Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide

A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our calculations indicate that mineralogically bound water can pass efficiently through old and fast subduction zones (e.g., in the western Pacific),...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Solid Earth Vol. 116; no. B1
Main Authors van Keken, Peter E., Hacker, Bradley R., Syracuse, Ellen M., Abers, Geoff A.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.01.2011
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our calculations indicate that mineralogically bound water can pass efficiently through old and fast subduction zones (e.g., in the western Pacific), whereas hot subduction zones such as Cascadia see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust, including sediments and volcanic rocks, is predicted to dehydrate significantly. The degree and depth of dehydration in the deeper crust and uppermost mantle are highly diverse and depend strongly on composition (gabbro versus peridotite) and local pressure and temperature conditions. The upper mantle dehydrates at intermediate depths in all but the coldest subduction zones. On average, about one third of the bound H2O subducted globally in slabs reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The predicted global flux of H2O to the deep mantle is smaller than previous estimates but still amounts to about one ocean mass over the age of the Earth. At this rate, the overall mantle H2O content increases by 0.037 wt % (370 ppm) over the age of the Earth. This is qualitatively consistent with inferred H2O concentrations in the Earth's mantle assuming that secular cooling of the Earth has increased the efficiency of volatile recycling over time.
AbstractList A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our calculations indicate that mineralogically bound water can pass efficiently through old and fast subduction zones (e.g., in the western Pacific), whereas hot subduction zones such as Cascadia see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust, including sediments and volcanic rocks, is predicted to dehydrate significantly. The degree and depth of dehydration in the deeper crust and uppermost mantle are highly diverse and depend strongly on composition (gabbro versus peridotite) and local pressure and temperature conditions. The upper mantle dehydrates at intermediate depths in all but the coldest subduction zones. On average, about one third of the bound H2O subducted globally in slabs reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The predicted global flux of H2O to the deep mantle is smaller than previous estimates but still amounts to about one ocean mass over the age of the Earth. At this rate, the overall mantle H2O content increases by 0.037 wt % (370 ppm) over the age of the Earth. This is qualitatively consistent with inferred H2O concentrations in the Earth's mantle assuming that secular cooling of the Earth has increased the efficiency of volatile recycling over time.
Author van Keken, Peter E.
Syracuse, Ellen M.
Hacker, Bradley R.
Abers, Geoff A.
Author_xml – sequence: 1
  givenname: Peter E.
  surname: van Keken
  fullname: van Keken, Peter E.
  email: keken@umich.edu
  organization: Department of Geological Sciences, University of Michigan, Michigan, Ann Arbor, USA
– sequence: 2
  givenname: Bradley R.
  surname: Hacker
  fullname: Hacker, Bradley R.
  organization: Department of Earth Science, University of California, California, Santa Barbara, USA
– sequence: 3
  givenname: Ellen M.
  surname: Syracuse
  fullname: Syracuse, Ellen M.
  organization: Department of Geoscience, University of Wisconsin-Madison, Wisconsin, Madison, USA
– sequence: 4
  givenname: Geoff A.
  surname: Abers
  fullname: Abers, Geoff A.
  organization: Lamont-Doherty Earth Observatory, Columbia University, New York, Palisades, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23960807$$DView record in Pascal Francis
BookMark eNpNkMFPwjAYxRuDiYjc_AN68Tj8-q1dN2-CAhKEBDQcm7K2Oh0bWUeA_14IhPgu7_De7x3eLWkUZWEJuWfQYYDJIwKDURdAJohXpIlMRAEiYIM0gfE4AER5Q9re_8BBXEQcWJPM5pul2aR1VhbU6bQuq_0T5R36Ytf1d2Ds2hbGFjV1-WZHS0eHOKWuKlfUn7nii_pcLz3dllVutpmxd-Ta6dzb9tlb5LP_-tEbBuPp4K33PA6yUDIZGB6jTEPptDOa60gKG3G5RIMCXcwhNTrmaMGYmDl0PLVJJITgDIwFJkzYIg-n3bX2qc5dpYs082pdZStd7RWGSQQxyEMvPPW2WW73l5yBOv6m_v-mRoNZl0USj1RwojJf292F0tWvimQohVpMBqq_6MlwPump9_APX2hxmQ
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
2015 INIST-CNRS
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
DOI 10.1029/2010JB007922
DatabaseName Istex
Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage n/a
ExternalDocumentID 23960807
JGRB16727
ark_67375_WNG_FWC73SNC_M
Genre article
GeographicLocations West Pacific
Pacific Ocean
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AGYGG
IQODW
ID FETCH-LOGICAL-i3717-d4827c37fafda4a675e647b2d252f840cda842e0dd81f2f4ce96555410de015d3
ISSN 0148-0227
IngestDate Mon Jul 21 09:13:51 EDT 2025
Wed Jan 22 16:56:05 EST 2025
Wed Oct 30 09:47:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B1
Keywords gabbros
global
Thick plate
metamorphic facies
Earth
temperature
subduction zones
dehydration
efficiency
geologic sections
volcanic rocks
upper mantle
recycling
concentration
igneous rocks
pressure
crust
upper crust
subduction
depth
plutonic rocks
cooling
ultramafics
age
slabs
volatiles
peridotites
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i3717-d4827c37fafda4a675e647b2d252f840cda842e0dd81f2f4ce96555410de015d3
Notes Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.
ArticleID:2010JB007922
ark:/67375/WNG-FWC73SNC-M
istex:15586177A8338CEEC625F4528D7169600C7102B9
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2010JB007922
PageCount 15
ParticipantIDs pascalfrancis_primary_23960807
wiley_primary_10_1029_2010JB007922_JGRB16727
istex_primary_ark_67375_WNG_FWC73SNC_M
PublicationCentury 2000
PublicationDate January 2011
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: January 2011
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research: Solid Earth
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Nakajima, J., Y. Tsuji, A. Hasegawa, S. Kita, T. Okada, and T. Matsuzawa (2009), Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: Evidence for dehydration embrittlement as a cause of interslab earthquakes, Gondwana Res., 16, 470-481, doi:10.1016/j.gr.2008.12.010.
Grove, T. L., N. Chatterjee, S. W. Parman, and E. Médard (2006), The influence of H2O on mantle wedge melting, Earth Planet. Sci. Lett., 249, 74-89, doi:10.1016/j.epsl.2006.06.043.
Bebout, G. E. (2007), Metamorphic chemical geodynamics of subduction zones, Earth Planet. Sci. Lett., 260(3-4), 373-393, doi:10.1016/j.epsl.2007.05.050.
Wada, I., and K. L. Wang (2009), Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 10, Q10009, doi:10.1029/2009GC002570.
Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293, 1460-1463, doi:10.1126/science.1062235.
Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108, doi:10.1016/0012-821X(96)00154-9.
Hebert, L. B., P. Antoschechkina, P. Asimow, and M. Gurnis (2009), Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics, Earth Planet. Sci. Lett., 278, 243-256, doi:10.1016/j.epsl.2008.12.013.
Hyndman, R. D., and S. M. Peacock (2003), Serpentinization of the fore-arc mantle, Earth Planet. Sci. Lett., 212, 417-432, doi:10.1016/S0012-821X(03)00263-2.
Jarrard, R. D. (2003), Subduction fluxes of water, carbon dioxide, chlorine and potassium, Geochem. Geophys. Geosyst., 4(5), 8905, doi:10.1029/2002GC000392.
Abers, G. A., P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik (2006), The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow, Earth Planet. Sci. Lett., 241, 387-397, doi:10.1016/j.epsl.2005.11.055.
Syracuse, E. M., and G. A. Abers (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst., 7, Q05017, doi:10.1029/2005GC001045.
MacKenzie, L. M., G. A. Abers, S. Rondenay, and K. M. Fischer (2010), Imaging a steeply dipping subducting slab in southern Central America, Earth Planet. Sci. Lett., 296, 459-468, doi:10.1016/j.epsl.2010.05.033.
McCulloch, M. T., and J. A. Gamble (1991), Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358-374, doi:10.1016/0012-821X(91)90029-H.
Rondenay, S., G. A. Abers, and P. E. van Keken (2008), Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278, doi:10.1130/G24112A.1.
Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003b), Subduction factory: 2. Are intermediate depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108(B1), 2030, doi:10.1029/2001JB001129.
Holland, T. J. B., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343, doi:10.1111/j.1525-1314.1998.00140.x.
Stachnik, J. C., G. A. Abers, and D. H. Christensen (2004), Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res., 109, B10304, doi:10.1029/2004JB003018.
Tollstrup, D., J. Gill, A. Kent, D. Prinkey, R. Williams, Y. Tamura, and O. Ishizuka (2010), Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited, Geochem. Geophys. Geosyst., 11, Q01X10, doi:10.1029/2009GC002847.
Gerya, T. V., and D. A. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones, Earth Planet. Sci. Lett., 212, 47-62, doi:10.1016/S0012-821X(03)00265-6.
Aizawa, Y., A. Barnhoorn, U. H. Faul, J. D. Fitz Gerald, I. Jackson, and I. Kovacs (2008), Seismic properties of Anita Bay Dunite: An exploratory study of the influence of water, J. Petrol., 49, 841-855, doi:10.1093/petrology/egn007.
Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoku arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187, doi:10.1016/0040-1951(89)90011-5.
Billen, M. I., M. Gurnis, and M. Simons (2003), Multiscale dynamics of the Tonga-Kermadec subduction zone, Geophys. J. Int., 153, 359-388, doi:10.1046/j.1365-246X.2003.01915.x.
Hashida, T. (1989), Three-dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications, Tectonophysics, 159, 163-180, doi:10.1016/0040-1951(89)90126-1.
Karato, S., and P. Wu (1993), Rheology of the upper mantle: A synthesis, Science, 260, 771-778, doi:10.1126/science.260.5109.771.
Behn, M. D., G. Hirth, P. B. Kelemen, and B. R. Hacker (2009), Implications of sediment diapirs on the H2O flux into the mantle at arcs, Eos. Trans. AGU, 90(52), Fall Meet. Suppl., Abstract T31D-01.
Peacock, S. M., and K. Wang (1999), Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan, Science, 286, 937-939, doi:10.1126/science.286.5441.937.
van Keken, P. E., C. Currie, S. D. King, M. D. Behn, A. Cagnioncle, J. He, R. F. Katz, S.-C. Lin, M. Spiegelman, and K. Wang (2008), A community benchmark for subduction zone modeling, Phys. Earth Planet. Inter., 171, 187-197, doi:10.1016/j.pepi.2008.04.015.
Arcay, D., E. Tric, and M.-P. Doin (2007), Slab surface temperature in subduction zones: Influence of the interpolate decoupling depth and upper plate thinning processes, Earth Planet. Sci. Lett., 255, 324-338, doi:10.1016/j.epsl.2006.12.027.
Lefeldt, M., I. Grevemeyer, J. Gossler, and J. Bialas (2009), Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise, Geophys. J. Int., 178, 742-752, doi:10.1111/j.1365-246X.2009.04167.x.
Blackman, D. K., J. R. Cann, B. Janssen, and D. K. Smith (1998), Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis fracture zone, J. Geophys. Res., 103, 21,315-21,333, doi:10.1029/98JB01756.
Jadamec, M. A., and M. I. Billen (2010), Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge, Nature, 465, 338-341, doi:10.1038/nature09053.
Rüpke, L. H., J. P. Morgan, and J. A. D. Connolly (2004), Serpentine and the subduction zone water cycle, Earth Planet. Sci. Lett., 223, 17-34, doi:10.1016/j.epsl.2004.04.018.
Holland, G., and C. J. Ballentine (2006), Seawater subduction controls the heavy noble gas composition of the mantle, Nature, 441, 186-191, doi:10.1038/nature04761.
Syracuse, E. M., P. E. van Keken, and G. A. Abers (2010), The global range of subduction zone thermal models, Phys. Earth Planet. Inter., 51(8), 1761-1782, doi:10.1016/j.pepi.2010.02.004.
Brandenburg, J. P., E. H. Hauri, P. E. van Keken, and C. J. Ballentine (2008), A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects, Earth Planet. Sci. Lett., 276, 1-13, doi:10.1016/j.epsl.2008.08.027.
Lee, C., and S. D. King (2010), Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach, Geology, 38, 583-586, doi:10.1130/G30714.1.
Hacker, B. R. (2008), H2O subduction beyond arcs, Geochem. Geophys. Geosyst., 9, Q03001, doi:10.1029/2007GC001707.
Faccenda, M., T. V. Gerya, and L. Burlini (2009), Deep slab hydration induced by bending-related variations in tectonic pressure, Nat. Geosci., 2, 790-793, doi:10.1038/ngeo656.
Peacock, S. M. (1990), Fluids processes in subduction zones, Science, 248, 329-337, doi:10.1126/science.248.4953.329.
Kita, S., T. Okada, J. Nakajima, T. Matsuzawa, and A. Hasegawa (2006), Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70-100 km beneath NE Japan, Geophys. Res. Lett., 33, L24310, doi:10.1029/2006GL028239.
Yoshimoto, K., U. Wegler, and A. Korn (2006), A volcanic front as a boundary of seismic attenuation structures in northeastern Honshu, Japan, Bull. Seismol. Soc. Am., 96, 637-646, doi:10.1785/0120050085.
Connolly, J. A. D. (2009), The geodynamic equation of state: What and how, Geochem. Geophys. Geosyst., 10, Q10014, doi:10.1029/2009GC002540.
Lee, C., and S. D. King (2009), Effect of mantle compressibility on the thermal and flow structures of subduction zones, Geochem. Geophys. Geosyst., 10, Q01006, doi:10.1029/2008GC002151.
Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325-394, doi:10.1016/S0009-2541(97)00150-2.
Currie, C. A., and R. D. Hyndman (2006), The thermal structure of subduction zone back arcs, J. Geophys. Res., 111, B08404, doi:10.1029/2005JB004024.
Korenaga, J. (2003), Energetics of mantle convection and the fate of fossil heat, Geophys. Res. Lett., 30(8), 1437, doi:10.1029/2003GL016982.
Kirby, S. H., W. B. Durham, and L. A. Stern (1991), Mantle phase changes and deep-earthquake faulting in subducted lithosphere, Science, 252, 216-225, doi:10.1126/science.252.5003.216.
van Keken, P. E., B. Kiefer, and S. M. Peacock (2002), High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water to the deep mantle, Geochem. Geophys. Geosyst., 3(10), 1056, doi:10.1029/2001GC000256.
Hacker, B. R., and G. A. Abers (2004), Subduction factory: 3. An Excel Worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature, Geochem. Geophys. Geosyst., 5, Q01005, doi:10.1029/2003GC000614.
Hirschmann, M. M. (2006), Water, melting, and the deep Earth H2O cycle, Annu. Rev. Earth Planet. Sci., 34, 629-653, doi:10.1146/annurev.earth.34.031405.125211.
Plank, T., L. B. Cooper, and C. E. Manning (2009), Emerging geothermometers for estimating slab surface tempe
2010; 11
2007; 260
2006; 34
1989; 159
2006; 33
2010; 465
2008; 9
2008; 36
1999; 286
2004; 5
2009; 278
1996; 144
2003; 153
1998; 16
2007; 255
2002; 47
2001; 293
1991; 102
2005; 140
2009; 10
2009; 90
2002; 420
1986
1992; 359
1995; 126
2003; 4
2006; 241
2008; 113
2006; 248
2008; 276
2008; 275
2006; 249
2009; 16
2006; 441
1991; 252
2007; 200
2004; 42
2010; 38
1990; 248
2006; 96
1986; 50
2004; 223
1993; 260
2006; 7
1996; 96
2009; 178
2002; 3
2003
2004; 109
2003; 212
2004; 228
2003; 30
2006; 111
2007; 112
1994; 121
2003; 108
2003; 425
1989; 164
2008; 49
2010; 296
1998; 103
1993; 114
2009; 2
1998; 145
2010; 51
2008; 171
References_xml – reference: Nakajima, J., Y. Tsuji, A. Hasegawa, S. Kita, T. Okada, and T. Matsuzawa (2009), Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: Evidence for dehydration embrittlement as a cause of interslab earthquakes, Gondwana Res., 16, 470-481, doi:10.1016/j.gr.2008.12.010.
– reference: Wallace, P. J. (2005), Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geotherm. Res., 140, 217-240, doi:10.1016/j.jvolgeores.2004.07.023.
– reference: Holland, G., and C. J. Ballentine (2006), Seawater subduction controls the heavy noble gas composition of the mantle, Nature, 441, 186-191, doi:10.1038/nature04761.
– reference: Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoku arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187, doi:10.1016/0040-1951(89)90011-5.
– reference: Dixon, J. E., L. Leist, C. Langmuir, and J.-G. Schilling (2002), Recycled dehydrated lithosphere observed in plume-influenced mid-oceanic-ridge basalt, Nature, 420, 385-389, doi:10.1038/nature01215.
– reference: Stachnik, J. C., G. A. Abers, and D. H. Christensen (2004), Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res., 109, B10304, doi:10.1029/2004JB003018.
– reference: Billen, M. I., M. Gurnis, and M. Simons (2003), Multiscale dynamics of the Tonga-Kermadec subduction zone, Geophys. J. Int., 153, 359-388, doi:10.1046/j.1365-246X.2003.01915.x.
– reference: Yoshimoto, K., U. Wegler, and A. Korn (2006), A volcanic front as a boundary of seismic attenuation structures in northeastern Honshu, Japan, Bull. Seismol. Soc. Am., 96, 637-646, doi:10.1785/0120050085.
– reference: Blackman, D. K., J. R. Cann, B. Janssen, and D. K. Smith (1998), Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis fracture zone, J. Geophys. Res., 103, 21,315-21,333, doi:10.1029/98JB01756.
– reference: MacKenzie, L. M., G. A. Abers, S. Rondenay, and K. M. Fischer (2010), Imaging a steeply dipping subducting slab in southern Central America, Earth Planet. Sci. Lett., 296, 459-468, doi:10.1016/j.epsl.2010.05.033.
– reference: Plank, T., L. B. Cooper, and C. E. Manning (2009), Emerging geothermometers for estimating slab surface temperatures, Nat. Geosci., 2, 611-615, doi:10.1038/ngeo614.
– reference: Lefeldt, M., I. Grevemeyer, J. Gossler, and J. Bialas (2009), Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise, Geophys. J. Int., 178, 742-752, doi:10.1111/j.1365-246X.2009.04167.x.
– reference: Grove, T. L., N. Chatterjee, S. W. Parman, and E. Médard (2006), The influence of H2O on mantle wedge melting, Earth Planet. Sci. Lett., 249, 74-89, doi:10.1016/j.epsl.2006.06.043.
– reference: Hashida, T. (1989), Three-dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications, Tectonophysics, 159, 163-180, doi:10.1016/0040-1951(89)90126-1.
– reference: Skora, S., and J. Blundy (2010), High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism, J. Petrol., 51(11), 2211-2243, doi:10.1093/petrology/egq054.
– reference: Stein, C. A., and S. Stein (1992), A model for the global variation in oceanic depth and heat-flow with lithospheric age, Nature, 359, 123-129, doi:10.1038/359123a0.
– reference: Abers, G. A., P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik (2006), The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow, Earth Planet. Sci. Lett., 241, 387-397, doi:10.1016/j.epsl.2005.11.055.
– reference: Hyndman, R. D., and S. M. Peacock (2003), Serpentinization of the fore-arc mantle, Earth Planet. Sci. Lett., 212, 417-432, doi:10.1016/S0012-821X(03)00263-2.
– reference: Ranero, C. R., J. P. Morgan, K. McIntosh, and C. Reichert (2003), Bending related faulting and mantle serpentinization at the Middle America Trench, Nature, 425, 367-373, doi:10.1038/nature01961.
– reference: Shaw, A. M., E. H. Hauri, T. P. Fischer, D. R. Hilton, and K. A. Kelley (2008), Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle, Earth Planet. Sci. Lett., 275, 138-145, doi:10.1016/j.epsl.2008.08.015.
– reference: Syracuse, E. M., G. A. Abers, K. Fischer, L. MacKenzie, C. Rychert, M. Protti, V. Gonzalez, and W. Strauch (2008), Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle, Geochem. Geophys. Geosyst., 9, Q07S08, doi:10.1029/2008GC001963.
– reference: Wada, I., and K. L. Wang (2009), Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 10, Q10009, doi:10.1029/2009GC002570.
– reference: Hacker, B. R., and G. A. Abers (2004), Subduction factory: 3. An Excel Worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature, Geochem. Geophys. Geosyst., 5, Q01005, doi:10.1029/2003GC000614.
– reference: Kelley, K. A., T. Plank, S. Newman, E. M. Stolper, T. L. Grove, S. Parman, and E. H. Hauri (2010), Mantle melting as a function of water content beneath the Mariana Arc, J. Petrol., 51, 1711-1738, doi:10.1093/petrology/egq036.
– reference: Korenaga, J. (2003), Energetics of mantle convection and the fate of fossil heat, Geophys. Res. Lett., 30(8), 1437, doi:10.1029/2003GL016982.
– reference: Currie, C. A., and R. D. Hyndman (2006), The thermal structure of subduction zone back arcs, J. Geophys. Res., 111, B08404, doi:10.1029/2005JB004024.
– reference: Hirschmann, M. M. (2006), Water, melting, and the deep Earth H2O cycle, Annu. Rev. Earth Planet. Sci., 34, 629-653, doi:10.1146/annurev.earth.34.031405.125211.
– reference: Ivandic, M., I. Grevemeyer, A. Berhorst, E. R. Flueh, and K. D. McIntosh (2008), Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua, J. Geophys. Res., 113, B05410, doi:10.1029/2007JB005291.
– reference: Cagnioncle, A.-M., E. M. Parmentier, and L. T. Elkins-Tanton (2007), Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries, J. Geophys. Res., 112, B09402, doi:10.1029/2007JB004934.
– reference: Schmidt, M. W., D. Vielzeuf, and E. Auzanneau (2004), Melting and dissolution of subducted crust at high pressures: The key role of white mica, Earth Planet. Sci. Lett., 228, 65-84, doi:10.1016/j.epsl.2004.09.020.
– reference: Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108, doi:10.1016/0012-821X(96)00154-9.
– reference: Rondenay, S., G. A. Abers, and P. E. van Keken (2008), Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278, doi:10.1130/G24112A.1.
– reference: Peacock, S. M., and K. Wang (1999), Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan, Science, 286, 937-939, doi:10.1126/science.286.5441.937.
– reference: Rychert, C., K. M. Fischer, G. A. Abers, T. Plank, E. Syracuse, J. M. Protti, V. Gonzalez, and W. Strauch (2008), Strong along-arc variation in attenuation in the mantle wedge beneath Costa Rica and Nicaragua, Geochem. Geophys. Geosyst., 9, Q10S10, doi:10.1029/2008GC002040.
– reference: Aizawa, Y., A. Barnhoorn, U. H. Faul, J. D. Fitz Gerald, I. Jackson, and I. Kovacs (2008), Seismic properties of Anita Bay Dunite: An exploratory study of the influence of water, J. Petrol., 49, 841-855, doi:10.1093/petrology/egn007.
– reference: Barnes, J. D., Z. D. Sharp, T. P. Fischer, D. R. Hilton, and M. J. Carr (2009), Chlorine isotope variations along the Central American volcanic front and back arc, Geochem. Geophys. Geosyst., 10, Q11S17, doi:10.1029/2009GC002587.
– reference: Jadamec, M. A., and M. I. Billen (2010), Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge, Nature, 465, 338-341, doi:10.1038/nature09053.
– reference: Cuvelier, C., A. Segal, and A. A. van Steenhoven (1986), Finite Element Models and the Navier-Stokes Equations, D. Reidel, Dordrecht, Netherlands.
– reference: Hacker, B. R. (2008), H2O subduction beyond arcs, Geochem. Geophys. Geosyst., 9, Q03001, doi:10.1029/2007GC001707.
– reference: Arcay, D., E. Tric, and M.-P. Doin (2007), Slab surface temperature in subduction zones: Influence of the interpolate decoupling depth and upper plate thinning processes, Earth Planet. Sci. Lett., 255, 324-338, doi:10.1016/j.epsl.2006.12.027.
– reference: Gerya, T. V., and D. A. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones, Earth Planet. Sci. Lett., 212, 47-62, doi:10.1016/S0012-821X(03)00265-6.
– reference: Peacock, S. M. (1990), Fluids processes in subduction zones, Science, 248, 329-337, doi:10.1126/science.248.4953.329.
– reference: Karato, S., and P. Wu (1993), Rheology of the upper mantle: A synthesis, Science, 260, 771-778, doi:10.1126/science.260.5109.771.
– reference: van Keken, P. E., B. Kiefer, and S. M. Peacock (2002), High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water to the deep mantle, Geochem. Geophys. Geosyst., 3(10), 1056, doi:10.1029/2001GC000256.
– reference: Nadeau, S., P. Philippot, and F. Pineau (1993), Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of loca fluid migration during high-pressure metamorphism, Earth Planet. Sci. Lett., 114, 431-448, doi:10.1016/0012-821X(93)90074-J.
– reference: Vlaar, N. J., P. E. van Keken, and A. P. van den Berg (1994), Cooling of the Earth in the Archaean, Earth Planet. Sci. Lett., 121, 1-18, doi:10.1016/0012-821X(94)90028-0.
– reference: Clift, P., and P. Vannucchi (2004), Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust, Rev. Geophys., 42, RG2001, doi:10.1029/2003RG000127.
– reference: van Keken, P. E., C. Currie, S. D. King, M. D. Behn, A. Cagnioncle, J. He, R. F. Katz, S.-C. Lin, M. Spiegelman, and K. Wang (2008), A community benchmark for subduction zone modeling, Phys. Earth Planet. Inter., 171, 187-197, doi:10.1016/j.pepi.2008.04.015.
– reference: Brandenburg, J. P., E. H. Hauri, P. E. van Keken, and C. J. Ballentine (2008), A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects, Earth Planet. Sci. Lett., 276, 1-13, doi:10.1016/j.epsl.2008.08.027.
– reference: Hebert, L. B., P. Antoschechkina, P. Asimow, and M. Gurnis (2009), Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics, Earth Planet. Sci. Lett., 278, 243-256, doi:10.1016/j.epsl.2008.12.013.
– reference: Kirby, S. H., W. B. Durham, and L. A. Stern (1991), Mantle phase changes and deep-earthquake faulting in subducted lithosphere, Science, 252, 216-225, doi:10.1126/science.252.5003.216.
– reference: Tollstrup, D., J. Gill, A. Kent, D. Prinkey, R. Williams, Y. Tamura, and O. Ishizuka (2010), Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited, Geochem. Geophys. Geosyst., 11, Q01X10, doi:10.1029/2009GC002847.
– reference: Wiens, D. A., K. A. Kelley, and T. Plank (2006), Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology and bathymetry, Earth Planet. Sci. Lett., 248, 16-27, doi:10.1016/j.epsl.2006.04.011.
– reference: Lee, C., and S. D. King (2010), Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach, Geology, 38, 583-586, doi:10.1130/G30714.1.
– reference: Rüpke, L. H., J. P. Morgan, and J. A. D. Connolly (2004), Serpentine and the subduction zone water cycle, Earth Planet. Sci. Lett., 223, 17-34, doi:10.1016/j.epsl.2004.04.018.
– reference: Lee, C., and S. D. King (2009), Effect of mantle compressibility on the thermal and flow structures of subduction zones, Geochem. Geophys. Geosyst., 10, Q01006, doi:10.1029/2008GC002151.
– reference: Bebout, G. E. (2007), Metamorphic chemical geodynamics of subduction zones, Earth Planet. Sci. Lett., 260(3-4), 373-393, doi:10.1016/j.epsl.2007.05.050.
– reference: Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325-394, doi:10.1016/S0009-2541(97)00150-2.
– reference: Connolly, J. A. D. (2009), The geodynamic equation of state: What and how, Geochem. Geophys. Geosyst., 10, Q10014, doi:10.1029/2009GC002540.
– reference: Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003b), Subduction factory: 2. Are intermediate depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108(B1), 2030, doi:10.1029/2001JB001129.
– reference: Holland, T. J. B., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343, doi:10.1111/j.1525-1314.1998.00140.x.
– reference: Jarrard, R. D. (2003), Subduction fluxes of water, carbon dioxide, chlorine and potassium, Geochem. Geophys. Geosyst., 4(5), 8905, doi:10.1029/2002GC000392.
– reference: Syracuse, E. M., and G. A. Abers (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst., 7, Q05017, doi:10.1029/2005GC001045.
– reference: Behn, M. D., G. Hirth, P. B. Kelemen, and B. R. Hacker (2009), Implications of sediment diapirs on the H2O flux into the mantle at arcs, Eos. Trans. AGU, 90(52), Fall Meet. Suppl., Abstract T31D-01.
– reference: Faccenda, M., T. V. Gerya, and L. Burlini (2009), Deep slab hydration induced by bending-related variations in tectonic pressure, Nat. Geosci., 2, 790-793, doi:10.1038/ngeo656.
– reference: Kita, S., T. Okada, J. Nakajima, T. Matsuzawa, and A. Hasegawa (2006), Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70-100 km beneath NE Japan, Geophys. Res. Lett., 33, L24310, doi:10.1029/2006GL028239.
– reference: McCulloch, M. T., and J. A. Gamble (1991), Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358-374, doi:10.1016/0012-821X(91)90029-H.
– reference: Syracuse, E. M., P. E. van Keken, and G. A. Abers (2010), The global range of subduction zone thermal models, Phys. Earth Planet. Inter., 51(8), 1761-1782, doi:10.1016/j.pepi.2010.02.004.
– reference: Hart, S., D. C. Gerlach, and W. M. White (1986), A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing, Geochim. Cosmochim. Acta, 50, 1551-1557, doi:10.1016/0016-7037(86)90329-7.
– reference: Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293, 1460-1463, doi:10.1126/science.1062235.
– reference: Bebout, G. E. (1995), The impact of subduction-zone metamorphism on mantle-ocean chemical cycling, Chem. Geol., 126, 191-218, doi:10.1016/0009-2541(95)00118-5.
– reference: Hacker, B. R., G. A. Abers, and S. M. Peacock (2003a), Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents, J. Geophys. Res., 108(B1), 2029, doi:10.1029/2001JB001127.
– volume: 200
  start-page: 9
  year: 2007
  end-page: 33
– volume: 50
  start-page: 1551
  year: 1986
  end-page: 1557
  article-title: A possible new Sr‐Nd‐Pb mantle array and consequences for mantle mixing
  publication-title: Geochim. Cosmochim. Acta
– volume: 47
  start-page: 319
  year: 2002
  end-page: 370
– volume: 228
  start-page: 65
  year: 2004
  end-page: 84
  article-title: Melting and dissolution of subducted crust at high pressures: The key role of white mica
  publication-title: Earth Planet. Sci. Lett.
– volume: 51
  start-page: 1711
  year: 2010
  end-page: 1738
  article-title: Mantle melting as a function of water content beneath the Mariana Arc
  publication-title: J. Petrol.
– volume: 10
  year: 2009
  article-title: Common depth of slab‐mantle decoupling: Reconciling diversity and uniformity of subduction zones
  publication-title: Geochem. Geophys. Geosyst.
– volume: 33
  year: 2006
  article-title: Existence of a seismic belt in the upper plane of the double seismic zone extending in the along‐arc direction at depths of 70–100 km beneath NE Japan
  publication-title: Geophys. Res. Lett.
– volume: 51
  start-page: 2211
  issue: 11
  year: 2010
  end-page: 2243
  article-title: High‐pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism
  publication-title: J. Petrol.
– volume: 249
  start-page: 74
  year: 2006
  end-page: 89
  article-title: The influence of H O on mantle wedge melting
  publication-title: Earth Planet. Sci. Lett.
– volume: 10
  year: 2009
  article-title: Chlorine isotope variations along the Central American volcanic front and back arc
  publication-title: Geochem. Geophys. Geosyst.
– volume: 113
  year: 2008
  article-title: Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua
  publication-title: J. Geophys. Res.
– volume: 145
  start-page: 325
  year: 1998
  end-page: 394
  article-title: The chemical composition of subducting sediment and its consequences for the crust and mantle
  publication-title: Chem. Geol.
– volume: 159
  start-page: 163
  year: 1989
  end-page: 180
  article-title: Three‐dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications
  publication-title: Tectonophysics
– volume: 16
  start-page: 309
  year: 1998
  end-page: 343
  article-title: An internally consistent thermodynamic data set for phases of petrological interest
  publication-title: J. Metamorph. Geol.
– volume: 9
  year: 2008
  article-title: Strong along‐arc variation in attenuation in the mantle wedge beneath Costa Rica and Nicaragua
  publication-title: Geochem. Geophys. Geosyst.
– volume: 114
  start-page: 431
  year: 1993
  end-page: 448
  article-title: Fluid inclusion and mineral isotopic compositions (H‐C‐O) in eclogitic rocks as tracers of loca fluid migration during high‐pressure metamorphism
  publication-title: Earth Planet. Sci. Lett.
– volume: 223
  start-page: 17
  year: 2004
  end-page: 34
  article-title: Serpentine and the subduction zone water cycle
  publication-title: Earth Planet. Sci. Lett.
– volume: 11
  year: 2010
  article-title: Across‐arc geochemical trends in the Izu‐Bonin arc: Contributions from the subducting slab, revisited
  publication-title: Geochem. Geophys. Geosyst.
– volume: 171
  start-page: 187
  year: 2008
  end-page: 197
  article-title: A community benchmark for subduction zone modeling
  publication-title: Phys. Earth Planet. Inter.
– volume: 255
  start-page: 324
  year: 2007
  end-page: 338
  article-title: Slab surface temperature in subduction zones: Influence of the interpolate decoupling depth and upper plate thinning processes
  publication-title: Earth Planet. Sci. Lett.
– volume: 293
  start-page: 1460
  year: 2001
  end-page: 1463
  article-title: Water‐induced fabric transitions in olivine
  publication-title: Science
– year: 1986
– volume: 241
  start-page: 387
  year: 2006
  end-page: 397
  article-title: The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow
  publication-title: Earth Planet. Sci. Lett.
– volume: 9
  year: 2008
  article-title: Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle
  publication-title: Geochem. Geophys. Geosyst.
– volume: 140
  start-page: 217
  year: 2005
  end-page: 240
  article-title: Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 248
  start-page: 16
  year: 2006
  end-page: 27
  article-title: Mantle temperature variations beneath back‐arc spreading centers inferred from seismology, petrology and bathymetry
  publication-title: Earth Planet. Sci. Lett.
– volume: 425
  start-page: 367
  year: 2003
  end-page: 373
  article-title: Bending related faulting and mantle serpentinization at the Middle America Trench
  publication-title: Nature
– volume: 90
  issue: 52
  year: 2009
  article-title: Implications of sediment diapirs on the H O flux into the mantle at arcs
  publication-title: Eos. Trans. AGU
– volume: 96
  start-page: 195
  year: 1996
  end-page: 214
– volume: 3
  issue: 10
  year: 2002
  article-title: High‐resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water to the deep mantle
  publication-title: Geochem. Geophys. Geosyst.
– volume: 144
  start-page: 93
  year: 1996
  end-page: 108
  article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere
  publication-title: Earth Planet. Sci. Lett.
– volume: 441
  start-page: 186
  year: 2006
  end-page: 191
  article-title: Seawater subduction controls the heavy noble gas composition of the mantle
  publication-title: Nature
– volume: 38
  start-page: 583
  year: 2010
  end-page: 586
  article-title: Why are high‐Mg# andesites widespread in the western Aleutians? A numerical model approach
  publication-title: Geology
– volume: 16
  start-page: 470
  year: 2009
  end-page: 481
  article-title: Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: Evidence for dehydration embrittlement as a cause of interslab earthquakes
  publication-title: Gondwana Res.
– volume: 278
  start-page: 243
  year: 2009
  end-page: 256
  article-title: Emergence of a low‐viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics
  publication-title: Earth Planet. Sci. Lett.
– volume: 276
  start-page: 1
  year: 2008
  end-page: 13
  article-title: A multiple‐system study of the geochemical evolution of the mantle with force‐balanced plates and thermochemical effects
  publication-title: Earth Planet. Sci. Lett.
– volume: 359
  start-page: 123
  year: 1992
  end-page: 129
  article-title: A model for the global variation in oceanic depth and heat‐flow with lithospheric age
  publication-title: Nature
– volume: 103
  start-page: 21,315
  year: 1998
  end-page: 21,333
  article-title: Origin of extensional core complexes: Evidence from the Mid‐Atlantic Ridge at Atlantis fracture zone
  publication-title: J. Geophys. Res.
– volume: 252
  start-page: 216
  year: 1991
  end-page: 225
  article-title: Mantle phase changes and deep‐earthquake faulting in subducted lithosphere
  publication-title: Science
– volume: 2
  start-page: 611
  year: 2009
  end-page: 615
  article-title: Emerging geothermometers for estimating slab surface temperatures
  publication-title: Nat. Geosci.
– volume: 7
  year: 2006
  article-title: Global compilation of variations in slab depth beneath arc volcanoes and implications
  publication-title: Geochem. Geophys. Geosyst.
– volume: 96
  start-page: 637
  year: 2006
  end-page: 646
  article-title: A volcanic front as a boundary of seismic attenuation structures in northeastern Honshu, Japan
  publication-title: Bull. Seismol. Soc. Am.
– volume: 10
  year: 2009
  article-title: The geodynamic equation of state: What and how
  publication-title: Geochem. Geophys. Geosyst.
– volume: 109
  year: 2004
  article-title: Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 790
  year: 2009
  end-page: 793
  article-title: Deep slab hydration induced by bending‐related variations in tectonic pressure
  publication-title: Nat. Geosci.
– volume: 10
  year: 2009
  article-title: Effect of mantle compressibility on the thermal and flow structures of subduction zones
  publication-title: Geochem. Geophys. Geosyst.
– volume: 108
  issue: B1
  year: 2003
  article-title: Subduction factory: 2. Are intermediate depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?
  publication-title: J. Geophys. Res.
– volume: 108
  issue: B1
  year: 2003
  article-title: Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H O contents
  publication-title: J. Geophys. Res.
– volume: 178
  start-page: 742
  year: 2009
  end-page: 752
  article-title: Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise
  publication-title: Geophys. J. Int.
– volume: 42
  year: 2004
  article-title: Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust
  publication-title: Rev. Geophys.
– volume: 111
  year: 2006
  article-title: The thermal structure of subduction zone back arcs
  publication-title: J. Geophys. Res.
– volume: 121
  start-page: 1
  year: 1994
  end-page: 18
  article-title: Cooling of the Earth in the Archaean
  publication-title: Earth Planet. Sci. Lett.
– volume: 30
  issue: 8
  year: 2003
  article-title: Energetics of mantle convection and the fate of fossil heat
  publication-title: Geophys. Res. Lett.
– volume: 153
  start-page: 359
  year: 2003
  end-page: 388
  article-title: Multiscale dynamics of the Tonga‐Kermadec subduction zone
  publication-title: Geophys. J. Int.
– volume: 49
  start-page: 841
  year: 2008
  end-page: 855
  article-title: Seismic properties of Anita Bay Dunite: An exploratory study of the influence of water
  publication-title: J. Petrol.
– volume: 34
  start-page: 629
  year: 2006
  end-page: 653
  article-title: Water, melting, and the deep Earth H O cycle
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 102
  start-page: 358
  year: 1991
  end-page: 374
  article-title: Geochemical and geodynamical constraints on subduction zone magmatism
  publication-title: Earth Planet. Sci. Lett.
– volume: 126
  start-page: 191
  year: 1995
  end-page: 218
  article-title: The impact of subduction‐zone metamorphism on mantle‐ocean chemical cycling
  publication-title: Chem. Geol.
– volume: 465
  start-page: 338
  year: 2010
  end-page: 341
  article-title: Reconciling surface plate motions with rapid three‐dimensional mantle flow around a slab edge
  publication-title: Nature
– volume: 212
  start-page: 417
  year: 2003
  end-page: 432
  article-title: Serpentinization of the fore‐arc mantle
  publication-title: Earth Planet. Sci. Lett.
– volume: 9
  year: 2008
  article-title: H O subduction beyond arcs
  publication-title: Geochem. Geophys. Geosyst.
– volume: 260
  start-page: 373
  issue: 3–4
  year: 2007
  end-page: 393
  article-title: Metamorphic chemical geodynamics of subduction zones
  publication-title: Earth Planet. Sci. Lett.
– volume: 4
  issue: 5
  year: 2003
  article-title: Subduction fluxes of water, carbon dioxide, chlorine and potassium
  publication-title: Geochem. Geophys. Geosyst.
– volume: 260
  start-page: 771
  year: 1993
  end-page: 778
  article-title: Rheology of the upper mantle: A synthesis
  publication-title: Science
– volume: 275
  start-page: 138
  year: 2008
  end-page: 145
  article-title: Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep‐Earth water cycle
  publication-title: Earth Planet. Sci. Lett.
– volume: 296
  start-page: 459
  year: 2010
  end-page: 468
  article-title: Imaging a steeply dipping subducting slab in southern Central America
  publication-title: Earth Planet. Sci. Lett.
– volume: 51
  start-page: 1761
  issue: 8
  year: 2010
  end-page: 1782
  article-title: The global range of subduction zone thermal models
  publication-title: Phys. Earth Planet. Inter.
– volume: 36
  start-page: 275
  year: 2008
  end-page: 278
  article-title: Seismic imaging of subduction zone metamorphism
  publication-title: Geology
– volume: 164
  start-page: 175
  year: 1989
  end-page: 187
  article-title: Thermal state under the Tohoku arc with consideration of crustal heat generation
  publication-title: Tectonophysics
– volume: 212
  start-page: 47
  year: 2003
  end-page: 62
  article-title: Rayleigh‐Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones
  publication-title: Earth Planet. Sci. Lett.
– volume: 248
  start-page: 329
  year: 1990
  end-page: 337
  article-title: Fluids processes in subduction zones
  publication-title: Science
– volume: 112
  year: 2007
  article-title: Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries
  publication-title: J. Geophys. Res.
– volume: 286
  start-page: 937
  year: 1999
  end-page: 939
  article-title: Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan
  publication-title: Science
– start-page: 567
  year: 2003
  end-page: 591
– volume: 420
  start-page: 385
  year: 2002
  end-page: 389
  article-title: Recycled dehydrated lithosphere observed in plume‐influenced mid‐oceanic‐ridge basalt
  publication-title: Nature
– volume: 5
  year: 2004
  article-title: Subduction factory: 3. An Excel Worksheet and macro for calculating the densities, seismic wave speeds, and H O contents of minerals and rocks at pressure and temperature
  publication-title: Geochem. Geophys. Geosyst.
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.5674634
Snippet A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our...
SourceID pascalfrancis
wiley
istex
SourceType Index Database
Publisher
SubjectTerms convergent margins
Earth sciences
Earth, ocean, space
Exact sciences and technology
geochemical cycles
metamorphic reactions
subduction zones
Title Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide
URI https://api.istex.fr/ark:/67375/WNG-FWC73SNC-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010JB007922
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtNAdBRSISEkBAXUsFRzQL2EBHs8tmNuSZSmCkpapa3am2V7ZkTUEEdZRMO38XG8WbwFkAoXa55H4-2t8_wWhD5Escd86bkPROC2qB8DS3X8oGU5Tiw4oSxSXSLGE-_smo5u3dta7Wcpamm7idvJjz_mlfwPVuEc4FVmyf4DZvOLwgkYA37hCBiG44NwDFzPdPVX0zdHlW-ibZAiy83XVtbgdtMU8-29ctmTc51QsjYrpTMB6GDdVJVTv89YNTKosFaHPF1mKM2i9eTNLtP5jDUH8HC5X1lmRH3hd1qeqfjf5qBdSLosjkP-xZcSaZrPXe5WUbLVnR4HssVLc5zPdWPTzA0eRIDx3C67K1TSXtldseeW1G62IoApc3HKwoZaQ6lzYJd4LUKsqtzWSZqGQHt2SYfnGu43BWERWV9VhgCMemAeBTopulqHe08_5lGL0epOhsH5bngzGYanN33fuZz0w_EjdEBgk0Lq6KA3mFxMcx-fqtVThBzZVCURawDkbKcCkDLglAFaBtwy4GUABT2hW2-aj2dyPOB1P5VfFrZgUnrcyxDgaA0kI3T7lurWTNlWV8_RM0NmuKsp_AWq8cUhOuqu5W-a9NsOn2A11gS4PkSPdQfVHYyG3IwaY6C0dKUgWNCfz2AvZuaenic8Wpji7LDoQl_oJZoWHIQNB33GtI33-AdL_sGpwMA_WPIPLvgHK_7BOf-8Qteng6v-Wct0GWnNHB9MNCYL4SaOLyIBgimCDTT3QGYRRlwiOtRKWNShhFuMdWxBBE144LlghNsW42BLM-c1qi_SBT9C2I5sL7FkoEEQ01jEge-4AReOzywmfMdroBP19cOlriQT_o2iGui4gp58AXECD_Z4fgN9VPjKJ1QsCQnCMrLD0XDas2WoxZuH3vgtelIw7TtU36y2_D1Y3Zv42BD3LxbDx_0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subduction+factory%3A+4.+Depth-dependent+flux+of+H2O+from+subducting+slabs+worldwide&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=van+Keken%2C+Peter+E.&rft.au=Hacker%2C+Bradley+R.&rft.au=Syracuse%2C+Ellen+M.&rft.au=Abers%2C+Geoff+A.&rft.date=2011-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=116&rft.issue=B1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2010JB007922&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FWC73SNC_M
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon