High Reversible Lithium Storage Capacity and Structural Changes of Fe2O3 Nanoparticles Confined inside Carbon Nanotubes

The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core‐containing Li2O (Fe@Li2O) nanograi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 6; no. 3
Main Authors Yu, Wan-Jing, Zhang, Lili, Hou, Peng-Xiang, Li, Feng, Liu, Chang, Cheng, Hui-Ming
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 04.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core‐containing Li2O (Fe@Li2O) nanograins formed during the charge process are prevented by the spatial restriction of the CNTs. A high reversible capacity of 2071 mA h g−1 for the encapsulated Fe2O3 nanoparticles in CNTs is demonstrated when the material is used as the anode of lithium ion batteries. This is the highest reversible capacity ever reported for an Fe2O3 electrode. The significantly improved lithium storage capacity of the Fe2O3 nanoparticles is attributed to the extra lithium storage due to the enhanced interfacial lithium storage and reversible reaction of LiOH to form LiH and solid‐electrolyte‐interphase conversion originating from the nanoconfinement of CNTs as well as the very small particle size of the Fe@Li2O nanograins and their good electrical contact with CNTs. An in situ transmission electron micro­scopy study reveals that carbon nanotubes (CNTs) accommodate volume expansion of lithiated Fe2O3 nanoparticles and prevent their exfoliation and electrical disconnection, hence leading to improved lithium‐storage performance. A high lithium‐storage‐capacity is achieved for the Fe2O3 confined inside CNTs, due to the enhanced interfacial lithium reaction, reversible reaction of LiOH, and solid‐electrolyte‐interphase conversion by the CNT nanoconfinement.
AbstractList The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core-containing Li2O (Fe@Li2O) nanograins formed during the charge process are prevented by the spatial restriction of the CNTs. A high reversible capacity of 2071 mA h g-1 for the encapsulated Fe2O3 nanoparticles in CNTs is demonstrated when the material is used as the anode of lithium ion batteries. This is the highest reversible capacity ever reported for an Fe2O3 electrode. The significantly improved lithium storage capacity of the Fe2O3 nanoparticles is attributed to the extra lithium storage due to the enhanced interfacial lithium storage and reversible reaction of LiOH to form LiH and solid-electrolyte-interphase conversion originating from the nanoconfinement of CNTs as well as the very small particle size of the Fe@Li2O nanograins and their good electrical contact with CNTs.
The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core‐containing Li2O (Fe@Li2O) nanograins formed during the charge process are prevented by the spatial restriction of the CNTs. A high reversible capacity of 2071 mA h g−1 for the encapsulated Fe2O3 nanoparticles in CNTs is demonstrated when the material is used as the anode of lithium ion batteries. This is the highest reversible capacity ever reported for an Fe2O3 electrode. The significantly improved lithium storage capacity of the Fe2O3 nanoparticles is attributed to the extra lithium storage due to the enhanced interfacial lithium storage and reversible reaction of LiOH to form LiH and solid‐electrolyte‐interphase conversion originating from the nanoconfinement of CNTs as well as the very small particle size of the Fe@Li2O nanograins and their good electrical contact with CNTs. An in situ transmission electron micro­scopy study reveals that carbon nanotubes (CNTs) accommodate volume expansion of lithiated Fe2O3 nanoparticles and prevent their exfoliation and electrical disconnection, hence leading to improved lithium‐storage performance. A high lithium‐storage‐capacity is achieved for the Fe2O3 confined inside CNTs, due to the enhanced interfacial lithium reaction, reversible reaction of LiOH, and solid‐electrolyte‐interphase conversion by the CNT nanoconfinement.
Author Zhang, Lili
Li, Feng
Yu, Wan-Jing
Cheng, Hui-Ming
Hou, Peng-Xiang
Liu, Chang
Author_xml – sequence: 1
  givenname: Wan-Jing
  surname: Yu
  fullname: Yu, Wan-Jing
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China
– sequence: 2
  givenname: Lili
  surname: Zhang
  fullname: Zhang, Lili
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China
– sequence: 3
  givenname: Peng-Xiang
  surname: Hou
  fullname: Hou, Peng-Xiang
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China
– sequence: 4
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China
– sequence: 5
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: cliu@imr.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China
– sequence: 6
  givenname: Hui-Ming
  surname: Cheng
  fullname: Cheng, Hui-Ming
  email: cliu@imr.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China
BookMark eNp9UctOwzAQtBBIPK-cLXEO-BHb-AgRFEQpiIfgZrnJujWkTrEToH9PSlGP7GV3RzOzWs0u2gxNAIQOKTmmhLATC2F2zAgVhCohNtAOlTTP5GlONtczZ9voIKU30leuKeF8B31d-ckUP8AnxOTHNeChb6e-m-HHtol2Ariwc1v6doFtqHowdmXbRVvjYmrDBBJuHL4EdsfxyIZmbmPry7qHiyY4H6DCPiRfLW3iuAm_pLYbQ9pHW87WCQ7--h56vrx4Kq6y4d3gujgbZp5LLbJKVrqijJZMORB6zCkAt1ywSqlSOedUXp4KSxlR1FGnmS5LqynrH4eKWMn30NHKdx6bjw5Sa96aLob-pKE6F4xomYt_WUoyqYRkumfpFevL17Aw8-hnNi4MJWYZgVlGYNYRmLOL0e1667XZSutTC99rrY3vRiquhHkZDcxNcV-8Pg7PDeM_A2yNPQ
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201501755
DatabaseName Istex
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 3943545211
AENM201501755
ark_67375_WNG_KCPCXSLB_2
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51102242; 51172241; 51221264; 51272257
– fundername: Ministry of Science and Technology of China
  funderid: 2011CB932601; 2011CB932604
– fundername: Chinese Academy of Sciences
  funderid: KGZD‐EW‐T06
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMMB
AAMNL
AAYCA
ACYXJ
ADMLS
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-i3695-d6d9d121c27fe59b31ee3a352d77c7fff74c85a12071f1f929cca912684ed0a63
ISSN 1614-6832
IngestDate Fri Jul 25 12:19:12 EDT 2025
Fri Jul 25 12:28:21 EDT 2025
Wed Aug 20 07:25:38 EDT 2025
Wed Oct 30 09:47:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i3695-d6d9d121c27fe59b31ee3a352d77c7fff74c85a12071f1f929cca912684ed0a63
Notes ArticleID:AENM201501755
istex:A347FE223D9C9562C778EFB211BBA23ECCA8DF69
National Natural Science Foundation of China - No. 51102242; No. 51172241; No. 51221264; No. 51272257
Chinese Academy of Sciences - No. KGZD-EW-T06
Ministry of Science and Technology of China - No. 2011CB932601; No. 2011CB932604
ark:/67375/WNG-KCPCXSLB-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1762675629
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_1945209645
proquest_journals_1762675629
wiley_primary_10_1002_aenm_201501755_AENM201501755
istex_primary_ark_67375_WNG_KCPCXSLB_2
PublicationCentury 2000
PublicationDate February 4, 2016
PublicationDateYYYYMMDD 2016-02-04
PublicationDate_xml – month: 02
  year: 2016
  text: February 4, 2016
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, X. W. Lou, J. Am. Chem. Soc. 2012, 134, 17388.
L. Zhang, H. B. Wu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1300958.
W. J. Yu, C. Liu, P. X. Hou, L. Zhang, X. Y. Shan, F. Li, H. M. Cheng, ACS Nano 2015, 9, 5063.
B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 17146.
P. X. Hou, W. J. Yu, C. Shi, L. L. Zhang, C. Liu, X. J. Tian, Z. L. Dong, H. M. Cheng, J. Mater. Chem. 2012, 22, 15221.
W. J. Yu, P. X. Hou, L. L. Zhang, F. Li, C. Liu, H. M. Cheng, Chem. Commun. 2010, 46, 8576.
P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 2003, 13, 621.
Z. Peralta-Inga, P. Lane, J. S. Murray, S. Boyd, M. E. Grice, C. J. O'Connor, P. Politzer, Nano Lett. 2003, 3, 21.
X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, ACS Nano 2011, 5, 3333.
X. Y. Shan, G. Zhou, L. C. Yin, W. J. Yu, F. Li, H. M. Cheng, J. Mater. Chem. A 2014, 2, 17808.
X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, J. Y. Huang, Adv. Energy Mater. 2012, 2, 722.
Q. Su, D. Xie, J. Zhang, G. Du, B. Xu, ACS Nano 2013, 7, 9115.
Y. F. Zhukovskii, P. Balaya, E. A. Kotomin, J. Maier, Phys. Rev. Lett. 2006, 96, 058302.
B. Scrosati, Nature 1995, 373, 557.
X. Wang, D. M. Tang, H. Li, W. Yi, T. Zhai, Y. Bando, D. Golberg, Chem. Commun. 2012, 48, 4812.
P. Politzer, P. Lane, J. S. Murray, M. C. Concha, J. Mol. Model. 2005, 11, 1.
H. Ghassemi, M. Au, N. Chen, P. A. Heiden, R. S. Yassar, ACS Nano 2011, 5, 7805.
L. Li, H. B. Wu, L. Yu, S. Madhavi, X. W. Lou, Adv. Mater. Interfaces 2014, 1, 1400050.
B. Scrosati, J. Electrochem. Soc. 1992, 139, 2776.
A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792.
Z. Wang, D. Luan, S. Madhavi, C. M. Li, X. W. Lou, Chem. Commun. 2011, 47, 8061.
L. Luo, J. Wu, J. Xu, V. P. Dravid, ACS Nano 2014, 8, 11560.
J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater. 2010, 22, 212.
J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2003, 5, 5215.
Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.
D. Ugarte, A. Châtelain, W. A. de Heer, Science 1996, 274, 1897.
N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664.
J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 2010, 330, 1515.
B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.
O. Bomatí-Miguel, L. Mazeina, A. Navrotsky, S. Veintemillas-Verdaguer, Chem. Mater. 2008, 20, 591.
G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Energy Environ. Sci. 2011, 4, 1986.
P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567.
X. H. Liu, J. Y. Huang, Energy Environ. Sci. 2011, 4, 3844.
H. S. Kim, Y. Piao, S. H. Kang, T. Hyeon, Y. E. Sung, Electrochem. Commun. 2010, 12, 382.
S. L. Chou, J. Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H. K. Liu, S. X. Dou, J. Mater. Chem. 2010, 20, 2092.
Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y. W. Mai, H. Huang, J. B. Goodenough, J. Am. Chem. Soc. 2013, 135, 16280.
R. Malini, U. Uma, T. Sheela, M. Ganesan, N. G. Renganathan, Ionics 2009, 15, 301.
W. Chen, X. Pan, M. G. Willinger, D. S. Su, X. Bao, J. Am. Chem. Soc. 2006, 128, 3136.
Y. Y. Hu, Z. Liu, K. W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L. S. Du, K. W. Chapman, P. J. Chupas, X. Q. Yang,C. P. Grey, Nat. Mater. 2013, 12, 1130.
R. C. Haddon, Science 1993, 261, 1545.
J. Kim, M. K. Chung, B. H. Ka, J. H. Ku, S. Park, J. Ryu, S. M. Oh, J. Electrochem. Soc. 2010, 157, A412.
S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarascon, J. Electrochem. Soc. 2002, 149, A627.
X. Pan, X. Bao, Acc. Chem. Res. 2011, 44, 553.
S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Solid-State Lett. 2010, 13, A132.
W. J. Yu, P. X. Hou, F. Li, C. Liu, J. Mater. Chem. 2012, 22, 13756.
J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170.
M. Fichtner, Phys. Chem. Chem. Phys. 2011, 13, 21186.
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000, 407, 496.
Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci. 2012, 5, 5252.
A. N. Khlobystov, ACS Nano 2011, 5, 9306.
Q. Su, J. Zhang, Y. Wu, G. Du, Nano Energy 2014, 9, 264.
P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed. 2008, 47, 2930.
Z. Zeng, W. I. Liang, H. G. Liao, H. L. Xin, Y. H. Chu, H. Zheng, Nano Lett. 2014, 14, 1745.
J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 13162.
Y. Liu, H. Zheng, X. H. Liu, S. Huang, T. Zhu, J. Wang, A. Kushima, N. S. Hudak, X. Huang, S. Zhang, S. X. Mao, X. Qian, J. Li, J. Y. Huang, ACS Nano 2011, 5, 7245.
J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 2005, 17, 582.
K. E. Gregorczyk, Y. Liu, J. P. Sullivan, G. W. Rubloff, ACS Nano 2013, 7, 6354.
2010; 12
2010; 13
2003; 13
2011; 13
2013; 7
1995; 373
2011; 111
2000; 407
2014; 1
2010; 22
2010; 20
2014; 4
2012; 134
2014; 2
2013; 12
2010; 157
2003; 3
2014; 14
2003; 5
2002; 149
2008; 20
2014; 9
2014; 8
2012; 22
2006; 128
2009; 15
2001; 414
2007; 17
2011; 334
2006; 96
2009; 21
2006; 5
1993; 261
2011; 4
2015; 9
2011; 5
2011; 133
2012; 2
2010; 46
2008; 47
2010; 132
2010; 330
2005; 4
1992; 139
2011; 44
2013; 135
1996; 274
2011; 47
2012; 48
2005; 17
2012; 5
2005; 11
References_xml – reference: Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.
– reference: H. Ghassemi, M. Au, N. Chen, P. A. Heiden, R. S. Yassar, ACS Nano 2011, 5, 7805.
– reference: L. Zhang, H. B. Wu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1300958.
– reference: X. H. Liu, J. Y. Huang, Energy Environ. Sci. 2011, 4, 3844.
– reference: J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
– reference: X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, J. Y. Huang, Adv. Energy Mater. 2012, 2, 722.
– reference: M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792.
– reference: P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 2003, 13, 621.
– reference: S. L. Chou, J. Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H. K. Liu, S. X. Dou, J. Mater. Chem. 2010, 20, 2092.
– reference: H. S. Kim, Y. Piao, S. H. Kang, T. Hyeon, Y. E. Sung, Electrochem. Commun. 2010, 12, 382.
– reference: Z. Peralta-Inga, P. Lane, J. S. Murray, S. Boyd, M. E. Grice, C. J. O'Connor, P. Politzer, Nano Lett. 2003, 3, 21.
– reference: B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 17146.
– reference: Y. F. Zhukovskii, P. Balaya, E. A. Kotomin, J. Maier, Phys. Rev. Lett. 2006, 96, 058302.
– reference: R. Malini, U. Uma, T. Sheela, M. Ganesan, N. G. Renganathan, Ionics 2009, 15, 301.
– reference: Z. Zeng, W. I. Liang, H. G. Liao, H. L. Xin, Y. H. Chu, H. Zheng, Nano Lett. 2014, 14, 1745.
– reference: L. Li, H. B. Wu, L. Yu, S. Madhavi, X. W. Lou, Adv. Mater. Interfaces 2014, 1, 1400050.
– reference: W. Chen, X. Pan, M. G. Willinger, D. S. Su, X. Bao, J. Am. Chem. Soc. 2006, 128, 3136.
– reference: J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 2010, 330, 1515.
– reference: P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567.
– reference: Z. Wang, D. Luan, S. Madhavi, C. M. Li, X. W. Lou, Chem. Commun. 2011, 47, 8061.
– reference: P. X. Hou, W. J. Yu, C. Shi, L. L. Zhang, C. Liu, X. J. Tian, Z. L. Dong, H. M. Cheng, J. Mater. Chem. 2012, 22, 15221.
– reference: J. Kim, M. K. Chung, B. H. Ka, J. H. Ku, S. Park, J. Ryu, S. M. Oh, J. Electrochem. Soc. 2010, 157, A412.
– reference: X. Wang, D. M. Tang, H. Li, W. Yi, T. Zhai, Y. Bando, D. Golberg, Chem. Commun. 2012, 48, 4812.
– reference: B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.
– reference: L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, X. W. Lou, J. Am. Chem. Soc. 2012, 134, 17388.
– reference: Y. Liu, H. Zheng, X. H. Liu, S. Huang, T. Zhu, J. Wang, A. Kushima, N. S. Hudak, X. Huang, S. Zhang, S. X. Mao, X. Qian, J. Li, J. Y. Huang, ACS Nano 2011, 5, 7245.
– reference: A. N. Khlobystov, ACS Nano 2011, 5, 9306.
– reference: X. Y. Shan, G. Zhou, L. C. Yin, W. J. Yu, F. Li, H. M. Cheng, J. Mater. Chem. A 2014, 2, 17808.
– reference: P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed. 2008, 47, 2930.
– reference: R. C. Haddon, Science 1993, 261, 1545.
– reference: W. J. Yu, C. Liu, P. X. Hou, L. Zhang, X. Y. Shan, F. Li, H. M. Cheng, ACS Nano 2015, 9, 5063.
– reference: B. Scrosati, J. Electrochem. Soc. 1992, 139, 2776.
– reference: J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 2005, 17, 582.
– reference: B. Scrosati, Nature 1995, 373, 557.
– reference: X. Pan, X. Bao, Acc. Chem. Res. 2011, 44, 553.
– reference: W. J. Yu, P. X. Hou, F. Li, C. Liu, J. Mater. Chem. 2012, 22, 13756.
– reference: D. Ugarte, A. Châtelain, W. A. de Heer, Science 1996, 274, 1897.
– reference: Q. Su, J. Zhang, Y. Wu, G. Du, Nano Energy 2014, 9, 264.
– reference: Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci. 2012, 5, 5252.
– reference: J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2003, 5, 5215.
– reference: S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Solid-State Lett. 2010, 13, A132.
– reference: J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 13162.
– reference: G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Energy Environ. Sci. 2011, 4, 1986.
– reference: W. J. Yu, P. X. Hou, L. L. Zhang, F. Li, C. Liu, H. M. Cheng, Chem. Commun. 2010, 46, 8576.
– reference: J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater. 2010, 22, 212.
– reference: S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. M. Tarascon, J. Electrochem. Soc. 2002, 149, A627.
– reference: M. Fichtner, Phys. Chem. Chem. Phys. 2011, 13, 21186.
– reference: P. Politzer, P. Lane, J. S. Murray, M. C. Concha, J. Mol. Model. 2005, 11, 1.
– reference: P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000, 407, 496.
– reference: N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664.
– reference: Q. Su, D. Xie, J. Zhang, G. Du, B. Xu, ACS Nano 2013, 7, 9115.
– reference: X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, ACS Nano 2011, 5, 3333.
– reference: J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170.
– reference: A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
– reference: O. Bomatí-Miguel, L. Mazeina, A. Navrotsky, S. Veintemillas-Verdaguer, Chem. Mater. 2008, 20, 591.
– reference: Y. Y. Hu, Z. Liu, K. W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L. S. Du, K. W. Chapman, P. J. Chupas, X. Q. Yang,C. P. Grey, Nat. Mater. 2013, 12, 1130.
– reference: Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y. W. Mai, H. Huang, J. B. Goodenough, J. Am. Chem. Soc. 2013, 135, 16280.
– reference: K. E. Gregorczyk, Y. Liu, J. P. Sullivan, G. W. Rubloff, ACS Nano 2013, 7, 6354.
– reference: L. Luo, J. Wu, J. Xu, V. P. Dravid, ACS Nano 2014, 8, 11560.
– volume: 17
  start-page: 2792
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 212
  year: 2010
  publication-title: Chem. Mater.
– volume: 8
  start-page: 11560
  year: 2014
  publication-title: ACS Nano
– volume: 13
  start-page: A132
  year: 2010
  publication-title: Electrochem. Solid‐State Lett.
– volume: 13
  start-page: 21186
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 261
  start-page: 1545
  year: 1993
  publication-title: Science
– volume: 7
  start-page: 6354
  year: 2013
  publication-title: ACS Nano
– volume: 20
  start-page: 2092
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 274
  start-page: 1897
  year: 1996
  publication-title: Science
– volume: 12
  start-page: 1130
  year: 2013
  publication-title: Nat. Mater.
– volume: 149
  start-page: A627
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 157
  start-page: A412
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 3333
  year: 2011
  publication-title: ACS Nano
– volume: 44
  start-page: 553
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 382
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 3844
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 13756
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 134
  start-page: 17388
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 301
  year: 2009
  publication-title: Ionics
– volume: 373
  start-page: 557
  year: 1995
  publication-title: Nature
– volume: 1
  start-page: 1400050
  year: 2014
  publication-title: Adv. Mater. Interfaces
– volume: 22
  start-page: 15221
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 621
  year: 2003
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1
  year: 2005
  publication-title: J. Mol. Model.
– volume: 21
  start-page: 2664
  year: 2009
  publication-title: Adv. Mater.
– volume: 135
  start-page: 16280
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 2
  start-page: 17808
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 128
  start-page: 3136
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 722
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 8576
  year: 2010
  publication-title: Chem. Commun.
– volume: 330
  start-page: 1515
  year: 2010
  publication-title: Science
– volume: 5
  start-page: 7245
  year: 2011
  publication-title: ACS Nano
– volume: 47
  start-page: 2930
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 21
  year: 2003
  publication-title: Nano Lett.
– volume: 5
  start-page: 567
  year: 2006
  publication-title: Nat. Mater.
– volume: 9
  start-page: 5063
  year: 2015
  publication-title: ACS Nano
– volume: 47
  start-page: 8061
  year: 2011
  publication-title: Chem. Commun.
– volume: 4
  start-page: 366
  year: 2005
  publication-title: Nat. Mater.
– volume: 9
  start-page: 264
  year: 2014
  publication-title: Nano Energy
– volume: 5
  start-page: 5252
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 407
  start-page: 496
  year: 2000
  publication-title: Nature
– volume: 7
  start-page: 9115
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 1986
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 132
  start-page: 13162
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 2776
  year: 1992
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 5215
  year: 2003
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: E170
  year: 2010
  publication-title: Adv. Mater.
– volume: 133
  start-page: 17146
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 582
  year: 2005
  publication-title: Adv. Mater.
– volume: 20
  start-page: 591
  year: 2008
  publication-title: Chem. Mater.
– volume: 48
  start-page: 4812
  year: 2012
  publication-title: Chem. Commun.
– volume: 96
  start-page: 058302
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 5
  start-page: 7805
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 9306
  year: 2011
  publication-title: ACS Nano
– volume: 4
  start-page: 1300958
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 111
  start-page: 3577
  year: 2011
  publication-title: Chem. Rev.
– volume: 14
  start-page: 1745
  year: 2014
  publication-title: Nano Lett.
SSID ssj0000491033
Score 2.4997241
Snippet The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
SubjectTerms Carbon nanotubes
Coarsening
confinement effects
Electric contacts
Electron microscopy
Fe2O3 nanoparticles
Hematite
in situ TEM
Iron oxides
Lithium
Lithium-ion batteries
Nanoparticles
Nanotubes
Storage capacity
Transmission electron microscopy
Title High Reversible Lithium Storage Capacity and Structural Changes of Fe2O3 Nanoparticles Confined inside Carbon Nanotubes
URI https://api.istex.fr/ark:/67375/WNG-KCPCXSLB-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201501755
https://www.proquest.com/docview/1762675629
https://www.proquest.com/docview/1945209645
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWq3QscEJ-isCAfELdAbeejOZbSslqyXaRtRW5WEttLBKRoaQXi9_BDmbGdNJUqxHKJ2iSq28zL-I375oWQF0mklRCpCIyAMISCq6CAKiIoQp0aYca8UtbtcxGfrsKzPMoHg9891dJ2U76qfh3sK_mfqMI-iCt2yd4gst2Hwg54DfGFLUQYtv8UYxRp4Oo-rnlhB1RWbz7V26_osH2NWpwpzIQV0myrz7ROsdZlw7UUWBHHXPMLgTkWimevkbNdgEA-0ZUJH-aJopASQIInbbalFx22zrWthkC7JkIgwO6Xd-lka2V8RROctbNkf506q7_UHbTWWycZbq6CHGDbnZ1ZyQFc-qv-IgVzuubwBqmwl4KBMATx2K966v4-Z-zU5u24B09xcDZw7rKFbtByAJgvUKVoN--1__UvLuR8lWVyOcuX-0fdNJ8CowyB5UCNfcyhGIFsejx5e55ddmt5UGWxkbC9HO2Xb_1BR_z1_vhQBOH9-3OvounXRZbYLO-SO74ioRMX_XtkoJv75HbPp_IB-YFAozugUQ806oFGW6BRABrdAY16oNG1oRZodA9otAUadUCjDmi0A9pDsprPltPTwD-xI6hFnEaBilWqGGcVT4yO0lIwrUUBHF8lSZUYY5KwGkcF40BsDTNAzSGBpAwdh7QaFbF4RI6adaMfE1oaKKRDViHJCoXiYyD2KT6vWeEUpPSQvLTXUX5zriyyuP6MIsUkkh8X7-T76Ydpfpm9kXxITtoLLf29-10y4ABQKsc8PXw4DVEeFofRkHAbm24YZ_PNJUZVdlGVk9nivHv35O9DPiW3dvfICTmCqOhnQG035XOPrD9klqPC
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Reversible+Lithium+Storage+Capacity+and+Structural+Changes+of+Fe2O3+Nanoparticles+Confined+inside+Carbon+Nanotubes&rft.jtitle=Advanced+energy+materials&rft.au=Yu%2C+Wan-Jing&rft.au=Zhang%2C+Lili&rft.au=Hou%2C+Peng-Xiang&rft.au=Li%2C+Feng&rft.date=2016-02-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1002%2Faenm.201501755&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3943545211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon