High Reversible Lithium Storage Capacity and Structural Changes of Fe2O3 Nanoparticles Confined inside Carbon Nanotubes
The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core‐containing Li2O (Fe@Li2O) nanograi...
Saved in:
Published in | Advanced energy materials Vol. 6; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
04.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core‐containing Li2O (Fe@Li2O) nanograins formed during the charge process are prevented by the spatial restriction of the CNTs. A high reversible capacity of 2071 mA h g−1 for the encapsulated Fe2O3 nanoparticles in CNTs is demonstrated when the material is used as the anode of lithium ion batteries. This is the highest reversible capacity ever reported for an Fe2O3 electrode. The significantly improved lithium storage capacity of the Fe2O3 nanoparticles is attributed to the extra lithium storage due to the enhanced interfacial lithium storage and reversible reaction of LiOH to form LiH and solid‐electrolyte‐interphase conversion originating from the nanoconfinement of CNTs as well as the very small particle size of the Fe@Li2O nanograins and their good electrical contact with CNTs.
An in situ transmission electron microscopy study reveals that carbon nanotubes (CNTs) accommodate volume expansion of lithiated Fe2O3 nanoparticles and prevent their exfoliation and electrical disconnection, hence leading to improved lithium‐storage performance. A high lithium‐storage‐capacity is achieved for the Fe2O3 confined inside CNTs, due to the enhanced interfacial lithium reaction, reversible reaction of LiOH, and solid‐electrolyte‐interphase conversion by the CNT nanoconfinement. |
---|---|
AbstractList | The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core-containing Li2O (Fe@Li2O) nanograins formed during the charge process are prevented by the spatial restriction of the CNTs. A high reversible capacity of 2071 mA h g-1 for the encapsulated Fe2O3 nanoparticles in CNTs is demonstrated when the material is used as the anode of lithium ion batteries. This is the highest reversible capacity ever reported for an Fe2O3 electrode. The significantly improved lithium storage capacity of the Fe2O3 nanoparticles is attributed to the extra lithium storage due to the enhanced interfacial lithium storage and reversible reaction of LiOH to form LiH and solid-electrolyte-interphase conversion originating from the nanoconfinement of CNTs as well as the very small particle size of the Fe@Li2O nanograins and their good electrical contact with CNTs. The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core‐containing Li2O (Fe@Li2O) nanograins formed during the charge process are prevented by the spatial restriction of the CNTs. A high reversible capacity of 2071 mA h g−1 for the encapsulated Fe2O3 nanoparticles in CNTs is demonstrated when the material is used as the anode of lithium ion batteries. This is the highest reversible capacity ever reported for an Fe2O3 electrode. The significantly improved lithium storage capacity of the Fe2O3 nanoparticles is attributed to the extra lithium storage due to the enhanced interfacial lithium storage and reversible reaction of LiOH to form LiH and solid‐electrolyte‐interphase conversion originating from the nanoconfinement of CNTs as well as the very small particle size of the Fe@Li2O nanograins and their good electrical contact with CNTs. An in situ transmission electron microscopy study reveals that carbon nanotubes (CNTs) accommodate volume expansion of lithiated Fe2O3 nanoparticles and prevent their exfoliation and electrical disconnection, hence leading to improved lithium‐storage performance. A high lithium‐storage‐capacity is achieved for the Fe2O3 confined inside CNTs, due to the enhanced interfacial lithium reaction, reversible reaction of LiOH, and solid‐electrolyte‐interphase conversion by the CNT nanoconfinement. |
Author | Zhang, Lili Li, Feng Yu, Wan-Jing Cheng, Hui-Ming Hou, Peng-Xiang Liu, Chang |
Author_xml | – sequence: 1 givenname: Wan-Jing surname: Yu fullname: Yu, Wan-Jing organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China – sequence: 2 givenname: Lili surname: Zhang fullname: Zhang, Lili organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China – sequence: 3 givenname: Peng-Xiang surname: Hou fullname: Hou, Peng-Xiang organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China – sequence: 4 givenname: Feng surname: Li fullname: Li, Feng organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China – sequence: 5 givenname: Chang surname: Liu fullname: Liu, Chang email: cliu@imr.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China – sequence: 6 givenname: Hui-Ming surname: Cheng fullname: Cheng, Hui-Ming email: cliu@imr.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China |
BookMark | eNp9UctOwzAQtBBIPK-cLXEO-BHb-AgRFEQpiIfgZrnJujWkTrEToH9PSlGP7GV3RzOzWs0u2gxNAIQOKTmmhLATC2F2zAgVhCohNtAOlTTP5GlONtczZ9voIKU30leuKeF8B31d-ckUP8AnxOTHNeChb6e-m-HHtol2Ariwc1v6doFtqHowdmXbRVvjYmrDBBJuHL4EdsfxyIZmbmPry7qHiyY4H6DCPiRfLW3iuAm_pLYbQ9pHW87WCQ7--h56vrx4Kq6y4d3gujgbZp5LLbJKVrqijJZMORB6zCkAt1ywSqlSOedUXp4KSxlR1FGnmS5LqynrH4eKWMn30NHKdx6bjw5Sa96aLob-pKE6F4xomYt_WUoyqYRkumfpFevL17Aw8-hnNi4MJWYZgVlGYNYRmLOL0e1667XZSutTC99rrY3vRiquhHkZDcxNcV-8Pg7PDeM_A2yNPQ |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201501755 |
DatabaseName | Istex Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 3943545211 AENM201501755 ark_67375_WNG_KCPCXSLB_2 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51102242; 51172241; 51221264; 51272257 – fundername: Ministry of Science and Technology of China funderid: 2011CB932601; 2011CB932604 – fundername: Chinese Academy of Sciences funderid: KGZD‐EW‐T06 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMMB AAMNL AAYCA ACYXJ ADMLS AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-i3695-d6d9d121c27fe59b31ee3a352d77c7fff74c85a12071f1f929cca912684ed0a63 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:19:12 EDT 2025 Fri Jul 25 12:28:21 EDT 2025 Wed Aug 20 07:25:38 EDT 2025 Wed Oct 30 09:47:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-i3695-d6d9d121c27fe59b31ee3a352d77c7fff74c85a12071f1f929cca912684ed0a63 |
Notes | ArticleID:AENM201501755 istex:A347FE223D9C9562C778EFB211BBA23ECCA8DF69 National Natural Science Foundation of China - No. 51102242; No. 51172241; No. 51221264; No. 51272257 Chinese Academy of Sciences - No. KGZD-EW-T06 Ministry of Science and Technology of China - No. 2011CB932601; No. 2011CB932604 ark:/67375/WNG-KCPCXSLB-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1762675629 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1945209645 proquest_journals_1762675629 wiley_primary_10_1002_aenm_201501755_AENM201501755 istex_primary_ark_67375_WNG_KCPCXSLB_2 |
PublicationCentury | 2000 |
PublicationDate | February 4, 2016 |
PublicationDateYYYYMMDD | 2016-02-04 |
PublicationDate_xml | – month: 02 year: 2016 text: February 4, 2016 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, X. W. Lou, J. Am. Chem. Soc. 2012, 134, 17388. L. Zhang, H. B. Wu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1300958. W. J. Yu, C. Liu, P. X. Hou, L. Zhang, X. Y. Shan, F. Li, H. M. Cheng, ACS Nano 2015, 9, 5063. B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 17146. P. X. Hou, W. J. Yu, C. Shi, L. L. Zhang, C. Liu, X. J. Tian, Z. L. Dong, H. M. Cheng, J. Mater. Chem. 2012, 22, 15221. W. J. Yu, P. X. Hou, L. L. Zhang, F. Li, C. Liu, H. M. Cheng, Chem. Commun. 2010, 46, 8576. P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 2003, 13, 621. Z. Peralta-Inga, P. Lane, J. S. Murray, S. Boyd, M. E. Grice, C. J. O'Connor, P. Politzer, Nano Lett. 2003, 3, 21. X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, ACS Nano 2011, 5, 3333. X. Y. Shan, G. Zhou, L. C. Yin, W. J. Yu, F. Li, H. M. Cheng, J. Mater. Chem. A 2014, 2, 17808. X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, J. Y. Huang, Adv. Energy Mater. 2012, 2, 722. Q. Su, D. Xie, J. Zhang, G. Du, B. Xu, ACS Nano 2013, 7, 9115. Y. F. Zhukovskii, P. Balaya, E. A. Kotomin, J. Maier, Phys. Rev. Lett. 2006, 96, 058302. B. Scrosati, Nature 1995, 373, 557. X. Wang, D. M. Tang, H. Li, W. Yi, T. Zhai, Y. Bando, D. Golberg, Chem. Commun. 2012, 48, 4812. P. Politzer, P. Lane, J. S. Murray, M. C. Concha, J. Mol. Model. 2005, 11, 1. H. Ghassemi, M. Au, N. Chen, P. A. Heiden, R. S. Yassar, ACS Nano 2011, 5, 7805. L. Li, H. B. Wu, L. Yu, S. Madhavi, X. W. Lou, Adv. Mater. Interfaces 2014, 1, 1400050. B. Scrosati, J. Electrochem. Soc. 1992, 139, 2776. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366. M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792. Z. Wang, D. Luan, S. Madhavi, C. M. Li, X. W. Lou, Chem. Commun. 2011, 47, 8061. L. Luo, J. Wu, J. Xu, V. P. Dravid, ACS Nano 2014, 8, 11560. J. M. Tarascon, M. Armand, Nature 2001, 414, 359. J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater. 2010, 22, 212. J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2003, 5, 5215. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577. D. Ugarte, A. Châtelain, W. A. de Heer, Science 1996, 274, 1897. N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 2010, 330, 1515. B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928. O. Bomatí-Miguel, L. Mazeina, A. Navrotsky, S. Veintemillas-Verdaguer, Chem. Mater. 2008, 20, 591. G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Energy Environ. Sci. 2011, 4, 1986. P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567. X. H. Liu, J. Y. Huang, Energy Environ. Sci. 2011, 4, 3844. H. S. Kim, Y. Piao, S. H. Kang, T. Hyeon, Y. E. Sung, Electrochem. Commun. 2010, 12, 382. S. L. Chou, J. Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H. K. Liu, S. X. Dou, J. Mater. Chem. 2010, 20, 2092. Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y. W. Mai, H. Huang, J. B. Goodenough, J. Am. Chem. Soc. 2013, 135, 16280. R. Malini, U. Uma, T. Sheela, M. Ganesan, N. G. Renganathan, Ionics 2009, 15, 301. W. Chen, X. Pan, M. G. Willinger, D. S. Su, X. Bao, J. Am. Chem. Soc. 2006, 128, 3136. Y. Y. Hu, Z. Liu, K. W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L. S. Du, K. W. Chapman, P. J. Chupas, X. Q. Yang,C. P. Grey, Nat. Mater. 2013, 12, 1130. R. C. Haddon, Science 1993, 261, 1545. J. Kim, M. K. Chung, B. H. Ka, J. H. Ku, S. Park, J. Ryu, S. M. Oh, J. Electrochem. Soc. 2010, 157, A412. S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarascon, J. Electrochem. Soc. 2002, 149, A627. X. Pan, X. Bao, Acc. Chem. Res. 2011, 44, 553. S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Solid-State Lett. 2010, 13, A132. W. J. Yu, P. X. Hou, F. Li, C. Liu, J. Mater. Chem. 2012, 22, 13756. J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170. M. Fichtner, Phys. Chem. Chem. Phys. 2011, 13, 21186. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000, 407, 496. Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci. 2012, 5, 5252. A. N. Khlobystov, ACS Nano 2011, 5, 9306. Q. Su, J. Zhang, Y. Wu, G. Du, Nano Energy 2014, 9, 264. P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed. 2008, 47, 2930. Z. Zeng, W. I. Liang, H. G. Liao, H. L. Xin, Y. H. Chu, H. Zheng, Nano Lett. 2014, 14, 1745. J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 13162. Y. Liu, H. Zheng, X. H. Liu, S. Huang, T. Zhu, J. Wang, A. Kushima, N. S. Hudak, X. Huang, S. Zhang, S. X. Mao, X. Qian, J. Li, J. Y. Huang, ACS Nano 2011, 5, 7245. J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 2005, 17, 582. K. E. Gregorczyk, Y. Liu, J. P. Sullivan, G. W. Rubloff, ACS Nano 2013, 7, 6354. 2010; 12 2010; 13 2003; 13 2011; 13 2013; 7 1995; 373 2011; 111 2000; 407 2014; 1 2010; 22 2010; 20 2014; 4 2012; 134 2014; 2 2013; 12 2010; 157 2003; 3 2014; 14 2003; 5 2002; 149 2008; 20 2014; 9 2014; 8 2012; 22 2006; 128 2009; 15 2001; 414 2007; 17 2011; 334 2006; 96 2009; 21 2006; 5 1993; 261 2011; 4 2015; 9 2011; 5 2011; 133 2012; 2 2010; 46 2008; 47 2010; 132 2010; 330 2005; 4 1992; 139 2011; 44 2013; 135 1996; 274 2011; 47 2012; 48 2005; 17 2012; 5 2005; 11 |
References_xml | – reference: Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577. – reference: H. Ghassemi, M. Au, N. Chen, P. A. Heiden, R. S. Yassar, ACS Nano 2011, 5, 7805. – reference: L. Zhang, H. B. Wu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1300958. – reference: X. H. Liu, J. Y. Huang, Energy Environ. Sci. 2011, 4, 3844. – reference: J. M. Tarascon, M. Armand, Nature 2001, 414, 359. – reference: X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, J. Y. Huang, Adv. Energy Mater. 2012, 2, 722. – reference: M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792. – reference: P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 2003, 13, 621. – reference: S. L. Chou, J. Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H. K. Liu, S. X. Dou, J. Mater. Chem. 2010, 20, 2092. – reference: H. S. Kim, Y. Piao, S. H. Kang, T. Hyeon, Y. E. Sung, Electrochem. Commun. 2010, 12, 382. – reference: Z. Peralta-Inga, P. Lane, J. S. Murray, S. Boyd, M. E. Grice, C. J. O'Connor, P. Politzer, Nano Lett. 2003, 3, 21. – reference: B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 17146. – reference: Y. F. Zhukovskii, P. Balaya, E. A. Kotomin, J. Maier, Phys. Rev. Lett. 2006, 96, 058302. – reference: R. Malini, U. Uma, T. Sheela, M. Ganesan, N. G. Renganathan, Ionics 2009, 15, 301. – reference: Z. Zeng, W. I. Liang, H. G. Liao, H. L. Xin, Y. H. Chu, H. Zheng, Nano Lett. 2014, 14, 1745. – reference: L. Li, H. B. Wu, L. Yu, S. Madhavi, X. W. Lou, Adv. Mater. Interfaces 2014, 1, 1400050. – reference: W. Chen, X. Pan, M. G. Willinger, D. S. Su, X. Bao, J. Am. Chem. Soc. 2006, 128, 3136. – reference: J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 2010, 330, 1515. – reference: P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567. – reference: Z. Wang, D. Luan, S. Madhavi, C. M. Li, X. W. Lou, Chem. Commun. 2011, 47, 8061. – reference: P. X. Hou, W. J. Yu, C. Shi, L. L. Zhang, C. Liu, X. J. Tian, Z. L. Dong, H. M. Cheng, J. Mater. Chem. 2012, 22, 15221. – reference: J. Kim, M. K. Chung, B. H. Ka, J. H. Ku, S. Park, J. Ryu, S. M. Oh, J. Electrochem. Soc. 2010, 157, A412. – reference: X. Wang, D. M. Tang, H. Li, W. Yi, T. Zhai, Y. Bando, D. Golberg, Chem. Commun. 2012, 48, 4812. – reference: B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928. – reference: L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, X. W. Lou, J. Am. Chem. Soc. 2012, 134, 17388. – reference: Y. Liu, H. Zheng, X. H. Liu, S. Huang, T. Zhu, J. Wang, A. Kushima, N. S. Hudak, X. Huang, S. Zhang, S. X. Mao, X. Qian, J. Li, J. Y. Huang, ACS Nano 2011, 5, 7245. – reference: A. N. Khlobystov, ACS Nano 2011, 5, 9306. – reference: X. Y. Shan, G. Zhou, L. C. Yin, W. J. Yu, F. Li, H. M. Cheng, J. Mater. Chem. A 2014, 2, 17808. – reference: P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed. 2008, 47, 2930. – reference: R. C. Haddon, Science 1993, 261, 1545. – reference: W. J. Yu, C. Liu, P. X. Hou, L. Zhang, X. Y. Shan, F. Li, H. M. Cheng, ACS Nano 2015, 9, 5063. – reference: B. Scrosati, J. Electrochem. Soc. 1992, 139, 2776. – reference: J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 2005, 17, 582. – reference: B. Scrosati, Nature 1995, 373, 557. – reference: X. Pan, X. Bao, Acc. Chem. Res. 2011, 44, 553. – reference: W. J. Yu, P. X. Hou, F. Li, C. Liu, J. Mater. Chem. 2012, 22, 13756. – reference: D. Ugarte, A. Châtelain, W. A. de Heer, Science 1996, 274, 1897. – reference: Q. Su, J. Zhang, Y. Wu, G. Du, Nano Energy 2014, 9, 264. – reference: Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci. 2012, 5, 5252. – reference: J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2003, 5, 5215. – reference: S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Solid-State Lett. 2010, 13, A132. – reference: J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 13162. – reference: G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Energy Environ. Sci. 2011, 4, 1986. – reference: W. J. Yu, P. X. Hou, L. L. Zhang, F. Li, C. Liu, H. M. Cheng, Chem. Commun. 2010, 46, 8576. – reference: J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater. 2010, 22, 212. – reference: S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarascon, J. Electrochem. Soc. 2002, 149, A627. – reference: M. Fichtner, Phys. Chem. Chem. Phys. 2011, 13, 21186. – reference: P. Politzer, P. Lane, J. S. Murray, M. C. Concha, J. Mol. Model. 2005, 11, 1. – reference: P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000, 407, 496. – reference: N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664. – reference: Q. Su, D. Xie, J. Zhang, G. Du, B. Xu, ACS Nano 2013, 7, 9115. – reference: X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, ACS Nano 2011, 5, 3333. – reference: J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170. – reference: A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366. – reference: O. Bomatí-Miguel, L. Mazeina, A. Navrotsky, S. Veintemillas-Verdaguer, Chem. Mater. 2008, 20, 591. – reference: Y. Y. Hu, Z. Liu, K. W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L. S. Du, K. W. Chapman, P. J. Chupas, X. Q. Yang,C. P. Grey, Nat. Mater. 2013, 12, 1130. – reference: Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y. W. Mai, H. Huang, J. B. Goodenough, J. Am. Chem. Soc. 2013, 135, 16280. – reference: K. E. Gregorczyk, Y. Liu, J. P. Sullivan, G. W. Rubloff, ACS Nano 2013, 7, 6354. – reference: L. Luo, J. Wu, J. Xu, V. P. Dravid, ACS Nano 2014, 8, 11560. – volume: 17 start-page: 2792 year: 2007 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 212 year: 2010 publication-title: Chem. Mater. – volume: 8 start-page: 11560 year: 2014 publication-title: ACS Nano – volume: 13 start-page: A132 year: 2010 publication-title: Electrochem. Solid‐State Lett. – volume: 13 start-page: 21186 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 261 start-page: 1545 year: 1993 publication-title: Science – volume: 7 start-page: 6354 year: 2013 publication-title: ACS Nano – volume: 20 start-page: 2092 year: 2010 publication-title: J. Mater. Chem. – volume: 274 start-page: 1897 year: 1996 publication-title: Science – volume: 12 start-page: 1130 year: 2013 publication-title: Nat. Mater. – volume: 149 start-page: A627 year: 2002 publication-title: J. Electrochem. Soc. – volume: 157 start-page: A412 year: 2010 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 3333 year: 2011 publication-title: ACS Nano – volume: 44 start-page: 553 year: 2011 publication-title: Acc. Chem. Res. – volume: 12 start-page: 382 year: 2010 publication-title: Electrochem. Commun. – volume: 4 start-page: 3844 year: 2011 publication-title: Energy Environ. Sci. – volume: 22 start-page: 13756 year: 2012 publication-title: J. Mater. Chem. – volume: 134 start-page: 17388 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 301 year: 2009 publication-title: Ionics – volume: 373 start-page: 557 year: 1995 publication-title: Nature – volume: 1 start-page: 1400050 year: 2014 publication-title: Adv. Mater. Interfaces – volume: 22 start-page: 15221 year: 2012 publication-title: J. Mater. Chem. – volume: 13 start-page: 621 year: 2003 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1 year: 2005 publication-title: J. Mol. Model. – volume: 21 start-page: 2664 year: 2009 publication-title: Adv. Mater. – volume: 135 start-page: 16280 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 2 start-page: 17808 year: 2014 publication-title: J. Mater. Chem. A – volume: 128 start-page: 3136 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 722 year: 2012 publication-title: Adv. Energy Mater. – volume: 46 start-page: 8576 year: 2010 publication-title: Chem. Commun. – volume: 330 start-page: 1515 year: 2010 publication-title: Science – volume: 5 start-page: 7245 year: 2011 publication-title: ACS Nano – volume: 47 start-page: 2930 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 21 year: 2003 publication-title: Nano Lett. – volume: 5 start-page: 567 year: 2006 publication-title: Nat. Mater. – volume: 9 start-page: 5063 year: 2015 publication-title: ACS Nano – volume: 47 start-page: 8061 year: 2011 publication-title: Chem. Commun. – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 9 start-page: 264 year: 2014 publication-title: Nano Energy – volume: 5 start-page: 5252 year: 2012 publication-title: Energy Environ. Sci. – volume: 407 start-page: 496 year: 2000 publication-title: Nature – volume: 7 start-page: 9115 year: 2013 publication-title: ACS Nano – volume: 4 start-page: 1986 year: 2011 publication-title: Energy Environ. Sci. – volume: 132 start-page: 13162 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 2776 year: 1992 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 5215 year: 2003 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: E170 year: 2010 publication-title: Adv. Mater. – volume: 133 start-page: 17146 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 582 year: 2005 publication-title: Adv. Mater. – volume: 20 start-page: 591 year: 2008 publication-title: Chem. Mater. – volume: 48 start-page: 4812 year: 2012 publication-title: Chem. Commun. – volume: 96 start-page: 058302 year: 2006 publication-title: Phys. Rev. Lett. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 5 start-page: 7805 year: 2011 publication-title: ACS Nano – volume: 5 start-page: 9306 year: 2011 publication-title: ACS Nano – volume: 4 start-page: 1300958 year: 2014 publication-title: Adv. Energy Mater. – volume: 111 start-page: 3577 year: 2011 publication-title: Chem. Rev. – volume: 14 start-page: 1745 year: 2014 publication-title: Nano Lett. |
SSID | ssj0000491033 |
Score | 2.4997241 |
Snippet | The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon nanotubes Coarsening confinement effects Electric contacts Electron microscopy Fe2O3 nanoparticles Hematite in situ TEM Iron oxides Lithium Lithium-ion batteries Nanoparticles Nanotubes Storage capacity Transmission electron microscopy |
Title | High Reversible Lithium Storage Capacity and Structural Changes of Fe2O3 Nanoparticles Confined inside Carbon Nanotubes |
URI | https://api.istex.fr/ark:/67375/WNG-KCPCXSLB-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201501755 https://www.proquest.com/docview/1762675629 https://www.proquest.com/docview/1945209645 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWq3QscEJ-isCAfELdAbeejOZbSslqyXaRtRW5WEttLBKRoaQXi9_BDmbGdNJUqxHKJ2iSq28zL-I375oWQF0mklRCpCIyAMISCq6CAKiIoQp0aYca8UtbtcxGfrsKzPMoHg9891dJ2U76qfh3sK_mfqMI-iCt2yd4gst2Hwg54DfGFLUQYtv8UYxRp4Oo-rnlhB1RWbz7V26_osH2NWpwpzIQV0myrz7ROsdZlw7UUWBHHXPMLgTkWimevkbNdgEA-0ZUJH-aJopASQIInbbalFx22zrWthkC7JkIgwO6Xd-lka2V8RROctbNkf506q7_UHbTWWycZbq6CHGDbnZ1ZyQFc-qv-IgVzuubwBqmwl4KBMATx2K966v4-Z-zU5u24B09xcDZw7rKFbtByAJgvUKVoN--1__UvLuR8lWVyOcuX-0fdNJ8CowyB5UCNfcyhGIFsejx5e55ddmt5UGWxkbC9HO2Xb_1BR_z1_vhQBOH9-3OvounXRZbYLO-SO74ioRMX_XtkoJv75HbPp_IB-YFAozugUQ806oFGW6BRABrdAY16oNG1oRZodA9otAUadUCjDmi0A9pDsprPltPTwD-xI6hFnEaBilWqGGcVT4yO0lIwrUUBHF8lSZUYY5KwGkcF40BsDTNAzSGBpAwdh7QaFbF4RI6adaMfE1oaKKRDViHJCoXiYyD2KT6vWeEUpPSQvLTXUX5zriyyuP6MIsUkkh8X7-T76Ydpfpm9kXxITtoLLf29-10y4ABQKsc8PXw4DVEeFofRkHAbm24YZ_PNJUZVdlGVk9nivHv35O9DPiW3dvfICTmCqOhnQG035XOPrD9klqPC |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Reversible+Lithium+Storage+Capacity+and+Structural+Changes+of+Fe2O3+Nanoparticles+Confined+inside+Carbon+Nanotubes&rft.jtitle=Advanced+energy+materials&rft.au=Yu%2C+Wan-Jing&rft.au=Zhang%2C+Lili&rft.au=Hou%2C+Peng-Xiang&rft.au=Li%2C+Feng&rft.date=2016-02-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1002%2Faenm.201501755&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3943545211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |