Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide
A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our calculations indicate that mineralogically bound water can pass efficiently through old and fast subduction zones (e.g., in the western Pacific),...
Saved in:
Published in | Journal of Geophysical Research: Solid Earth Vol. 116; no. B1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.01.2011
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our calculations indicate that mineralogically bound water can pass efficiently through old and fast subduction zones (e.g., in the western Pacific), whereas hot subduction zones such as Cascadia see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust, including sediments and volcanic rocks, is predicted to dehydrate significantly. The degree and depth of dehydration in the deeper crust and uppermost mantle are highly diverse and depend strongly on composition (gabbro versus peridotite) and local pressure and temperature conditions. The upper mantle dehydrates at intermediate depths in all but the coldest subduction zones. On average, about one third of the bound H2O subducted globally in slabs reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The predicted global flux of H2O to the deep mantle is smaller than previous estimates but still amounts to about one ocean mass over the age of the Earth. At this rate, the overall mantle H2O content increases by 0.037 wt % (370 ppm) over the age of the Earth. This is qualitatively consistent with inferred H2O concentrations in the Earth's mantle assuming that secular cooling of the Earth has increased the efficiency of volatile recycling over time. |
---|---|
AbstractList | A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our calculations indicate that mineralogically bound water can pass efficiently through old and fast subduction zones (e.g., in the western Pacific), whereas hot subduction zones such as Cascadia see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust, including sediments and volcanic rocks, is predicted to dehydrate significantly. The degree and depth of dehydration in the deeper crust and uppermost mantle are highly diverse and depend strongly on composition (gabbro versus peridotite) and local pressure and temperature conditions. The upper mantle dehydrates at intermediate depths in all but the coldest subduction zones. On average, about one third of the bound H2O subducted globally in slabs reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The predicted global flux of H2O to the deep mantle is smaller than previous estimates but still amounts to about one ocean mass over the age of the Earth. At this rate, the overall mantle H2O content increases by 0.037 wt % (370 ppm) over the age of the Earth. This is qualitatively consistent with inferred H2O concentrations in the Earth's mantle assuming that secular cooling of the Earth has increased the efficiency of volatile recycling over time. |
Author | van Keken, Peter E. Syracuse, Ellen M. Hacker, Bradley R. Abers, Geoff A. |
Author_xml | – sequence: 1 givenname: Peter E. surname: van Keken fullname: van Keken, Peter E. email: keken@umich.edu organization: Department of Geological Sciences, University of Michigan, Michigan, Ann Arbor, USA – sequence: 2 givenname: Bradley R. surname: Hacker fullname: Hacker, Bradley R. organization: Department of Earth Science, University of California, California, Santa Barbara, USA – sequence: 3 givenname: Ellen M. surname: Syracuse fullname: Syracuse, Ellen M. organization: Department of Geoscience, University of Wisconsin-Madison, Wisconsin, Madison, USA – sequence: 4 givenname: Geoff A. surname: Abers fullname: Abers, Geoff A. organization: Lamont-Doherty Earth Observatory, Columbia University, New York, Palisades, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23960807$$DView record in Pascal Francis |
BookMark | eNpNkMFPwjAYxRuDiYjc_AN68Tj8-q1dN2-CAhKEBDQcm7K2Oh0bWUeA_14IhPgu7_De7x3eLWkUZWEJuWfQYYDJIwKDURdAJohXpIlMRAEiYIM0gfE4AER5Q9re_8BBXEQcWJPM5pul2aR1VhbU6bQuq_0T5R36Ytf1d2Ds2hbGFjV1-WZHS0eHOKWuKlfUn7nii_pcLz3dllVutpmxd-Ta6dzb9tlb5LP_-tEbBuPp4K33PA6yUDIZGB6jTEPptDOa60gKG3G5RIMCXcwhNTrmaMGYmDl0PLVJJITgDIwFJkzYIg-n3bX2qc5dpYs082pdZStd7RWGSQQxyEMvPPW2WW73l5yBOv6m_v-mRoNZl0USj1RwojJf292F0tWvimQohVpMBqq_6MlwPump9_APX2hxmQ |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW |
DOI | 10.1029/2010JB007922 |
DatabaseName | Istex Pascal-Francis |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | n/a |
ExternalDocumentID | 23960807 JGRB16727 ark_67375_WNG_FWC73SNC_M |
Genre | article |
GeographicLocations | West Pacific Pacific Ocean |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AGYGG IQODW |
ID | FETCH-LOGICAL-i3717-d4827c37fafda4a675e647b2d252f840cda842e0dd81f2f4ce96555410de015d3 |
ISSN | 0148-0227 |
IngestDate | Mon Jul 21 09:13:51 EDT 2025 Wed Jan 22 16:56:05 EST 2025 Wed Oct 30 09:47:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B1 |
Keywords | gabbros global Thick plate metamorphic facies Earth temperature subduction zones dehydration efficiency geologic sections volcanic rocks upper mantle recycling concentration igneous rocks pressure crust upper crust subduction depth plutonic rocks cooling ultramafics age slabs volatiles peridotites |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-i3717-d4827c37fafda4a675e647b2d252f840cda842e0dd81f2f4ce96555410de015d3 |
Notes | Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3. ArticleID:2010JB007922 ark:/67375/WNG-FWC73SNC-M istex:15586177A8338CEEC625F4528D7169600C7102B9 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2010JB007922 |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_23960807 wiley_primary_10_1029_2010JB007922_JGRB16727 istex_primary_ark_67375_WNG_FWC73SNC_M |
PublicationCentury | 2000 |
PublicationDate | January 2011 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: January 2011 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Journal of Geophysical Research: Solid Earth |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Nakajima, J., Y. Tsuji, A. Hasegawa, S. Kita, T. Okada, and T. Matsuzawa (2009), Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: Evidence for dehydration embrittlement as a cause of interslab earthquakes, Gondwana Res., 16, 470-481, doi:10.1016/j.gr.2008.12.010. Grove, T. L., N. Chatterjee, S. W. Parman, and E. Médard (2006), The influence of H2O on mantle wedge melting, Earth Planet. Sci. Lett., 249, 74-89, doi:10.1016/j.epsl.2006.06.043. Bebout, G. E. (2007), Metamorphic chemical geodynamics of subduction zones, Earth Planet. Sci. Lett., 260(3-4), 373-393, doi:10.1016/j.epsl.2007.05.050. Wada, I., and K. L. Wang (2009), Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 10, Q10009, doi:10.1029/2009GC002570. Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293, 1460-1463, doi:10.1126/science.1062235. Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108, doi:10.1016/0012-821X(96)00154-9. Hebert, L. B., P. Antoschechkina, P. Asimow, and M. Gurnis (2009), Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics, Earth Planet. Sci. Lett., 278, 243-256, doi:10.1016/j.epsl.2008.12.013. Hyndman, R. D., and S. M. Peacock (2003), Serpentinization of the fore-arc mantle, Earth Planet. Sci. Lett., 212, 417-432, doi:10.1016/S0012-821X(03)00263-2. Jarrard, R. D. (2003), Subduction fluxes of water, carbon dioxide, chlorine and potassium, Geochem. Geophys. Geosyst., 4(5), 8905, doi:10.1029/2002GC000392. Abers, G. A., P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik (2006), The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow, Earth Planet. Sci. Lett., 241, 387-397, doi:10.1016/j.epsl.2005.11.055. Syracuse, E. M., and G. A. Abers (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst., 7, Q05017, doi:10.1029/2005GC001045. MacKenzie, L. M., G. A. Abers, S. Rondenay, and K. M. Fischer (2010), Imaging a steeply dipping subducting slab in southern Central America, Earth Planet. Sci. Lett., 296, 459-468, doi:10.1016/j.epsl.2010.05.033. McCulloch, M. T., and J. A. Gamble (1991), Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358-374, doi:10.1016/0012-821X(91)90029-H. Rondenay, S., G. A. Abers, and P. E. van Keken (2008), Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278, doi:10.1130/G24112A.1. Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003b), Subduction factory: 2. Are intermediate depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108(B1), 2030, doi:10.1029/2001JB001129. Holland, T. J. B., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343, doi:10.1111/j.1525-1314.1998.00140.x. Stachnik, J. C., G. A. Abers, and D. H. Christensen (2004), Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res., 109, B10304, doi:10.1029/2004JB003018. Tollstrup, D., J. Gill, A. Kent, D. Prinkey, R. Williams, Y. Tamura, and O. Ishizuka (2010), Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited, Geochem. Geophys. Geosyst., 11, Q01X10, doi:10.1029/2009GC002847. Gerya, T. V., and D. A. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones, Earth Planet. Sci. Lett., 212, 47-62, doi:10.1016/S0012-821X(03)00265-6. Aizawa, Y., A. Barnhoorn, U. H. Faul, J. D. Fitz Gerald, I. Jackson, and I. Kovacs (2008), Seismic properties of Anita Bay Dunite: An exploratory study of the influence of water, J. Petrol., 49, 841-855, doi:10.1093/petrology/egn007. Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoku arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187, doi:10.1016/0040-1951(89)90011-5. Billen, M. I., M. Gurnis, and M. Simons (2003), Multiscale dynamics of the Tonga-Kermadec subduction zone, Geophys. J. Int., 153, 359-388, doi:10.1046/j.1365-246X.2003.01915.x. Hashida, T. (1989), Three-dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications, Tectonophysics, 159, 163-180, doi:10.1016/0040-1951(89)90126-1. Karato, S., and P. Wu (1993), Rheology of the upper mantle: A synthesis, Science, 260, 771-778, doi:10.1126/science.260.5109.771. Behn, M. D., G. Hirth, P. B. Kelemen, and B. R. Hacker (2009), Implications of sediment diapirs on the H2O flux into the mantle at arcs, Eos. Trans. AGU, 90(52), Fall Meet. Suppl., Abstract T31D-01. Peacock, S. M., and K. Wang (1999), Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan, Science, 286, 937-939, doi:10.1126/science.286.5441.937. van Keken, P. E., C. Currie, S. D. King, M. D. Behn, A. Cagnioncle, J. He, R. F. Katz, S.-C. Lin, M. Spiegelman, and K. Wang (2008), A community benchmark for subduction zone modeling, Phys. Earth Planet. Inter., 171, 187-197, doi:10.1016/j.pepi.2008.04.015. Arcay, D., E. Tric, and M.-P. Doin (2007), Slab surface temperature in subduction zones: Influence of the interpolate decoupling depth and upper plate thinning processes, Earth Planet. Sci. Lett., 255, 324-338, doi:10.1016/j.epsl.2006.12.027. Lefeldt, M., I. Grevemeyer, J. Gossler, and J. Bialas (2009), Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise, Geophys. J. Int., 178, 742-752, doi:10.1111/j.1365-246X.2009.04167.x. Blackman, D. K., J. R. Cann, B. Janssen, and D. K. Smith (1998), Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis fracture zone, J. Geophys. Res., 103, 21,315-21,333, doi:10.1029/98JB01756. Jadamec, M. A., and M. I. Billen (2010), Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge, Nature, 465, 338-341, doi:10.1038/nature09053. Rüpke, L. H., J. P. Morgan, and J. A. D. Connolly (2004), Serpentine and the subduction zone water cycle, Earth Planet. Sci. Lett., 223, 17-34, doi:10.1016/j.epsl.2004.04.018. Holland, G., and C. J. Ballentine (2006), Seawater subduction controls the heavy noble gas composition of the mantle, Nature, 441, 186-191, doi:10.1038/nature04761. Syracuse, E. M., P. E. van Keken, and G. A. Abers (2010), The global range of subduction zone thermal models, Phys. Earth Planet. Inter., 51(8), 1761-1782, doi:10.1016/j.pepi.2010.02.004. Brandenburg, J. P., E. H. Hauri, P. E. van Keken, and C. J. Ballentine (2008), A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects, Earth Planet. Sci. Lett., 276, 1-13, doi:10.1016/j.epsl.2008.08.027. Lee, C., and S. D. King (2010), Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach, Geology, 38, 583-586, doi:10.1130/G30714.1. Hacker, B. R. (2008), H2O subduction beyond arcs, Geochem. Geophys. Geosyst., 9, Q03001, doi:10.1029/2007GC001707. Faccenda, M., T. V. Gerya, and L. Burlini (2009), Deep slab hydration induced by bending-related variations in tectonic pressure, Nat. Geosci., 2, 790-793, doi:10.1038/ngeo656. Peacock, S. M. (1990), Fluids processes in subduction zones, Science, 248, 329-337, doi:10.1126/science.248.4953.329. Kita, S., T. Okada, J. Nakajima, T. Matsuzawa, and A. Hasegawa (2006), Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70-100 km beneath NE Japan, Geophys. Res. Lett., 33, L24310, doi:10.1029/2006GL028239. Yoshimoto, K., U. Wegler, and A. Korn (2006), A volcanic front as a boundary of seismic attenuation structures in northeastern Honshu, Japan, Bull. Seismol. Soc. Am., 96, 637-646, doi:10.1785/0120050085. Connolly, J. A. D. (2009), The geodynamic equation of state: What and how, Geochem. Geophys. Geosyst., 10, Q10014, doi:10.1029/2009GC002540. Lee, C., and S. D. King (2009), Effect of mantle compressibility on the thermal and flow structures of subduction zones, Geochem. Geophys. Geosyst., 10, Q01006, doi:10.1029/2008GC002151. Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325-394, doi:10.1016/S0009-2541(97)00150-2. Currie, C. A., and R. D. Hyndman (2006), The thermal structure of subduction zone back arcs, J. Geophys. Res., 111, B08404, doi:10.1029/2005JB004024. Korenaga, J. (2003), Energetics of mantle convection and the fate of fossil heat, Geophys. Res. Lett., 30(8), 1437, doi:10.1029/2003GL016982. Kirby, S. H., W. B. Durham, and L. A. Stern (1991), Mantle phase changes and deep-earthquake faulting in subducted lithosphere, Science, 252, 216-225, doi:10.1126/science.252.5003.216. van Keken, P. E., B. Kiefer, and S. M. Peacock (2002), High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water to the deep mantle, Geochem. Geophys. Geosyst., 3(10), 1056, doi:10.1029/2001GC000256. Hacker, B. R., and G. A. Abers (2004), Subduction factory: 3. An Excel Worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature, Geochem. Geophys. Geosyst., 5, Q01005, doi:10.1029/2003GC000614. Hirschmann, M. M. (2006), Water, melting, and the deep Earth H2O cycle, Annu. Rev. Earth Planet. Sci., 34, 629-653, doi:10.1146/annurev.earth.34.031405.125211. Plank, T., L. B. Cooper, and C. E. Manning (2009), Emerging geothermometers for estimating slab surface tempe 2010; 11 2007; 260 2006; 34 1989; 159 2006; 33 2010; 465 2008; 9 2008; 36 1999; 286 2004; 5 2009; 278 1996; 144 2003; 153 1998; 16 2007; 255 2002; 47 2001; 293 1991; 102 2005; 140 2009; 10 2009; 90 2002; 420 1986 1992; 359 1995; 126 2003; 4 2006; 241 2008; 113 2006; 248 2008; 276 2008; 275 2006; 249 2009; 16 2006; 441 1991; 252 2007; 200 2004; 42 2010; 38 1990; 248 2006; 96 1986; 50 2004; 223 1993; 260 2006; 7 1996; 96 2009; 178 2002; 3 2003 2004; 109 2003; 212 2004; 228 2003; 30 2006; 111 2007; 112 1994; 121 2003; 108 2003; 425 1989; 164 2008; 49 2010; 296 1998; 103 1993; 114 2009; 2 1998; 145 2010; 51 2008; 171 |
References_xml | – reference: Nakajima, J., Y. Tsuji, A. Hasegawa, S. Kita, T. Okada, and T. Matsuzawa (2009), Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: Evidence for dehydration embrittlement as a cause of interslab earthquakes, Gondwana Res., 16, 470-481, doi:10.1016/j.gr.2008.12.010. – reference: Wallace, P. J. (2005), Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geotherm. Res., 140, 217-240, doi:10.1016/j.jvolgeores.2004.07.023. – reference: Holland, G., and C. J. Ballentine (2006), Seawater subduction controls the heavy noble gas composition of the mantle, Nature, 441, 186-191, doi:10.1038/nature04761. – reference: Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoku arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187, doi:10.1016/0040-1951(89)90011-5. – reference: Dixon, J. E., L. Leist, C. Langmuir, and J.-G. Schilling (2002), Recycled dehydrated lithosphere observed in plume-influenced mid-oceanic-ridge basalt, Nature, 420, 385-389, doi:10.1038/nature01215. – reference: Stachnik, J. C., G. A. Abers, and D. H. Christensen (2004), Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res., 109, B10304, doi:10.1029/2004JB003018. – reference: Billen, M. I., M. Gurnis, and M. Simons (2003), Multiscale dynamics of the Tonga-Kermadec subduction zone, Geophys. J. Int., 153, 359-388, doi:10.1046/j.1365-246X.2003.01915.x. – reference: Yoshimoto, K., U. Wegler, and A. Korn (2006), A volcanic front as a boundary of seismic attenuation structures in northeastern Honshu, Japan, Bull. Seismol. Soc. Am., 96, 637-646, doi:10.1785/0120050085. – reference: Blackman, D. K., J. R. Cann, B. Janssen, and D. K. Smith (1998), Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis fracture zone, J. Geophys. Res., 103, 21,315-21,333, doi:10.1029/98JB01756. – reference: MacKenzie, L. M., G. A. Abers, S. Rondenay, and K. M. Fischer (2010), Imaging a steeply dipping subducting slab in southern Central America, Earth Planet. Sci. Lett., 296, 459-468, doi:10.1016/j.epsl.2010.05.033. – reference: Plank, T., L. B. Cooper, and C. E. Manning (2009), Emerging geothermometers for estimating slab surface temperatures, Nat. Geosci., 2, 611-615, doi:10.1038/ngeo614. – reference: Lefeldt, M., I. Grevemeyer, J. Gossler, and J. Bialas (2009), Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise, Geophys. J. Int., 178, 742-752, doi:10.1111/j.1365-246X.2009.04167.x. – reference: Grove, T. L., N. Chatterjee, S. W. Parman, and E. Médard (2006), The influence of H2O on mantle wedge melting, Earth Planet. Sci. Lett., 249, 74-89, doi:10.1016/j.epsl.2006.06.043. – reference: Hashida, T. (1989), Three-dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications, Tectonophysics, 159, 163-180, doi:10.1016/0040-1951(89)90126-1. – reference: Skora, S., and J. Blundy (2010), High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism, J. Petrol., 51(11), 2211-2243, doi:10.1093/petrology/egq054. – reference: Stein, C. A., and S. Stein (1992), A model for the global variation in oceanic depth and heat-flow with lithospheric age, Nature, 359, 123-129, doi:10.1038/359123a0. – reference: Abers, G. A., P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik (2006), The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow, Earth Planet. Sci. Lett., 241, 387-397, doi:10.1016/j.epsl.2005.11.055. – reference: Hyndman, R. D., and S. M. Peacock (2003), Serpentinization of the fore-arc mantle, Earth Planet. Sci. Lett., 212, 417-432, doi:10.1016/S0012-821X(03)00263-2. – reference: Ranero, C. R., J. P. Morgan, K. McIntosh, and C. Reichert (2003), Bending related faulting and mantle serpentinization at the Middle America Trench, Nature, 425, 367-373, doi:10.1038/nature01961. – reference: Shaw, A. M., E. H. Hauri, T. P. Fischer, D. R. Hilton, and K. A. Kelley (2008), Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle, Earth Planet. Sci. Lett., 275, 138-145, doi:10.1016/j.epsl.2008.08.015. – reference: Syracuse, E. M., G. A. Abers, K. Fischer, L. MacKenzie, C. Rychert, M. Protti, V. Gonzalez, and W. Strauch (2008), Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle, Geochem. Geophys. Geosyst., 9, Q07S08, doi:10.1029/2008GC001963. – reference: Wada, I., and K. L. Wang (2009), Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 10, Q10009, doi:10.1029/2009GC002570. – reference: Hacker, B. R., and G. A. Abers (2004), Subduction factory: 3. An Excel Worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature, Geochem. Geophys. Geosyst., 5, Q01005, doi:10.1029/2003GC000614. – reference: Kelley, K. A., T. Plank, S. Newman, E. M. Stolper, T. L. Grove, S. Parman, and E. H. Hauri (2010), Mantle melting as a function of water content beneath the Mariana Arc, J. Petrol., 51, 1711-1738, doi:10.1093/petrology/egq036. – reference: Korenaga, J. (2003), Energetics of mantle convection and the fate of fossil heat, Geophys. Res. Lett., 30(8), 1437, doi:10.1029/2003GL016982. – reference: Currie, C. A., and R. D. Hyndman (2006), The thermal structure of subduction zone back arcs, J. Geophys. Res., 111, B08404, doi:10.1029/2005JB004024. – reference: Hirschmann, M. M. (2006), Water, melting, and the deep Earth H2O cycle, Annu. Rev. Earth Planet. Sci., 34, 629-653, doi:10.1146/annurev.earth.34.031405.125211. – reference: Ivandic, M., I. Grevemeyer, A. Berhorst, E. R. Flueh, and K. D. McIntosh (2008), Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua, J. Geophys. Res., 113, B05410, doi:10.1029/2007JB005291. – reference: Cagnioncle, A.-M., E. M. Parmentier, and L. T. Elkins-Tanton (2007), Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries, J. Geophys. Res., 112, B09402, doi:10.1029/2007JB004934. – reference: Schmidt, M. W., D. Vielzeuf, and E. Auzanneau (2004), Melting and dissolution of subducted crust at high pressures: The key role of white mica, Earth Planet. Sci. Lett., 228, 65-84, doi:10.1016/j.epsl.2004.09.020. – reference: Hirth, G., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108, doi:10.1016/0012-821X(96)00154-9. – reference: Rondenay, S., G. A. Abers, and P. E. van Keken (2008), Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278, doi:10.1130/G24112A.1. – reference: Peacock, S. M., and K. Wang (1999), Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan, Science, 286, 937-939, doi:10.1126/science.286.5441.937. – reference: Rychert, C., K. M. Fischer, G. A. Abers, T. Plank, E. Syracuse, J. M. Protti, V. Gonzalez, and W. Strauch (2008), Strong along-arc variation in attenuation in the mantle wedge beneath Costa Rica and Nicaragua, Geochem. Geophys. Geosyst., 9, Q10S10, doi:10.1029/2008GC002040. – reference: Aizawa, Y., A. Barnhoorn, U. H. Faul, J. D. Fitz Gerald, I. Jackson, and I. Kovacs (2008), Seismic properties of Anita Bay Dunite: An exploratory study of the influence of water, J. Petrol., 49, 841-855, doi:10.1093/petrology/egn007. – reference: Barnes, J. D., Z. D. Sharp, T. P. Fischer, D. R. Hilton, and M. J. Carr (2009), Chlorine isotope variations along the Central American volcanic front and back arc, Geochem. Geophys. Geosyst., 10, Q11S17, doi:10.1029/2009GC002587. – reference: Jadamec, M. A., and M. I. Billen (2010), Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge, Nature, 465, 338-341, doi:10.1038/nature09053. – reference: Cuvelier, C., A. Segal, and A. A. van Steenhoven (1986), Finite Element Models and the Navier-Stokes Equations, D. Reidel, Dordrecht, Netherlands. – reference: Hacker, B. R. (2008), H2O subduction beyond arcs, Geochem. Geophys. Geosyst., 9, Q03001, doi:10.1029/2007GC001707. – reference: Arcay, D., E. Tric, and M.-P. Doin (2007), Slab surface temperature in subduction zones: Influence of the interpolate decoupling depth and upper plate thinning processes, Earth Planet. Sci. Lett., 255, 324-338, doi:10.1016/j.epsl.2006.12.027. – reference: Gerya, T. V., and D. A. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones, Earth Planet. Sci. Lett., 212, 47-62, doi:10.1016/S0012-821X(03)00265-6. – reference: Peacock, S. M. (1990), Fluids processes in subduction zones, Science, 248, 329-337, doi:10.1126/science.248.4953.329. – reference: Karato, S., and P. Wu (1993), Rheology of the upper mantle: A synthesis, Science, 260, 771-778, doi:10.1126/science.260.5109.771. – reference: van Keken, P. E., B. Kiefer, and S. M. Peacock (2002), High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water to the deep mantle, Geochem. Geophys. Geosyst., 3(10), 1056, doi:10.1029/2001GC000256. – reference: Nadeau, S., P. Philippot, and F. Pineau (1993), Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of loca fluid migration during high-pressure metamorphism, Earth Planet. Sci. Lett., 114, 431-448, doi:10.1016/0012-821X(93)90074-J. – reference: Vlaar, N. J., P. E. van Keken, and A. P. van den Berg (1994), Cooling of the Earth in the Archaean, Earth Planet. Sci. Lett., 121, 1-18, doi:10.1016/0012-821X(94)90028-0. – reference: Clift, P., and P. Vannucchi (2004), Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust, Rev. Geophys., 42, RG2001, doi:10.1029/2003RG000127. – reference: van Keken, P. E., C. Currie, S. D. King, M. D. Behn, A. Cagnioncle, J. He, R. F. Katz, S.-C. Lin, M. Spiegelman, and K. Wang (2008), A community benchmark for subduction zone modeling, Phys. Earth Planet. Inter., 171, 187-197, doi:10.1016/j.pepi.2008.04.015. – reference: Brandenburg, J. P., E. H. Hauri, P. E. van Keken, and C. J. Ballentine (2008), A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects, Earth Planet. Sci. Lett., 276, 1-13, doi:10.1016/j.epsl.2008.08.027. – reference: Hebert, L. B., P. Antoschechkina, P. Asimow, and M. Gurnis (2009), Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics, Earth Planet. Sci. Lett., 278, 243-256, doi:10.1016/j.epsl.2008.12.013. – reference: Kirby, S. H., W. B. Durham, and L. A. Stern (1991), Mantle phase changes and deep-earthquake faulting in subducted lithosphere, Science, 252, 216-225, doi:10.1126/science.252.5003.216. – reference: Tollstrup, D., J. Gill, A. Kent, D. Prinkey, R. Williams, Y. Tamura, and O. Ishizuka (2010), Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited, Geochem. Geophys. Geosyst., 11, Q01X10, doi:10.1029/2009GC002847. – reference: Wiens, D. A., K. A. Kelley, and T. Plank (2006), Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology and bathymetry, Earth Planet. Sci. Lett., 248, 16-27, doi:10.1016/j.epsl.2006.04.011. – reference: Lee, C., and S. D. King (2010), Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach, Geology, 38, 583-586, doi:10.1130/G30714.1. – reference: Rüpke, L. H., J. P. Morgan, and J. A. D. Connolly (2004), Serpentine and the subduction zone water cycle, Earth Planet. Sci. Lett., 223, 17-34, doi:10.1016/j.epsl.2004.04.018. – reference: Lee, C., and S. D. King (2009), Effect of mantle compressibility on the thermal and flow structures of subduction zones, Geochem. Geophys. Geosyst., 10, Q01006, doi:10.1029/2008GC002151. – reference: Bebout, G. E. (2007), Metamorphic chemical geodynamics of subduction zones, Earth Planet. Sci. Lett., 260(3-4), 373-393, doi:10.1016/j.epsl.2007.05.050. – reference: Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325-394, doi:10.1016/S0009-2541(97)00150-2. – reference: Connolly, J. A. D. (2009), The geodynamic equation of state: What and how, Geochem. Geophys. Geosyst., 10, Q10014, doi:10.1029/2009GC002540. – reference: Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003b), Subduction factory: 2. Are intermediate depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108(B1), 2030, doi:10.1029/2001JB001129. – reference: Holland, T. J. B., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343, doi:10.1111/j.1525-1314.1998.00140.x. – reference: Jarrard, R. D. (2003), Subduction fluxes of water, carbon dioxide, chlorine and potassium, Geochem. Geophys. Geosyst., 4(5), 8905, doi:10.1029/2002GC000392. – reference: Syracuse, E. M., and G. A. Abers (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst., 7, Q05017, doi:10.1029/2005GC001045. – reference: Behn, M. D., G. Hirth, P. B. Kelemen, and B. R. Hacker (2009), Implications of sediment diapirs on the H2O flux into the mantle at arcs, Eos. Trans. AGU, 90(52), Fall Meet. Suppl., Abstract T31D-01. – reference: Faccenda, M., T. V. Gerya, and L. Burlini (2009), Deep slab hydration induced by bending-related variations in tectonic pressure, Nat. Geosci., 2, 790-793, doi:10.1038/ngeo656. – reference: Kita, S., T. Okada, J. Nakajima, T. Matsuzawa, and A. Hasegawa (2006), Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70-100 km beneath NE Japan, Geophys. Res. Lett., 33, L24310, doi:10.1029/2006GL028239. – reference: McCulloch, M. T., and J. A. Gamble (1991), Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358-374, doi:10.1016/0012-821X(91)90029-H. – reference: Syracuse, E. M., P. E. van Keken, and G. A. Abers (2010), The global range of subduction zone thermal models, Phys. Earth Planet. Inter., 51(8), 1761-1782, doi:10.1016/j.pepi.2010.02.004. – reference: Hart, S., D. C. Gerlach, and W. M. White (1986), A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing, Geochim. Cosmochim. Acta, 50, 1551-1557, doi:10.1016/0016-7037(86)90329-7. – reference: Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293, 1460-1463, doi:10.1126/science.1062235. – reference: Bebout, G. E. (1995), The impact of subduction-zone metamorphism on mantle-ocean chemical cycling, Chem. Geol., 126, 191-218, doi:10.1016/0009-2541(95)00118-5. – reference: Hacker, B. R., G. A. Abers, and S. M. Peacock (2003a), Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents, J. Geophys. Res., 108(B1), 2029, doi:10.1029/2001JB001127. – volume: 200 start-page: 9 year: 2007 end-page: 33 – volume: 50 start-page: 1551 year: 1986 end-page: 1557 article-title: A possible new Sr‐Nd‐Pb mantle array and consequences for mantle mixing publication-title: Geochim. Cosmochim. Acta – volume: 47 start-page: 319 year: 2002 end-page: 370 – volume: 228 start-page: 65 year: 2004 end-page: 84 article-title: Melting and dissolution of subducted crust at high pressures: The key role of white mica publication-title: Earth Planet. Sci. Lett. – volume: 51 start-page: 1711 year: 2010 end-page: 1738 article-title: Mantle melting as a function of water content beneath the Mariana Arc publication-title: J. Petrol. – volume: 10 year: 2009 article-title: Common depth of slab‐mantle decoupling: Reconciling diversity and uniformity of subduction zones publication-title: Geochem. Geophys. Geosyst. – volume: 33 year: 2006 article-title: Existence of a seismic belt in the upper plane of the double seismic zone extending in the along‐arc direction at depths of 70–100 km beneath NE Japan publication-title: Geophys. Res. Lett. – volume: 51 start-page: 2211 issue: 11 year: 2010 end-page: 2243 article-title: High‐pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism publication-title: J. Petrol. – volume: 249 start-page: 74 year: 2006 end-page: 89 article-title: The influence of H O on mantle wedge melting publication-title: Earth Planet. Sci. Lett. – volume: 10 year: 2009 article-title: Chlorine isotope variations along the Central American volcanic front and back arc publication-title: Geochem. Geophys. Geosyst. – volume: 113 year: 2008 article-title: Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua publication-title: J. Geophys. Res. – volume: 145 start-page: 325 year: 1998 end-page: 394 article-title: The chemical composition of subducting sediment and its consequences for the crust and mantle publication-title: Chem. Geol. – volume: 159 start-page: 163 year: 1989 end-page: 180 article-title: Three‐dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications publication-title: Tectonophysics – volume: 16 start-page: 309 year: 1998 end-page: 343 article-title: An internally consistent thermodynamic data set for phases of petrological interest publication-title: J. Metamorph. Geol. – volume: 9 year: 2008 article-title: Strong along‐arc variation in attenuation in the mantle wedge beneath Costa Rica and Nicaragua publication-title: Geochem. Geophys. Geosyst. – volume: 114 start-page: 431 year: 1993 end-page: 448 article-title: Fluid inclusion and mineral isotopic compositions (H‐C‐O) in eclogitic rocks as tracers of loca fluid migration during high‐pressure metamorphism publication-title: Earth Planet. Sci. Lett. – volume: 223 start-page: 17 year: 2004 end-page: 34 article-title: Serpentine and the subduction zone water cycle publication-title: Earth Planet. Sci. Lett. – volume: 11 year: 2010 article-title: Across‐arc geochemical trends in the Izu‐Bonin arc: Contributions from the subducting slab, revisited publication-title: Geochem. Geophys. Geosyst. – volume: 171 start-page: 187 year: 2008 end-page: 197 article-title: A community benchmark for subduction zone modeling publication-title: Phys. Earth Planet. Inter. – volume: 255 start-page: 324 year: 2007 end-page: 338 article-title: Slab surface temperature in subduction zones: Influence of the interpolate decoupling depth and upper plate thinning processes publication-title: Earth Planet. Sci. Lett. – volume: 293 start-page: 1460 year: 2001 end-page: 1463 article-title: Water‐induced fabric transitions in olivine publication-title: Science – year: 1986 – volume: 241 start-page: 387 year: 2006 end-page: 397 article-title: The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow publication-title: Earth Planet. Sci. Lett. – volume: 9 year: 2008 article-title: Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle publication-title: Geochem. Geophys. Geosyst. – volume: 140 start-page: 217 year: 2005 end-page: 240 article-title: Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data publication-title: J. Volcanol. Geotherm. Res. – volume: 248 start-page: 16 year: 2006 end-page: 27 article-title: Mantle temperature variations beneath back‐arc spreading centers inferred from seismology, petrology and bathymetry publication-title: Earth Planet. Sci. Lett. – volume: 425 start-page: 367 year: 2003 end-page: 373 article-title: Bending related faulting and mantle serpentinization at the Middle America Trench publication-title: Nature – volume: 90 issue: 52 year: 2009 article-title: Implications of sediment diapirs on the H O flux into the mantle at arcs publication-title: Eos. Trans. AGU – volume: 96 start-page: 195 year: 1996 end-page: 214 – volume: 3 issue: 10 year: 2002 article-title: High‐resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water to the deep mantle publication-title: Geochem. Geophys. Geosyst. – volume: 144 start-page: 93 year: 1996 end-page: 108 article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere publication-title: Earth Planet. Sci. Lett. – volume: 441 start-page: 186 year: 2006 end-page: 191 article-title: Seawater subduction controls the heavy noble gas composition of the mantle publication-title: Nature – volume: 38 start-page: 583 year: 2010 end-page: 586 article-title: Why are high‐Mg# andesites widespread in the western Aleutians? A numerical model approach publication-title: Geology – volume: 16 start-page: 470 year: 2009 end-page: 481 article-title: Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: Evidence for dehydration embrittlement as a cause of interslab earthquakes publication-title: Gondwana Res. – volume: 278 start-page: 243 year: 2009 end-page: 256 article-title: Emergence of a low‐viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics publication-title: Earth Planet. Sci. Lett. – volume: 276 start-page: 1 year: 2008 end-page: 13 article-title: A multiple‐system study of the geochemical evolution of the mantle with force‐balanced plates and thermochemical effects publication-title: Earth Planet. Sci. Lett. – volume: 359 start-page: 123 year: 1992 end-page: 129 article-title: A model for the global variation in oceanic depth and heat‐flow with lithospheric age publication-title: Nature – volume: 103 start-page: 21,315 year: 1998 end-page: 21,333 article-title: Origin of extensional core complexes: Evidence from the Mid‐Atlantic Ridge at Atlantis fracture zone publication-title: J. Geophys. Res. – volume: 252 start-page: 216 year: 1991 end-page: 225 article-title: Mantle phase changes and deep‐earthquake faulting in subducted lithosphere publication-title: Science – volume: 2 start-page: 611 year: 2009 end-page: 615 article-title: Emerging geothermometers for estimating slab surface temperatures publication-title: Nat. Geosci. – volume: 7 year: 2006 article-title: Global compilation of variations in slab depth beneath arc volcanoes and implications publication-title: Geochem. Geophys. Geosyst. – volume: 96 start-page: 637 year: 2006 end-page: 646 article-title: A volcanic front as a boundary of seismic attenuation structures in northeastern Honshu, Japan publication-title: Bull. Seismol. Soc. Am. – volume: 10 year: 2009 article-title: The geodynamic equation of state: What and how publication-title: Geochem. Geophys. Geosyst. – volume: 109 year: 2004 article-title: Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone publication-title: J. Geophys. Res. – volume: 2 start-page: 790 year: 2009 end-page: 793 article-title: Deep slab hydration induced by bending‐related variations in tectonic pressure publication-title: Nat. Geosci. – volume: 10 year: 2009 article-title: Effect of mantle compressibility on the thermal and flow structures of subduction zones publication-title: Geochem. Geophys. Geosyst. – volume: 108 issue: B1 year: 2003 article-title: Subduction factory: 2. Are intermediate depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? publication-title: J. Geophys. Res. – volume: 108 issue: B1 year: 2003 article-title: Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H O contents publication-title: J. Geophys. Res. – volume: 178 start-page: 742 year: 2009 end-page: 752 article-title: Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise publication-title: Geophys. J. Int. – volume: 42 year: 2004 article-title: Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust publication-title: Rev. Geophys. – volume: 111 year: 2006 article-title: The thermal structure of subduction zone back arcs publication-title: J. Geophys. Res. – volume: 121 start-page: 1 year: 1994 end-page: 18 article-title: Cooling of the Earth in the Archaean publication-title: Earth Planet. Sci. Lett. – volume: 30 issue: 8 year: 2003 article-title: Energetics of mantle convection and the fate of fossil heat publication-title: Geophys. Res. Lett. – volume: 153 start-page: 359 year: 2003 end-page: 388 article-title: Multiscale dynamics of the Tonga‐Kermadec subduction zone publication-title: Geophys. J. Int. – volume: 49 start-page: 841 year: 2008 end-page: 855 article-title: Seismic properties of Anita Bay Dunite: An exploratory study of the influence of water publication-title: J. Petrol. – volume: 34 start-page: 629 year: 2006 end-page: 653 article-title: Water, melting, and the deep Earth H O cycle publication-title: Annu. Rev. Earth Planet. Sci. – volume: 102 start-page: 358 year: 1991 end-page: 374 article-title: Geochemical and geodynamical constraints on subduction zone magmatism publication-title: Earth Planet. Sci. Lett. – volume: 126 start-page: 191 year: 1995 end-page: 218 article-title: The impact of subduction‐zone metamorphism on mantle‐ocean chemical cycling publication-title: Chem. Geol. – volume: 465 start-page: 338 year: 2010 end-page: 341 article-title: Reconciling surface plate motions with rapid three‐dimensional mantle flow around a slab edge publication-title: Nature – volume: 212 start-page: 417 year: 2003 end-page: 432 article-title: Serpentinization of the fore‐arc mantle publication-title: Earth Planet. Sci. Lett. – volume: 9 year: 2008 article-title: H O subduction beyond arcs publication-title: Geochem. Geophys. Geosyst. – volume: 260 start-page: 373 issue: 3–4 year: 2007 end-page: 393 article-title: Metamorphic chemical geodynamics of subduction zones publication-title: Earth Planet. Sci. Lett. – volume: 4 issue: 5 year: 2003 article-title: Subduction fluxes of water, carbon dioxide, chlorine and potassium publication-title: Geochem. Geophys. Geosyst. – volume: 260 start-page: 771 year: 1993 end-page: 778 article-title: Rheology of the upper mantle: A synthesis publication-title: Science – volume: 275 start-page: 138 year: 2008 end-page: 145 article-title: Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep‐Earth water cycle publication-title: Earth Planet. Sci. Lett. – volume: 296 start-page: 459 year: 2010 end-page: 468 article-title: Imaging a steeply dipping subducting slab in southern Central America publication-title: Earth Planet. Sci. Lett. – volume: 51 start-page: 1761 issue: 8 year: 2010 end-page: 1782 article-title: The global range of subduction zone thermal models publication-title: Phys. Earth Planet. Inter. – volume: 36 start-page: 275 year: 2008 end-page: 278 article-title: Seismic imaging of subduction zone metamorphism publication-title: Geology – volume: 164 start-page: 175 year: 1989 end-page: 187 article-title: Thermal state under the Tohoku arc with consideration of crustal heat generation publication-title: Tectonophysics – volume: 212 start-page: 47 year: 2003 end-page: 62 article-title: Rayleigh‐Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones publication-title: Earth Planet. Sci. Lett. – volume: 248 start-page: 329 year: 1990 end-page: 337 article-title: Fluids processes in subduction zones publication-title: Science – volume: 112 year: 2007 article-title: Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries publication-title: J. Geophys. Res. – volume: 286 start-page: 937 year: 1999 end-page: 939 article-title: Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan publication-title: Science – start-page: 567 year: 2003 end-page: 591 – volume: 420 start-page: 385 year: 2002 end-page: 389 article-title: Recycled dehydrated lithosphere observed in plume‐influenced mid‐oceanic‐ridge basalt publication-title: Nature – volume: 5 year: 2004 article-title: Subduction factory: 3. An Excel Worksheet and macro for calculating the densities, seismic wave speeds, and H O contents of minerals and rocks at pressure and temperature publication-title: Geochem. Geophys. Geosyst. |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 2.5674634 |
Snippet | A recent global compilation of the thermal structure of subduction zones is used to predict the metamorphic facies and H2O content of downgoing slabs. Our... |
SourceID | pascalfrancis wiley istex |
SourceType | Index Database Publisher |
SubjectTerms | convergent margins Earth sciences Earth, ocean, space Exact sciences and technology geochemical cycles metamorphic reactions subduction zones |
Title | Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide |
URI | https://api.istex.fr/ark:/67375/WNG-FWC73SNC-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010JB007922 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtNAdBRSISEkBAXUsFRzQL2EBHs8tmNuSZSmCkpapa3am2V7ZkTUEEdZRMO38XG8WbwFkAoXa55H4-2t8_wWhD5Escd86bkPROC2qB8DS3X8oGU5Tiw4oSxSXSLGE-_smo5u3dta7Wcpamm7idvJjz_mlfwPVuEc4FVmyf4DZvOLwgkYA37hCBiG44NwDFzPdPVX0zdHlW-ibZAiy83XVtbgdtMU8-29ctmTc51QsjYrpTMB6GDdVJVTv89YNTKosFaHPF1mKM2i9eTNLtP5jDUH8HC5X1lmRH3hd1qeqfjf5qBdSLosjkP-xZcSaZrPXe5WUbLVnR4HssVLc5zPdWPTzA0eRIDx3C67K1TSXtldseeW1G62IoApc3HKwoZaQ6lzYJd4LUKsqtzWSZqGQHt2SYfnGu43BWERWV9VhgCMemAeBTopulqHe08_5lGL0epOhsH5bngzGYanN33fuZz0w_EjdEBgk0Lq6KA3mFxMcx-fqtVThBzZVCURawDkbKcCkDLglAFaBtwy4GUABT2hW2-aj2dyPOB1P5VfFrZgUnrcyxDgaA0kI3T7lurWTNlWV8_RM0NmuKsp_AWq8cUhOuqu5W-a9NsOn2A11gS4PkSPdQfVHYyG3IwaY6C0dKUgWNCfz2AvZuaenic8Wpji7LDoQl_oJZoWHIQNB33GtI33-AdL_sGpwMA_WPIPLvgHK_7BOf-8Qteng6v-Wct0GWnNHB9MNCYL4SaOLyIBgimCDTT3QGYRRlwiOtRKWNShhFuMdWxBBE144LlghNsW42BLM-c1qi_SBT9C2I5sL7FkoEEQ01jEge-4AReOzywmfMdroBP19cOlriQT_o2iGui4gp58AXECD_Z4fgN9VPjKJ1QsCQnCMrLD0XDas2WoxZuH3vgtelIw7TtU36y2_D1Y3Zv42BD3LxbDx_0 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subduction+factory%3A+4.+Depth-dependent+flux+of+H2O+from+subducting+slabs+worldwide&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=van+Keken%2C+Peter+E.&rft.au=Hacker%2C+Bradley+R.&rft.au=Syracuse%2C+Ellen+M.&rft.au=Abers%2C+Geoff+A.&rft.date=2011-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=116&rft.issue=B1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2010JB007922&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FWC73SNC_M |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |