A spectral k-means approach to bright-field cell image segmentation

Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work we...

Full description

Saved in:
Bibliographic Details
Published in2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Vol. 2010; pp. 4748 - 4751
Main Authors Bradbury, L, Wan, J W L
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2010
Subjects
Online AccessGet full text
ISBN1424441234
9781424441235
ISSN1094-687X
1557-170X
DOI10.1109/IEMBS.2010.5626380

Cover

Loading…
Abstract Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.
AbstractList Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.
Author Wan, J W L
Bradbury, L
Author_xml – sequence: 1
  givenname: L
  surname: Bradbury
  fullname: Bradbury, L
  email: ldbradbury@uwaterloo.ca
  organization: Comput. Math., Univ. of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: J W L
  surname: Wan
  fullname: Wan, J W L
  email: jwlwan@uwaterloo.ca
  organization: Cheriton Sch. of Comput. Sci., Univ. of Waterloo, Waterloo, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21096019$$D View this record in MEDLINE/PubMed
BookMark eNpFkFtLw0AQhVes2Kb6BxRk_0Dq7CV7eayhaqHigwq-ld1k0kZzIxsf_PcGWvVp-DjnDDMnIpOmbZCQKwYLxsDerldPdy8LDiMniith4IRETHIpJeOSn_6DkBMyGyMyVka_T0kUwgcAB0jYOZnyUVHA7IykSxo6zIbeVfQzrtE1gbqu61uX7enQUt-Xu_0QFyVWOc2wqmhZux3SgLsam8ENZdtckLPCVQEvj3NO3u5Xr-ljvHl-WKfLTVwKDUNsEb2wNscCc_AmwSLRVnGw2kuXKMDMGDBFIYxOpELhEPPcWe-0t45xLebk5rC3-_I15tuuH2_pv7e_34yG64OhRMQ_-diU-AHWX1om
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/IEMBS.2010.5626380
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424441242
9781424441242
EndPage 4751
ExternalDocumentID 21096019
5626380
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i370t-9eeb399defed0b85ef57962097b4a560ec8808ff387546e3aeedda9ba7b9a1273
IEDL.DBID RIE
ISBN 1424441234
9781424441235
ISSN 1094-687X
1557-170X
IngestDate Thu Jan 02 22:40:31 EST 2025
Wed Aug 27 02:53:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i370t-9eeb399defed0b85ef57962097b4a560ec8808ff387546e3aeedda9ba7b9a1273
PMID 21096019
PageCount 4
ParticipantIDs pubmed_primary_21096019
ieee_primary_5626380
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
PublicationTitleAbbrev IEMBS
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0000452612
ssj0061641
Score 1.5887122
Snippet Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 4748
SubjectTerms Active contours
Algorithms
Animals
Approximation algorithms
Artificial Intelligence
Cell Line
Cell Tracking - methods
Clustering algorithms
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Mice
Microscopy
Muscle Fibers, Skeletal - cytology
Pattern Recognition, Automated - methods
Pixel
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique
Title A spectral k-means approach to bright-field cell image segmentation
URI https://ieeexplore.ieee.org/document/5626380
https://www.ncbi.nlm.nih.gov/pubmed/21096019
Volume 2010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH5BTnpxARW3zMGjA4VOlzkqgaAJxkRJuJGZ9tUQpBgsF3-9b6YLhnjw1DZNl3kzefv3DcCt7mHiOpHmLirBRdwLuTadOYH0eiIRiQwtO__42R9NxNPUm9bgrsLCIKJtPsO2ObW1_HgVbUyqrOMZ6pSQAvQ9WmY5VqvKpxhqcH9LHWWSJTbYovCF-2EwLUFdglS1KLmeimuvRNM4svM4GD-85i1fxecsX7Dx9A0bj92CZccFtaZoeAjjchB5B8qivcl0O_re4Xf87yiPoLkF_bGXypwdQw3TEzj4xVfYgP49s8jMtfpgC75EMnOsJCVn2YppG-pz2xXHTEmAzZekr9gXvi8LjFPahMlw8NYf8WIXBj53AyfjEineljLGBGNHhx4mBr7ac2SghSJ_CSNSAWGSuBT5CB9dRb8ZK6lVoKXqknd0CvV0leI5sEiGSA6hiHTsC9Wlg4vo0CvcmGZDBi1oGHHMPnOijVkhiRac5eKubpTzcfH3A5ewnxf5TabkCurZeoPX5Dtk-sYumh9rKLlK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4QPKgXF1BxnYNHB0o7XeaoBAJKiYmQcCOd9tUQpBgsF3-9b6YLhnjw1DZN25k3zdu_bwi5lybElhFKZkHAGY9Mj0nVmeMK2-Qxj4Wn2fn9kdOf8OepPa2QhxILAwC6-Qya6lTX8qNVuFGpspatqFM8DND30O5zO0NrlRkVRQ7ubMmjVLpEh1sYwDDHc6cFrIujsuYF21N-bRd4GkO0Bl3_6S1r-so_qBmDla-v-Hj0Jiw7Tqg2Rr0j4hfTyHpQFs1NKpvh9w7D43_neUzqW9gffS0N2gmpQHJKDn8xFtZI55FqbOY6-KALtgQ0dLSgJafpikod7DPdF0dVUYDOl6ix6Be8L3OUU1Ink1533OmzfB8GNrdcI2UCMOIWIoIYIkN6NsQKwGoawpU8QI8JQlQCXhxbGPtwB6wAhxkFQgauFEEb_aMzUk1WCVwQGgoP0CXkoYwcHrTxYAEY-AorwtUQboPUlDhmnxnVxiyXRIOcZ-IubxTrcfn3A3dkvz_2h7PhYPRyRQ6ykr_Km1yTarrewA16Eqm81T_QD1eKvJc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology&rft.atitle=A+spectral+k-means+approach+to+bright-field+cell+image+segmentation&rft.au=Bradbury%2C+L&rft.au=Wan%2C+J+W+L&rft.date=2010-01-01&rft.pub=IEEE&rft.isbn=9781424441235&rft.issn=1094-687X&rft.spage=4748&rft.epage=4751&rft_id=info:doi/10.1109%2FIEMBS.2010.5626380&rft_id=info%3Apmid%2F21096019&rft.externalDocID=5626380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon