Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245

Summary Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole‐3‐acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimula...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 7; no. 11; pp. 1839 - 1846
Main Authors Rothballer, Michael, Schmid, Michael, Fekete, Agnes, Hartmann, Anton
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.11.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole‐3‐acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole‐3‐pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.
AbstractList Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole-3-acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole-3-pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.
Summary Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole‐3‐acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole‐3‐pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.
Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole-3-acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole-3-pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole-3-acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole-3-pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.
Author Rothballer, Michael
Hartmann, Anton
Fekete, Agnes
Schmid, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Rothballer
  fullname: Rothballer, Michael
  email: rothballer@gsf.de
  organization: GSF-National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
– sequence: 2
  givenname: Michael
  surname: Schmid
  fullname: Schmid, Michael
  organization: GSF-National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
– sequence: 3
  givenname: Agnes
  surname: Fekete
  fullname: Fekete, Agnes
  organization: GSF-National Research Center for Environment and Health, Institute of Ecological Chemistry, Department of Rhizosphere Biology, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
– sequence: 4
  givenname: Anton
  surname: Hartmann
  fullname: Hartmann, Anton
  organization: GSF-National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16232298$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi20qAu0fwH51FuCv5NIvaAV-yHRAoIKiYs1SZzK23zVTmC3v75eFrZHfJmR5nlH1jynaNJ2rUEIUxLT8C7WMRWKRSxjJGaEyJiQVKTx5gidHAaTQ0_ZFJ16vyaEJjwhn9CUKsYZy9IT1M66pgcHg3022LbY22HE0EK99dbjrsK2L2fRr6pvxoHj3nVNNxiHq9Hbrn0FLv92vrfO1vXY4NyBt7VpvcF-cGADct8nYWEZKhPyMzquoPbmy1s9Qz_nVw-zZXR9s1jNLq8jy1OaRkWmKiFLAmUulBQ8zYsqpRkwIoFmEgoiGZBcQAECRM4MrQpVsFLxMpF5XvIz9HW_N_z4z2j8oBvrC1PX0Jpu9FqlCVEZFR-CNBEiI5wG8PwNHPPGlLp3tgG31e-nDMC3PfASDrD9Pyd6p0yv9c6G3pnRO2X6VZne6Kvvq9CEeLSPWz-YzSEO7rdWwZrUjz8WWi0X89un-Vzf8X_alZuN
ContentType Journal Article
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
DOI 10.1111/j.1462-2920.2005.00848.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Bacteriology Abstracts (Microbiology B)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1846
ExternalDocumentID 16232298
EMI848
ark_67375_WNG_6HGFPZFF_Q
Genre shortCommunication
Journal Article
Comparative Study
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
CGR
CUY
CVF
ECM
EIF
NPM
7QL
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
C1K
7X8
ID FETCH-LOGICAL-i3818-c96f45d0adb465438bcf819a205a195ac052a0b4aca4a4b2e1fc6c2d63d75bbd3
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Fri Jul 11 09:54:31 EDT 2025
Fri Jul 11 11:51:45 EDT 2025
Wed Feb 19 01:42:40 EST 2025
Wed Jan 22 16:24:39 EST 2025
Wed Oct 30 10:03:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3818-c96f45d0adb465438bcf819a205a195ac052a0b4aca4a4b2e1fc6c2d63d75bbd3
Notes istex:9BF4EBB78486CC19E1298FC83BD47974F76B4F22
ArticleID:EMI848
ark:/67375/WNG-6HGFPZFF-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1462-2920.2005.00848.x
PMID 16232298
PQID 17449031
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_68706914
proquest_miscellaneous_17449031
pubmed_primary_16232298
wiley_primary_10_1111_j_1462_2920_2005_00848_x_EMI848
istex_primary_ark_67375_WNG_6HGFPZFF_Q
PublicationCentury 2000
PublicationDate 2005-11
November 2005
2005-Nov
20051101
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2005
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Murthy, M.G., and Ladha, J.K. (1987) Differential colonization of Azospirillum lipoferum on roots of two varieties of rice. Biol Fertil Soils 4: 3-7.
Burdman, S., Okon, Y., and Jurkevitch, E. (2000) Surface characteristics of Azospirillum barsilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26: 91-110.
Barbieri, P., Zanelli, T., Galli, E., and Zanetti, G. (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett 36: 87-90.
Hadas, R., and Okon, Y. (1987) Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol Fertil Soils 5: 241-247.
Pereg Gerk, L.P., Gilchrist, K., and Kennedy, I.R. (2000) Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations. Appl Environ Microbiol 66: 2175-2184.
Vande Broek, A., Gysegom, P., Ona, O., Hendrickx, N., Prinsen, E., Van Impe, J., and Vanderleyden, J. (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant Microbe Interact 18: 311-323.
Amann, R.I., Zarda, B., Stahl, D.A., and Schleifer, K.H. (1992) Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58: 3007-3011.
Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Van Onckelen, H. (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant Microbe Interact 6: 609-615.
Kessler, B., De Lorenzo, V., and Timmis, K.N. (1992) A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233: 293-301.
Schloter, M., and Hartmann, A. (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25: 159-179.
Umalia-Garcia, M., Hubell, D.H., Gaskins, M., and Dazzo, F. (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39: 219-226.
Rothballer, M., Schmid, M., and Hartmann, A. (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34: 261-279.
Stoffels, M., Castellanos, T., and Hartmann, A. (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 24: 83-97.
Tien, T.M., Gaskins, M.H., and Hubbell, D.H. (1979) Plant growth substances produced by Azospirillum brasilense and their effect on growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37: 1016.
Zimmer, W., Wesche, M., and Timmermans, L. (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr Microbiol 36: 327-331.
Ramos, H.J., Roncato-Maccari, L.D., Souza, E.M., Soares-Ramos, J.R., Hungria, M., and Pedrosa, F.O. (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97: 243-252.
Kristensen, C.S., Eberl, L., Sanches-Romero, J.M., Givskov, M., Molin, S., and De Lorenzo, V. (1995) Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J Bacteriol 177: 52-58.
Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., II, and Peterson, K.M. (1995) Four new derivatives of the broad-host-range vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176.
Vanstockem, M., Michiels, K., Vanderleyden, J., and Van Gool, A. (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol 53: 410-415.
Patriquin, D.G., Döbereiner, J., and Jain, D.K. (1983) Sites and processes of the association between diazotrophs and grasses. Can J Microbiol 29: 900-915.
Brandl, M.T., Quinones, B., and Lindow, S.E. (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci USA 98: 3454-3459.
Vande Broek, A., Lambrecht, M., Eggermont, K., and Vanderleyden, J. (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181: 1338-1342.
Huffman, J.L., and Brennan, R.G. (2002) Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12: 98-106.
Okon, Y., and Kapulnik, Y. (1986) Development and function of Azospirillum-inoculated roots. Plant and Soil 90: 3-16.
Baldani, V.L.D., Baldani, J.I., and Döbereiner, J. (1987) Inoculation of field grown wheat with Azospirillum brasilense spp. Biol Fertil Soils 4: 37-40.
Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclass of Proteobacteria: problems and solutions. Syst Appl Microbiol 15: 593-600.
Fallik, E., Okon, Y., and Fischer, M. (1988) Growth response of maize roots to Azospirillum interaction: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil Biol Biochem 20: 45.
O'Hara, G.W., Davey, M.R., and Lucas, J.A. (1983) Associations between the nitrogen-fixing bacterium Azospirillum barsilense and excised plant roots. Z Pflanzenphysiologie 113: 1-13.
Amann, R.I., Krumholz, L., and Stahl, D.A. (1990) Fluorescent-oligonucleotide probing of whole cells for determinative and environmental studies in microbiology. J Bacteriol 172: 762-770.
Hartmann, A., Singh, M., and Klingmüller, W. (1983a) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29: 916-923.
Dobbelaere, S., Croonenborghs, A., Amber, T., Ptacek, D., Vanderleyden, J., Dutto, P., et al. (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28: 1-9.
Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434-444.
Egener, T., Hurek, T., and Reinhold-Hurek, B. (1998) Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant Microbe Interact 11: 71-75.
Bar, T., and Okon, Y. (1992) Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilense Sp7. Symbiosis 13: 191-198.
Tarrand, J.J., Krieg, N.R., and Döbereiner, J. (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24: 967-980.
1986; 90
1983; 113
1987; 53
1979; 37
2000; 26
2002; 97
1987; 4
2002; 12
1987; 5
2000; 66
1986; 36
1999; 22
1983b
1992; 13
1994
1992; 58
2001; 28
1995; 177
1992; 15
2001; 24
1998; 25
1993; 6
2003; 34
1980; 39
2000
1992; 233
1999; 181
1995; 166
1988; 20
1978; 24
1983a; 29
1983; 29
2005; 18
1998; 11
1990; 172
1998; 36
2001; 98
References_xml – reference: Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434-444.
– reference: Schloter, M., and Hartmann, A. (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25: 159-179.
– reference: Baldani, V.L.D., Baldani, J.I., and Döbereiner, J. (1987) Inoculation of field grown wheat with Azospirillum brasilense spp. Biol Fertil Soils 4: 37-40.
– reference: Vande Broek, A., Gysegom, P., Ona, O., Hendrickx, N., Prinsen, E., Van Impe, J., and Vanderleyden, J. (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant Microbe Interact 18: 311-323.
– reference: Vanstockem, M., Michiels, K., Vanderleyden, J., and Van Gool, A. (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol 53: 410-415.
– reference: Amann, R.I., Zarda, B., Stahl, D.A., and Schleifer, K.H. (1992) Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58: 3007-3011.
– reference: Pereg Gerk, L.P., Gilchrist, K., and Kennedy, I.R. (2000) Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations. Appl Environ Microbiol 66: 2175-2184.
– reference: Stoffels, M., Castellanos, T., and Hartmann, A. (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 24: 83-97.
– reference: Umalia-Garcia, M., Hubell, D.H., Gaskins, M., and Dazzo, F. (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39: 219-226.
– reference: Egener, T., Hurek, T., and Reinhold-Hurek, B. (1998) Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant Microbe Interact 11: 71-75.
– reference: Kessler, B., De Lorenzo, V., and Timmis, K.N. (1992) A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233: 293-301.
– reference: Patriquin, D.G., Döbereiner, J., and Jain, D.K. (1983) Sites and processes of the association between diazotrophs and grasses. Can J Microbiol 29: 900-915.
– reference: Fallik, E., Okon, Y., and Fischer, M. (1988) Growth response of maize roots to Azospirillum interaction: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil Biol Biochem 20: 45.
– reference: Bar, T., and Okon, Y. (1992) Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilense Sp7. Symbiosis 13: 191-198.
– reference: Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., II, and Peterson, K.M. (1995) Four new derivatives of the broad-host-range vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176.
– reference: Kristensen, C.S., Eberl, L., Sanches-Romero, J.M., Givskov, M., Molin, S., and De Lorenzo, V. (1995) Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J Bacteriol 177: 52-58.
– reference: Rothballer, M., Schmid, M., and Hartmann, A. (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34: 261-279.
– reference: Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Van Onckelen, H. (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant Microbe Interact 6: 609-615.
– reference: Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclass of Proteobacteria: problems and solutions. Syst Appl Microbiol 15: 593-600.
– reference: Murthy, M.G., and Ladha, J.K. (1987) Differential colonization of Azospirillum lipoferum on roots of two varieties of rice. Biol Fertil Soils 4: 3-7.
– reference: Okon, Y., and Kapulnik, Y. (1986) Development and function of Azospirillum-inoculated roots. Plant and Soil 90: 3-16.
– reference: Burdman, S., Okon, Y., and Jurkevitch, E. (2000) Surface characteristics of Azospirillum barsilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26: 91-110.
– reference: Amann, R.I., Krumholz, L., and Stahl, D.A. (1990) Fluorescent-oligonucleotide probing of whole cells for determinative and environmental studies in microbiology. J Bacteriol 172: 762-770.
– reference: Ramos, H.J., Roncato-Maccari, L.D., Souza, E.M., Soares-Ramos, J.R., Hungria, M., and Pedrosa, F.O. (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97: 243-252.
– reference: Hartmann, A., Singh, M., and Klingmüller, W. (1983a) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29: 916-923.
– reference: Dobbelaere, S., Croonenborghs, A., Amber, T., Ptacek, D., Vanderleyden, J., Dutto, P., et al. (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28: 1-9.
– reference: Zimmer, W., Wesche, M., and Timmermans, L. (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr Microbiol 36: 327-331.
– reference: Huffman, J.L., and Brennan, R.G. (2002) Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12: 98-106.
– reference: Barbieri, P., Zanelli, T., Galli, E., and Zanetti, G. (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett 36: 87-90.
– reference: Hadas, R., and Okon, Y. (1987) Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol Fertil Soils 5: 241-247.
– reference: Brandl, M.T., Quinones, B., and Lindow, S.E. (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci USA 98: 3454-3459.
– reference: Tarrand, J.J., Krieg, N.R., and Döbereiner, J. (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24: 967-980.
– reference: Tien, T.M., Gaskins, M.H., and Hubbell, D.H. (1979) Plant growth substances produced by Azospirillum brasilense and their effect on growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37: 1016.
– reference: Vande Broek, A., Lambrecht, M., Eggermont, K., and Vanderleyden, J. (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181: 1338-1342.
– reference: O'Hara, G.W., Davey, M.R., and Lucas, J.A. (1983) Associations between the nitrogen-fixing bacterium Azospirillum barsilense and excised plant roots. Z Pflanzenphysiologie 113: 1-13.
– volume: 4
  start-page: 37
  year: 1987
  end-page: 40
  article-title: Inoculation of field grown wheat with spp
  publication-title: Biol Fertil Soils
– volume: 22
  start-page: 434
  year: 1999
  end-page: 444
  article-title: The domain‐specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set
  publication-title: Syst Appl Microbiol
– volume: 177
  start-page: 52
  year: 1995
  end-page: 58
  article-title: Site‐specific deletions of chromosomally located DNA segments with the multimer resolution system of broad‐host‐range plasmid RP4
  publication-title: J Bacteriol
– volume: 25
  start-page: 159
  year: 1998
  end-page: 179
  article-title: Endophytic and surface colonization of wheat roots ( ) by different strains studied with strain‐specific monoclonal antibodies
  publication-title: Symbiosis
– volume: 58
  start-page: 3007
  year: 1992
  end-page: 3011
  article-title: Identification of individual prokaryotic cells by using enzyme‐labeled, rRNA‐targeted oligonucleotide probes
  publication-title: Appl Environ Microbiol
– volume: 97
  start-page: 243
  year: 2002
  end-page: 252
  article-title: Monitoring Azospirillum–wheat interactions using the and genes constitutively expressed from a new broad‐host range vector
  publication-title: J Biotechnol
– start-page: 106
  year: 2000
  end-page: 108
– volume: 11
  start-page: 71
  year: 1998
  end-page: 75
  article-title: Use of green fluorescent protein to detect expression of genes of sp. BH72, a grass‐associated diazotroph, on rice roots
  publication-title: Mol Plant Microbe Interact
– volume: 20
  start-page: 45
  year: 1988
  article-title: Growth response of maize roots to interaction: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation
  publication-title: Soil Biol Biochem
– volume: 18
  start-page: 311
  year: 2005
  end-page: 323
  article-title: Transcriptional analysis of the indole‐3‐pyruvate decarboxylase gene and identification of a ‐acting sequence involved in auxin responsive expression
  publication-title: Mol Plant Microbe Interact
– volume: 98
  start-page: 3454
  year: 2001
  end-page: 3459
  article-title: Heterogeneous transcription of an indoleacetic acid biosynthetic gene in on plant surfaces
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 261
  year: 2003
  end-page: 279
  article-title: localization and PGPR‐effect of strains colonizing roots of different wheat varieties
  publication-title: Symbiosis
– start-page: 87
  year: 1994
  end-page: 109
– volume: 24
  start-page: 83
  year: 2001
  end-page: 97
  article-title: Design and application of new 16S rRNA‐targeted oligonucleotide probes for the Azospirillum‐Skermanella‐Rhodocista‐cluster
  publication-title: Syst Appl Microbiol
– volume: 166
  start-page: 175
  year: 1995
  end-page: 176
  article-title: Four new derivatives of the broad‐host‐range vector pBBR1MCS, carrying different antibiotic‐resistance cassettes
  publication-title: Gene
– volume: 4
  start-page: 3
  year: 1987
  end-page: 7
  article-title: Differential colonization of on roots of two varieties of rice
  publication-title: Biol Fertil Soils
– volume: 66
  start-page: 2175
  year: 2000
  end-page: 2184
  article-title: Mutants with enhanced nitrogenase activity in hydroponic –wheat associations
  publication-title: Appl Environ Microbiol
– volume: 39
  start-page: 219
  year: 1980
  end-page: 226
  article-title: Association of with grass roots
  publication-title: Appl Environ Microbiol
– volume: 15
  start-page: 593
  year: 1992
  end-page: 600
  article-title: Phylogenetic oligodeoxynucleotide probes for the major subclass of : problems and solutions
  publication-title: Syst Appl Microbiol
– volume: 29
  start-page: 916
  year: 1983a
  end-page: 923
  article-title: Isolation and characterization of mutants excreting high amounts of indoleacetic acid
  publication-title: Can J Microbiol
– volume: 24
  start-page: 967
  year: 1978
  end-page: 980
  article-title: A taxonomic study of the group, with descriptions of a new genus, gen. nov. and two species, (Beijerinck) comb. nov. and sp. nov
  publication-title: Can J Microbiol
– start-page: 78
  year: 1983b
  end-page: 88
– volume: 37
  start-page: 1016
  year: 1979
  article-title: Plant growth substances produced by their effect on growth of pearl millet ( L.)
  publication-title: Appl Environ Microbiol
– volume: 181
  start-page: 1338
  year: 1999
  end-page: 1342
  article-title: Auxins upregulate expression of the indole‐3‐pyruvate decarboxylase gene in
  publication-title: J Bacteriol
– volume: 113
  start-page: 1
  year: 1983
  end-page: 13
  article-title: Associations between the nitrogen‐fixing bacterium and excised plant roots
  publication-title: Z Pflanzenphysiologie
– volume: 36
  start-page: 327
  year: 1998
  end-page: 331
  article-title: Identification and isolation of the indole‐3‐pyruvate decarboxylase gene from Sp7: sequencing and functional analysis of the gene locus
  publication-title: Curr Microbiol
– volume: 233
  start-page: 293
  year: 1992
  end-page: 301
  article-title: A general system to integrate lacZ fusions into the chromosomes of gram‐negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy
  publication-title: Mol Gen Genet
– volume: 12
  start-page: 98
  year: 2002
  end-page: 106
  article-title: Prokaryotic transcription regulators: more than just the helix–turn–helix motif
  publication-title: Curr Opin Struct Biol
– volume: 26
  start-page: 91
  year: 2000
  end-page: 110
  article-title: Surface characteristics of in relation to cell aggregation and attachment to plant roots
  publication-title: Crit Rev Microbiol
– volume: 13
  start-page: 191
  year: 1992
  end-page: 198
  article-title: Induction of indole‐3‐acetic acid synthesis and possible toxicity of tryptophan in Sp7
  publication-title: Symbiosis
– start-page: 15
  year: 1994
  end-page: 39
– volume: 53
  start-page: 410
  year: 1987
  end-page: 415
  article-title: Transposon mutagenesis of and : physical analysis of Tn and Tn ‐Mob insertion mutants
  publication-title: Appl Environ Microbiol
– volume: 172
  start-page: 762
  year: 1990
  end-page: 770
  article-title: Fluorescent‐oligonucleotide probing of whole cells for determinative and environmental studies in microbiology
  publication-title: J Bacteriol
– volume: 28
  start-page: 1
  year: 2001
  end-page: 9
  article-title: Responses of agronomically important crops to inoculation with
  publication-title: Aust J Plant Physiol
– volume: 36
  start-page: 87
  year: 1986
  end-page: 90
  article-title: Wheat inoculation with Sp6 and some mutants altered in nitrogen fixation and indole‐3‐acetic acid production
  publication-title: FEMS Microbiol Lett
– volume: 5
  start-page: 241
  year: 1987
  end-page: 247
  article-title: Effect of inoculation on root morphology and respiration in tomato seedlings
  publication-title: Biol Fertil Soils
– volume: 6
  start-page: 609
  year: 1993
  end-page: 615
  article-title: indole‐3‐acetic acid biosynthesis: evidence for a non‐tryptophan dependent pathway
  publication-title: Mol Plant Microbe Interact
– volume: 90
  start-page: 3
  year: 1986
  end-page: 16
  article-title: Development and function of inoculated roots
  publication-title: Plant and Soil
– volume: 29
  start-page: 900
  year: 1983
  end-page: 915
  article-title: Sites and processes of the association between diazotrophs and grasses
  publication-title: Can J Microbiol
SSID ssj0017370
Score 1.9884396
Snippet Summary Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the...
Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1839
SubjectTerms Azospirillum brasilense
Azospirillum brasilense - genetics
Base Sequence
Gene Expression Regulation, Bacterial
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Molecular Sequence Data
Plasmids - genetics
Promoter Regions, Genetic - genetics
Pyruvate Decarboxylase - genetics
Pyruvate Decarboxylase - metabolism
Sequence Alignment
Sequence Analysis, DNA
Species Specificity
Triticum - microbiology
Triticum aestivum
Title Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245
URI https://api.istex.fr/ark:/67375/WNG-6HGFPZFF-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2005.00848.x
https://www.ncbi.nlm.nih.gov/pubmed/16232298
https://www.proquest.com/docview/17449031
https://www.proquest.com/docview/68706914
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFBUlUOim78c0fWhRuvNgy5JsLcNQZ-gi9BUauhF6FjPUY8Y2pFnlH_qH_ZLqyp5JO6Sb0pUNlmTJV1c-kq7OQehVxgWlNmWJJ7ZIqCtdopXWCffCOKMLOOcD0RYnfHlK356xsyn-Cc7CjPwQuwU38Iw4XoODK93tOzlJQG1puzRS0nIOeBJCtwAffdgxSWVFHnXjpizZXlDPtQUFuApf-vw67PknlI3_ouoOWm1bMYagrOZDr-fmYo_g8f808y66PUFWfDT2sXvohmvuo5ujiOX3B6hdXBGI47rBXd0PWE1cJ3jtcd3axc_LH199-23oc9zGAEC3wX6AlbqY5OgC5Es2Ncgu41DbLlS16RzuooJFhz-2RSjShiuh7CE6rd58WiyTScchqQEPJEZwT5lNldXA3paX2vgARBRJmcoEUyZlRKWaKqOoopq4zBtuiOW5LZjWNn-EDpp1454gXKY019RSJ5Sj3DFhqWYWtrVpqXjhZ-h1tJlsR64OqTYrCF0rmPx8ciz58rh696Wq5PsZerk1qgwOBbskqnHroZNhikZFGOr-noLD3rDI6Aw9HnvD7m1ZAJOEiHKGWLTp1YPfp1pEgjVBAJTJaE15LoPThZun_5jvEN0aKWVhaegZOug3g3sewFKvX0Q3-AWGAgks
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQEYIN78fwqheIXUaJYzvxshqRDlBGPFpRsbH8CooKmWiSSKUr_oE_5EvwdTJTGJUNYpVIsRM71zc5vr4-B6FnCReU2phFJbFZRF3uIq20jngpjDM6g30-kG2x4PMj-uqYHY9yQLAXZuCH2ATcwDPC9xocHALS215OIpBbWsdGcppPPaC8DALfYX71fsMllWRpUI4b6yRbaT0X3skDVnjXpxehzz_BbPgbFTfQl3U_hiSUk2nf6ak526J4_E8dvYmuj6gV7w3D7Ba65Orb6MqgY_ntDmpm5xziuKpxW3U9ViPdCV6WuGrs7Of3H5_L5mvfpbgJOYBuhcsegnWhyN4ZKJisKlBexr65rW9r3TrcBhGLFn9oMn9L64-EsrvoqHhxOJtHo5RDVAEkiIzgJWU2VlYDgVuaa1N6LKJIzFQimDIxIyrWVBlFFdXEJaXhhlie2oxpbdN7aKde1u4BwnlMU00tdUI5yh0TlmpmYWWb5opn5QQ9D0aTzUDXIdXqBLLXMiY_LvYln-8Xbz8VhXw3Qbtrq0rvU7BQomq37FvpZ2lU-K_d30twWB4WCZ2g-8Nw2Dwt8XiSEJFPEAtGPb_w-2yLSLAmaIAyGawpT6X3O3_y8B_r7aKr88M3B_Lg5eL1I3RtYJiFSNFjtNOtevfEY6dOPw0-8QsZtA1H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQEYgNlFcZaKkXiF1GiWM7ybKaNp0CGpVHRcXGsmMbRSMy0SSRSlf8A3_Il9TXyUxhVDaIVSLFduxcX-fYvj4HoVcRzyjVIQss0UlATWoCJZUKuM0KU6gEzvlAtMWMT8_om3N2PsQ_wVmYnh9iveAGnuHHa3DwWttNJycBqC2tlkZSmo4dnrxNeZhCDz_8sKaSipLYC8cNeaKNqJ4bS3J4FT71xU3g808s639G-QM0XzWjj0GZj7tWjYvLDYbH_9PObXR_wKz4oO9kD9EtUz1Cd3oVy--PUT25ZhDHZYWbsu2wHMhO8MListaTXz9-frX1t66Nce0jAM0S2w6W6nySg0vQL1mWoLuMXW0bV9WqMbjxEhYN_lgnrkjtroSyJ-gsP_o0mQaDkENQAiAIioxbynQotQL6tjhVhXVIRJKQyShjsggZkaGispBUUkVMZAteEM1jnTCldPwUbVWLyjxDOA1prKimJpOGcsMyTRXTsK9NU8kTO0Kvvc1E3ZN1CLmcQ-xawsTn2bHg0-P89Euei_cjtL8yqnAeBdsksjKLrhFujkYzN9b9PQWHzeEsoiO00_eG9dsihyYJydIRYt6m1w9-n2sRAdYEBVAmvDXFhXBe526e_2O-fXT39DAX705mb1-gez29LCwT7aKtdtmZPQecWvXSe8QV_G8L_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+in+situ+analysis+of+ipdC-gfpmut3+promoter+fusions+of+Azospirillum+brasilense+strains+Sp7+and+Sp245&rft.jtitle=Environmental+microbiology&rft.au=Rothballer%2C+Michael&rft.au=Schmid%2C+Michael&rft.au=Fekete%2C+Agnes&rft.au=Hartmann%2C+Anton&rft.date=2005-11-01&rft.issn=1462-2912&rft.volume=7&rft.issue=11&rft.spage=1839&rft_id=info:doi/10.1111%2Fj.1462-2920.2005.00848.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon