj-2JT-nhq18qlYFk4n9yPb9-_eEesVmg4HqCyQou61g3KCzX1ucWQzzE1uw3H_ddHr_bDZaKGsEwzQkKdaC1ZhJVSCU3yiEldkDyOcsY55oU1RJkxabSRieJZlBZJQaRFIqly5PPcpHdgvbI93AKkraQ0prEiscFFYnK7wpMsjXOmjLZaH8BTLzFRt2QcIm_OXGwaI-LDaE-8P6BHeO_doXgZwPZKpGJpljMRsyz2LhwSwOOu2BqU2yXJKz1dtHUsBrbXX-swzuKY0QDuturSdcgtEC1qTgJ45oXeFbQE0Ymw4hZe3GI4Hvqbe_9e9RFsHO72xdvB6M19uGrRG22jL7dhfd4s9AOLkObFQ28JPwEP_Qxl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+the+calculation+algorithm+on+biexponential+fitting+of+diffusion-weighted+MRI+in+upper+abdominal+organs&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Barbieri%2C+Sebastiano&rft.au=Donati%2C+Olivio+F.&rft.au=Froehlich%2C+Johannes+M.&rft.au=Thoeny%2C+Harriet+C.&rft.date=2016-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=5&rft.spage=2175&rft.epage=2184&rft_id=info:doi/10.1002%2Fmrm.25765&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VJ6T4GQP_B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |