A spectral k-means approach to bright-field cell image segmentation
Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work we...
Saved in:
Published in | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Vol. 2010; pp. 4748 - 4751 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 1424441234 9781424441235 |
ISSN | 1094-687X 1557-170X |
DOI | 10.1109/IEMBS.2010.5626380 |
Cover
Loading…
Abstract | Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images. |
---|---|
AbstractList | Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images. |
Author | Wan, J W L Bradbury, L |
Author_xml | – sequence: 1 givenname: L surname: Bradbury fullname: Bradbury, L email: ldbradbury@uwaterloo.ca organization: Comput. Math., Univ. of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: J W L surname: Wan fullname: Wan, J W L email: jwlwan@uwaterloo.ca organization: Cheriton Sch. of Comput. Sci., Univ. of Waterloo, Waterloo, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21096019$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkFtLw0AQhVes2Kb6BxRk_0Dq7CV7eayhaqHigwq-ld1k0kZzIxsf_PcGWvVp-DjnDDMnIpOmbZCQKwYLxsDerldPdy8LDiMniith4IRETHIpJeOSn_6DkBMyGyMyVka_T0kUwgcAB0jYOZnyUVHA7IykSxo6zIbeVfQzrtE1gbqu61uX7enQUt-Xu_0QFyVWOc2wqmhZux3SgLsam8ENZdtckLPCVQEvj3NO3u5Xr-ljvHl-WKfLTVwKDUNsEb2wNscCc_AmwSLRVnGw2kuXKMDMGDBFIYxOpELhEPPcWe-0t45xLebk5rC3-_I15tuuH2_pv7e_34yG64OhRMQ_-diU-AHWX1om |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM |
DOI | 10.1109/IEMBS.2010.5626380 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1424441242 9781424441242 |
EndPage | 4751 |
ExternalDocumentID | 21096019 5626380 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM CGR CUY CVF ECM EIF IPLJI NPM |
ID | FETCH-LOGICAL-i370t-9eeb399defed0b85ef57962097b4a560ec8808ff387546e3aeedda9ba7b9a1273 |
IEDL.DBID | RIE |
ISBN | 1424441234 9781424441235 |
ISSN | 1094-687X 1557-170X |
IngestDate | Thu Jan 02 22:40:31 EST 2025 Wed Aug 27 02:53:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i370t-9eeb399defed0b85ef57962097b4a560ec8808ff387546e3aeedda9ba7b9a1273 |
PMID | 21096019 |
PageCount | 4 |
ParticipantIDs | pubmed_primary_21096019 ieee_primary_5626380 |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology |
PublicationTitleAbbrev | IEMBS |
PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020051 ssj0000452612 ssj0061641 |
Score | 1.5887122 |
Snippet | Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in... |
SourceID | pubmed ieee |
SourceType | Index Database Publisher |
StartPage | 4748 |
SubjectTerms | Active contours Algorithms Animals Approximation algorithms Artificial Intelligence Cell Line Cell Tracking - methods Clustering algorithms Image edge detection Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation Mice Microscopy Muscle Fibers, Skeletal - cytology Pattern Recognition, Automated - methods Pixel Reproducibility of Results Sensitivity and Specificity Subtraction Technique |
Title | A spectral k-means approach to bright-field cell image segmentation |
URI | https://ieeexplore.ieee.org/document/5626380 https://www.ncbi.nlm.nih.gov/pubmed/21096019 |
Volume | 2010 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH5BTnpxARW3zMGjA4VOlzkqgaAJxkRJuJGZ9tUQpBgsF3-9b6YLhnjw1DZNl3kzefv3DcCt7mHiOpHmLirBRdwLuTadOYH0eiIRiQwtO__42R9NxNPUm9bgrsLCIKJtPsO2ObW1_HgVbUyqrOMZ6pSQAvQ9WmY5VqvKpxhqcH9LHWWSJTbYovCF-2EwLUFdglS1KLmeimuvRNM4svM4GD-85i1fxecsX7Dx9A0bj92CZccFtaZoeAjjchB5B8qivcl0O_re4Xf87yiPoLkF_bGXypwdQw3TEzj4xVfYgP49s8jMtfpgC75EMnOsJCVn2YppG-pz2xXHTEmAzZekr9gXvi8LjFPahMlw8NYf8WIXBj53AyfjEineljLGBGNHhx4mBr7ac2SghSJ_CSNSAWGSuBT5CB9dRb8ZK6lVoKXqknd0CvV0leI5sEiGSA6hiHTsC9Wlg4vo0CvcmGZDBi1oGHHMPnOijVkhiRac5eKubpTzcfH3A5ewnxf5TabkCurZeoPX5Dtk-sYumh9rKLlK |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4QPKgXF1BxnYNHB0o7XeaoBAJKiYmQcCOd9tUQpBgsF3-9b6YLhnjw1DZN25k3zdu_bwi5lybElhFKZkHAGY9Mj0nVmeMK2-Qxj4Wn2fn9kdOf8OepPa2QhxILAwC6-Qya6lTX8qNVuFGpspatqFM8DND30O5zO0NrlRkVRQ7ubMmjVLpEh1sYwDDHc6cFrIujsuYF21N-bRd4GkO0Bl3_6S1r-so_qBmDla-v-Hj0Jiw7Tqg2Rr0j4hfTyHpQFs1NKpvh9w7D43_neUzqW9gffS0N2gmpQHJKDn8xFtZI55FqbOY6-KALtgQ0dLSgJafpikod7DPdF0dVUYDOl6ix6Be8L3OUU1Ink1533OmzfB8GNrdcI2UCMOIWIoIYIkN6NsQKwGoawpU8QI8JQlQCXhxbGPtwB6wAhxkFQgauFEEb_aMzUk1WCVwQGgoP0CXkoYwcHrTxYAEY-AorwtUQboPUlDhmnxnVxiyXRIOcZ-IubxTrcfn3A3dkvz_2h7PhYPRyRQ6ykr_Km1yTarrewA16Eqm81T_QD1eKvJc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology&rft.atitle=A+spectral+k-means+approach+to+bright-field+cell+image+segmentation&rft.au=Bradbury%2C+L&rft.au=Wan%2C+J+W+L&rft.date=2010-01-01&rft.pub=IEEE&rft.isbn=9781424441235&rft.issn=1094-687X&rft.spage=4748&rft.epage=4751&rft_id=info:doi/10.1109%2FIEMBS.2010.5626380&rft_id=info%3Apmid%2F21096019&rft.externalDocID=5626380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon |