Development of a numerical phase optimized upwinding combined compact difference scheme for solving the Camassa-Holm equation with different initial solitary waves
In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first‐order...
Saved in:
Published in | Numerical methods for partial differential equations Vol. 31; no. 5; pp. 1645 - 1664 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Blackwell Publishing Ltd
01.09.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first‐order derivative term. For the purpose of retaining both of the long‐term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure‐like variable is approximated by the sixth‐order accurate three‐point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high‐order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first‐order advection term κux in the CH equation will be addressed. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1645–1664, 2015 |
---|---|
AbstractList | In this article, the solution of Camassa-Holm (CH) equation is solved by the proposed two-step method. In the first step, the sixth-order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first-order derivative term. For the purpose of retaining both of the long-term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure-like variable is approximated by the sixth-order accurate three-point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high-order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first-order advection term [kappa]ux in the CH equation will be addressed. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1645-1664, 2015 In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first‐order derivative term. For the purpose of retaining both of the long‐term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure‐like variable is approximated by the sixth‐order accurate three‐point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high‐order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first‐order advection term κux in the CH equation will be addressed. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1645–1664, 2015 In this article, the solution of Camassa-Holm (CH) equation is solved by the proposed two-step method. In the first step, the sixth-order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first-order derivative term. For the purpose of retaining both of the long-term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure-like variable is approximated by the sixth-order accurate three-point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high-order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first-order advection term Kappa u sub(x) in the CH equation will be addressed. Numer Methods Partial Differential Eq 31: 1645-1664, 2015 |
Author | Liao, S. J. Sheu, Tony W. H. Chang, C. H. Yu, C. H. |
Author_xml | – sequence: 1 givenname: C. H. surname: Yu fullname: Yu, C. H. organization: Department of Ocean Science and Engineering, Zhejiang University, Yuhangtang Road, Hangzhou, Zhejiang, People's Republic of China – sequence: 2 givenname: Tony W. H. surname: Sheu fullname: Sheu, Tony W. H. email: twhsheu@ntu.edu.tw organization: Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, Republic of China – sequence: 3 givenname: C. H. surname: Chang fullname: Chang, C. H. organization: Center of Advanced Study in Theoretical Sciences (CASTS), Department of Mathematics, National Taiwan University, Taiwan, Taipei, Republic of China – sequence: 4 givenname: S. J. surname: Liao fullname: Liao, S. J. organization: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China |
BookMark | eNpdkcFu1DAQQC1UJLaFA39giQuXtLZjJ_ERLXSLtJQLFb1Zk2TCusR2Gju7lN_hR3G7qAdOMxq9N2PPnJITHzwS8pazc86YuPCLOxdcV-oFWXGmm0JIUZ2QFaulLrjSt6_IaYx3jHGuuF6RPx9xj2OYHPpEw0CB5g442w5GOu0gIg1Tss7-xp4u08H63voftAuutT6XcjJBl2hvhwFn9B3S2O3QIR3CTGMY94942iFdg4MYobgKo6N4v0CywdODTbtnOVHrbbJ5chZtgvmBHmCP8TV5OcAY8c2_eEZuLj99W18V26-bz-sP28KWlVQFlLxnLaDSQtRCtlx2rezKmgP0QjdC1wOvVAVV3QqpuGi6th1QiTavQmgJ5Rl5f-w7zeF-wZiMs7HDcQSPYYmG17zRipVNldF3_6F3YZl9fp3hlW50U-ZRmbo4Ugc74oOZZuvypwxn5vFWJm_aPN3KXN98eUqyURwNGxP-ejZg_mmquqyV-X69MZttw2_XQppN-ReUup0g |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/num.21965 |
DatabaseName | Istex Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1098-2426 |
EndPage | 1664 |
ExternalDocumentID | 3758796581 NUM21965 ark_67375_WNG_GL81XC24_G |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2014QNA4030 – fundername: National Science Council funderid: NSC 99‐2221‐E‐002‐225‐MY3 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ 7SC 7TB 8FD AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AMVHM FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-i3645-a31d0bae5922724b14cb4c371aad298297f1656a67b245128cbbfe52b115294a3 |
IEDL.DBID | DR2 |
ISSN | 0749-159X |
IngestDate | Fri Jul 11 05:13:44 EDT 2025 Fri Jul 25 12:14:52 EDT 2025 Wed Jan 22 16:21:45 EST 2025 Wed Oct 30 09:54:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3645-a31d0bae5922724b14cb4c371aad298297f1656a67b245128cbbfe52b115294a3 |
Notes | ArticleID:NUM21965 istex:EE76E176F159AACFEB8139BC06ED9C82E481D079 ark:/67375/WNG-GL81XC24-G Fundamental Research Funds for the Central Universities - No. 2014QNA4030 National Science Council - No. NSC 99-2221-E-002-225-MY3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1698983165 |
PQPubID | 1016406 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1718950386 proquest_journals_1698983165 wiley_primary_10_1002_num_21965_NUM21965 istex_primary_ark_67375_WNG_GL81XC24_G |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Numerical methods for partial differential equations |
PublicationTitleAlternate | Numer. Methods Partial Differential Eq |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | A. B. De Monvel, A. Kostenko, D. Shepelsky, and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J Math Anal 41 (2009), 1559-1588. P. C. Chu and C. Fan, A three-point combined compact difference scheme, J Comput Phys 140 (1998), 370-399. R. I. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer Math 66 (1994), 465-492. A. Constantin and W. A. Strauss, Stability of Camassa-Holm solitons, J Nonlinear Sci 12 (2002), 415-422. P. H. Chiu and T. W. H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation, J Comput Phys 228 (2009), 3640-3655. T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J Physics A 39 (2006), 5287-5320. S. Hakkaev, Stability of peakons for an integrable shallow water equation, Phys Letter A 354 (2006), 137-144. W. Oevel and M. Sofroniou, Symplectic Runge-Kutta schemes II: classification of symmetric method, University of Paderborn, Germany, Preprint, 1997. A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Commun Math Phys 211 (2000), 45-61. R. Camassa and L. Lee, Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation, J Comput Phys 227 (2008), 7206-7221. R. Camassa, Characteristics and initial value problem of a completely integrable shallow water equation, Discrete Continuous Dyn Syst Ser B 3 (2003), 115-139. H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm Partial Diff Equat 32 (2006), 1511-154. Tony W. H. Sheu, P. H. Chiu, and C. H. Yu, On the development of a high-order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa-Holm equation, J Comput Phys 230 (2011), 5399-5416. T. Matsuo and H. Yamaguchi, An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J Comput Phys 228 (2009), 4346-4358. D. Cohen, B. Owren, and X. Raynaud, Multi-symplectic integration of the Camassa-Holm equation, J Comput Phys 227 (2008), 5492-5512. C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J Comput Phys 107 (1993), 262-281. Y. Ohta, K -I. Maruno and B. -F. Feng, An integrable semi-discretization of the Camassa-Holm equation and its determinant solution, J Phys A: Math Theor 41 (2008), 355205. R. Camassa, J. Huang, and L. Lee, Integral and integrable algorithm for a nonlinear shallow-water wave equation, J Comput Phys 216 (2006), 547-572. Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J Numer Anal 46 (2008), 1998-2021. R. Camassa, D. Holm, and J. Hyman, A new integrable shallow water equation, Adv Appl Mech 31 (1994), 1-33. B. -F. Feng, K. Maruno and Y. Ohta, A self-adaptive mesh method for the Camassa-Holm equation, J Comput Appl Math 235 (2010), 229-243. P. H. Chiu, L. Lee, and T. W. H. Sheu, A sixth-order dual preserving algorithm for the Camassa-Holm equation, J Comput Appl Math 233 (2010), 2267-2278. H. Kalisch and X. Raynaud, Convergence of a spectral projection of the Camassa-Holm equation, Numer Method Part D E 22 (2006), 1197-1215. S. J. Liao, Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations, Sci China, Phys, Mechan Astron 55 (2012), 2469-2475. H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin Dyn Syst 14 (2006), 503-523. P. H. Chiu, L. Lee, and T. W. H. Sheu, A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation, J Comput Phys 228 (2009), 8034-8052. A. M. Wazwaz, A modified KdV-equaiton that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons, Phys Scr 86 (2012), 045501. T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys Letter A 284 (2001), 184-193. M. Stanislavova and A. Stefanov, On global finite energy solutions of the Camassa-Holm equation, J Fourier Anal Appl 11 (2005), 511-531. H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J Numer Anal 44 (2006), 1655-1680. G. Ashcroft and X. Zhang, Optimized prefactored compact schemes, J Comput Phys 190 (2003), 459-477. D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J Appl Dyn Syst 2 (2003), 323-380. R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys Rev Lett 71 (1993), 1661-1664. H. Kalisch and J. Lenells, Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos, Solitons Fractals 25 (2005), 287-298. R. Camassa and L. Lee, A complete integral particle method for a nonlinear shallow-water wave equation in periodic domains, DCDIS, Series A 14 (2007), 1-5. R. Camassa, J. Huang, and L. Lee, On a completely integral numerical solution for a nonlinear shallow-water wave equation, J Nonlinear Math Phys 12 (2005), 146-162. R. Artebrant and H. J. Schroll, Numerical simulation of Camassa-Holm peakons by adaptive upwinding, Appl Numer Math 56 (2006), 695-711. J. Lenells, Stability of periodic peakons, Int Math Res Notices 10 (2004), 485-499. 2009; 41 1993; 107 2001; 284 2006; 56 2006; 32 2002; 12 2006; 39 2006; 14 1994; 66 1997 2008; 227 2003; 190 2000; 211 2006; 216 2012; 55 2006; 354 2007; 14 1999 2011; 230 2005; 25 2004; 10 1993; 71 2006; 44 2006; 22 2010; 235 2010; 233 2003; 2 2003; 3 2008; 46 2008; 41 2009; 228 2005; 11 1998; 140 2005; 12 2012; 86 1994; 31 |
References_xml | – reference: A. B. De Monvel, A. Kostenko, D. Shepelsky, and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J Math Anal 41 (2009), 1559-1588. – reference: Y. Ohta, K -I. Maruno and B. -F. Feng, An integrable semi-discretization of the Camassa-Holm equation and its determinant solution, J Phys A: Math Theor 41 (2008), 355205. – reference: R. Camassa, J. Huang, and L. Lee, Integral and integrable algorithm for a nonlinear shallow-water wave equation, J Comput Phys 216 (2006), 547-572. – reference: B. -F. Feng, K. Maruno and Y. Ohta, A self-adaptive mesh method for the Camassa-Holm equation, J Comput Appl Math 235 (2010), 229-243. – reference: H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm Partial Diff Equat 32 (2006), 1511-154. – reference: J. Lenells, Stability of periodic peakons, Int Math Res Notices 10 (2004), 485-499. – reference: P. H. Chiu, L. Lee, and T. W. H. Sheu, A sixth-order dual preserving algorithm for the Camassa-Holm equation, J Comput Appl Math 233 (2010), 2267-2278. – reference: R. Camassa and L. Lee, Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation, J Comput Phys 227 (2008), 7206-7221. – reference: R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys Rev Lett 71 (1993), 1661-1664. – reference: G. Ashcroft and X. Zhang, Optimized prefactored compact schemes, J Comput Phys 190 (2003), 459-477. – reference: D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J Appl Dyn Syst 2 (2003), 323-380. – reference: H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J Numer Anal 44 (2006), 1655-1680. – reference: A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Commun Math Phys 211 (2000), 45-61. – reference: R. Camassa, Characteristics and initial value problem of a completely integrable shallow water equation, Discrete Continuous Dyn Syst Ser B 3 (2003), 115-139. – reference: P. H. Chiu, L. Lee, and T. W. H. Sheu, A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation, J Comput Phys 228 (2009), 8034-8052. – reference: T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J Physics A 39 (2006), 5287-5320. – reference: D. Cohen, B. Owren, and X. Raynaud, Multi-symplectic integration of the Camassa-Holm equation, J Comput Phys 227 (2008), 5492-5512. – reference: S. Hakkaev, Stability of peakons for an integrable shallow water equation, Phys Letter A 354 (2006), 137-144. – reference: H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin Dyn Syst 14 (2006), 503-523. – reference: R. Camassa, D. Holm, and J. Hyman, A new integrable shallow water equation, Adv Appl Mech 31 (1994), 1-33. – reference: R. I. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer Math 66 (1994), 465-492. – reference: Tony W. H. Sheu, P. H. Chiu, and C. H. Yu, On the development of a high-order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa-Holm equation, J Comput Phys 230 (2011), 5399-5416. – reference: H. Kalisch and J. Lenells, Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos, Solitons Fractals 25 (2005), 287-298. – reference: S. J. Liao, Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations, Sci China, Phys, Mechan Astron 55 (2012), 2469-2475. – reference: W. Oevel and M. Sofroniou, Symplectic Runge-Kutta schemes II: classification of symmetric method, University of Paderborn, Germany, Preprint, 1997. – reference: P. H. Chiu and T. W. H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation, J Comput Phys 228 (2009), 3640-3655. – reference: A. Constantin and W. A. Strauss, Stability of Camassa-Holm solitons, J Nonlinear Sci 12 (2002), 415-422. – reference: P. C. Chu and C. Fan, A three-point combined compact difference scheme, J Comput Phys 140 (1998), 370-399. – reference: M. Stanislavova and A. Stefanov, On global finite energy solutions of the Camassa-Holm equation, J Fourier Anal Appl 11 (2005), 511-531. – reference: A. M. Wazwaz, A modified KdV-equaiton that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons, Phys Scr 86 (2012), 045501. – reference: H. Kalisch and X. Raynaud, Convergence of a spectral projection of the Camassa-Holm equation, Numer Method Part D E 22 (2006), 1197-1215. – reference: T. Matsuo and H. Yamaguchi, An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J Comput Phys 228 (2009), 4346-4358. – reference: T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys Letter A 284 (2001), 184-193. – reference: Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J Numer Anal 46 (2008), 1998-2021. – reference: R. Artebrant and H. J. Schroll, Numerical simulation of Camassa-Holm peakons by adaptive upwinding, Appl Numer Math 56 (2006), 695-711. – reference: R. Camassa, J. Huang, and L. Lee, On a completely integral numerical solution for a nonlinear shallow-water wave equation, J Nonlinear Math Phys 12 (2005), 146-162. – reference: C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J Comput Phys 107 (1993), 262-281. – reference: R. Camassa and L. Lee, A complete integral particle method for a nonlinear shallow-water wave equation in periodic domains, DCDIS, Series A 14 (2007), 1-5. – volume: 56 start-page: 695 year: 2006 end-page: 711 article-title: Numerical simulation of Camassa‐Holm peakons by adaptive upwinding publication-title: Appl Numer Math – volume: 14 start-page: 1 year: 2007 end-page: 5 article-title: A complete integral particle method for a nonlinear shallow‐water wave equation in periodic domains, DCDIS publication-title: Series A – volume: 230 start-page: 5399 year: 2011 end-page: 5416 article-title: On the development of a high‐order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa‐Holm equation publication-title: J Comput Phys – volume: 44 start-page: 1655 year: 2006 end-page: 1680 article-title: Convergence of a finite difference scheme for the Camassa‐Holm equation publication-title: SIAM J Numer Anal – volume: 190 start-page: 459 year: 2003 end-page: 477 article-title: Optimized prefactored compact schemes publication-title: J Comput Phys – volume: 107 start-page: 262 year: 1993 end-page: 281 article-title: Dispersion‐relation‐preserving finite difference schemes for computational acoustics publication-title: J Comput Phys – volume: 228 start-page: 3640 year: 2009 end-page: 3655 article-title: On the development of a dispersion‐relation‐preserving dual‐compact upwind scheme for convection‐diffusion equation publication-title: J Comput Phys – volume: 32 start-page: 1511 year: 2006 end-page: 154 article-title: Global conservative solutions of the Camassa‐Holm equation‐a Lagrangian point of view publication-title: Comm Partial Diff Equat – volume: 12 start-page: 146 year: 2005 end-page: 162 article-title: On a completely integral numerical solution for a nonlinear shallow‐water wave equation publication-title: J Nonlinear Math Phys – volume: 55 start-page: 2469 year: 2012 end-page: 2475 article-title: Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations, Sci China, Phys publication-title: Mechan Astron – volume: 2 start-page: 323 year: 2003 end-page: 380 article-title: Wave structure and nonlinear balances in a family of evolutionary PDEs publication-title: SIAM J Appl Dyn Syst – start-page: 23 year: 1999 end-page: 27 – volume: 14 start-page: 503 year: 2006 end-page: 523 article-title: A convergent numerical scheme for the Camassa‐Holm equation based on multipeakons publication-title: Discrete Contin Dyn Syst – volume: 11 start-page: 511 year: 2005 end-page: 531 article-title: On global finite energy solutions of the Camassa‐Holm equation publication-title: J Fourier Anal Appl – volume: 235 start-page: 229 year: 2010 end-page: 243 article-title: A self‐adaptive mesh method for the Camassa‐Holm equation publication-title: J Comput Appl Math – volume: 140 start-page: 370 year: 1998 end-page: 399 article-title: A three‐point combined compact difference scheme publication-title: J Comput Phys – volume: 233 start-page: 2267 year: 2010 end-page: 2278 article-title: A sixth‐order dual preserving algorithm for the Camassa‐Holm equation publication-title: J Comput Appl Math – volume: 354 start-page: 137 year: 2006 end-page: 144 article-title: Stability of peakons for an integrable shallow water equation publication-title: Phys Letter A – volume: 3 start-page: 115 year: 2003 end-page: 139 article-title: Characteristics and initial value problem of a completely integrable shallow water equation publication-title: Discrete Continuous Dyn Syst Ser B – volume: 41 start-page: 1559 year: 2009 end-page: 1588 article-title: Long‐time asymptotics for the Camassa‐Holm equation publication-title: SIAM J Math Anal – volume: 31 start-page: 1 year: 1994 end-page: 33 article-title: A new integrable shallow water equation publication-title: Adv Appl Mech – volume: 25 start-page: 287 year: 2005 end-page: 298 article-title: Numerical study of traveling‐wave solutions for the Camassa‐Holm equation, Chaos publication-title: Solitons Fractals – volume: 71 start-page: 1661 year: 1993 end-page: 1664 article-title: An integrable shallow water equation with peaked solitons publication-title: Phys Rev Lett – volume: 284 start-page: 184 year: 2001 end-page: 193 article-title: Multi‐symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity publication-title: Phys Letter A – volume: 216 start-page: 547 year: 2006 end-page: 572 article-title: Integral and integrable algorithm for a nonlinear shallow‐water wave equation publication-title: J Comput Phys – volume: 12 start-page: 415 year: 2002 end-page: 422 article-title: Stability of Camassa‐Holm solitons publication-title: J Nonlinear Sci – volume: 41 start-page: 355205 year: 2008 article-title: An integrable semi‐discretization of the Camassa‐Holm equation and its determinant solution publication-title: J Phys A: Math Theor – volume: 228 start-page: 4346 year: 2009 end-page: 4358 article-title: An energy‐conserving Galerkin scheme for a class of nonlinear dispersive equations publication-title: J Comput Phys – volume: 22 start-page: 1197 year: 2006 end-page: 1215 article-title: Convergence of a spectral projection of the Camassa‐Holm equation publication-title: Numer Method Part D E – volume: 46 start-page: 1998 year: 2008 end-page: 2021 article-title: A local discontinuous Galerkin method for the Camassa‐Holm equation publication-title: SIAM J Numer Anal – year: 1997 – volume: 227 start-page: 7206 year: 2008 end-page: 7221 article-title: Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow‐water wave equation publication-title: J Comput Phys – volume: 66 start-page: 465 year: 1994 end-page: 492 article-title: Symplectic integration of Hamiltonian wave equations publication-title: Numer Math – volume: 10 start-page: 485 year: 2004 end-page: 499 article-title: Stability of periodic peakons publication-title: Int Math Res Notices – volume: 211 start-page: 45 year: 2000 end-page: 61 article-title: Global weak solutions for a shallow water equation publication-title: Commun Math Phys – volume: 227 start-page: 5492 year: 2008 end-page: 5512 article-title: Multi‐symplectic integration of the Camassa‐Holm equation publication-title: J Comput Phys – volume: 39 start-page: 5287 year: 2006 end-page: 5320 article-title: Numerical methods for Hamiltonian PDEs publication-title: J Physics A – volume: 86 start-page: 045501 year: 2012 article-title: A modified KdV‐equaiton that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons publication-title: Phys Scr – volume: 228 start-page: 8034 year: 2009 end-page: 8052 article-title: A dispersion‐relation‐preserving algorithm for a nonlinear shallow‐water wave equation publication-title: J Comput Phys |
SSID | ssj0011519 |
Score | 2.0487468 |
Snippet | In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate... In this article, the solution of Camassa-Holm (CH) equation is solved by the proposed two-step method. In the first step, the sixth-order spatially accurate... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1645 |
SubjectTerms | Approximation Camassa-Holm equation Derivatives Fluid dynamics Hamiltonian Integrity long-term accurate Mathematical analysis Mathematical models Partial differential equations upwinding combined compact difference scheme Wave propagation |
Title | Development of a numerical phase optimized upwinding combined compact difference scheme for solving the Camassa-Holm equation with different initial solitary waves |
URI | https://api.istex.fr/ark:/67375/WNG-GL81XC24-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.21965 https://www.proquest.com/docview/1698983165 https://www.proquest.com/docview/1718950386 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZWywUO_CMKy2qQEOKSbu04zVqcdgvtCtEeEBU9IFm244hqaVo2CYv2xDvwDLwYT8KM00SFE-JWpUnsdmzPN_Y33zD2jGdGJC5Po1xxEUlnskipdBBlNvYYjg1TF7Lep7Ph2Vy-WSSLPfayzYVp9CG6DTeaGWG9pglubHm0Ixpar_qC9PBw_SWuFgGid510FAKdUNQDPaSK0GUvWlWhgTjqnkRASv_ltz_Q5S5GDU5mfIt9bLvXcEvO-3Vl--7qL-XG_-z_bXZzCz7hpBktd9ieL-6yG9NOubW8x37usIhgnYOBom4OdT7D5hO6PFjjIrNaXvkM6s3lMiTFALaNETZeCpR2V0Fbd8V5wPDZrzwgOAYc57R_AdgejMwKcbv59f0HZUWA_9JojgNtDHePV7AkchO2XRJPD38sXJqvvrzP5uPX70dn0baUQ7Skc87IxDwbWOMTJUQqpOXSWenilBuTCUXpvTnJAJlhaoVEDHLsrM19IizaUShp4gdsv1gX_iGDBANE4mtl3EkK32zulOX4FuuNxfCxx54Ho-pNI9ehzcU5sdfSRH-YTfTk7TFfjITUkx47aK2utxO31DwU1IyxMz32tPsapxydo5jCr2u8B_25IhmdYY-9CCbu2mpEoAWVc9HBuHo2n4YPj_791sfsOsKypGGyHbD96qL2TxD6VPaQXTs5fXU6Pgxj_TcM1wXr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcoAe-K9IKTBICHFxGq_tuJa4VIEmQJIDakQuaLW7XouojZM2NkU98Q48Q1-MJ2FmHVuBE-Jm2bveXc-u55vdmW8AXvqpEpHJYi9LfOGFRqVeksQdL9WBJXOsGxsX9T4adweT8MM0mm7BmzoWpuKHaDbceGW4_zUvcN6QPthgDS3nbcGEeDfgJmf0Zub8t58a8iiCOi6tB-nIxCOlPa15hTrioKlKkJS_5vc_8OUmSnVq5vgufKk7WHmXnLbLQrfN1V_cjf87gntwZ40_8aiaMPdhy-YPYGfUkLeuHsL1hiMRLjJUmJfVuc4ZLr-S1sMF_WfmsyubYrm8nLm4GKTGycimW86r3RRYp14xFsmCtnOLhI-RpjpvYSC1hz01J-iufv34yYERaM8r2nHkveGmeoEz9m-itlfsqkejxUv1za4eweT43Ulv4K2zOXgzPur0VOCnHa1slAgRi1D7odGhCWJfqVQkHOGbMROQ6sZahARDDo3WmY2EJkGKJFTBLmzni9w-BozIRmSXrdQ3IVtwOjOJ9ukt2ipNFmQLXjmpymXF2CHVxSk7sMWR_Dzuy_7w0J_2RCj7LdivxS7Xa3clfZdTM6DOtOBF85hWHR-lqNwuSipDKj1hJp1uC147GTdtVTzQgjO6SCdcOZ6M3MXevxd9DrcGJ6OhHL4ff3wCtwmlRZVj2z5sFxelfUpIqNDP3IT_DQ97CJU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NISF4YPwVhQFGQoiXdI3jJLN4mjraAWuFEBV9QLJsxxHVaFrWhKE97TvsM_DF-CTcOU1UeEK8RYkd2zk79zv77ncAz8NM89jmaZDLkAfC6iyQMu0FmYkcmmNJan3U-2icHE3E22k83YJXTSxMzQ_RbrjRyvD_a1rgyyzf2yANreZdTnx4V-CqSHqS8jYcfmi5oxDp-KweqCJlgDp72tAK9fheWxURKX3MH3_Ay02Q6rXMYAc-N_2rnUtOulVpuvb8L-rG_xzALbi5Rp_soJ4ut2HLFXfgxqilbl3dhZ8bbkRskTPNiqo-1fnKll9Q57EF_mXms3OXsWp5NvNRMQzbRhMbb3mfdluyJvGKdQztZzd3DNExw4lOGxgM22N9PUfgrn9dXFJYBHPfatJxRjvDbfWSzci7CdtekaMeDpad6e9udQ8mg9cf-0fBOpdDMKODzkBHYdYz2sWS85QLEwprhI3SUOuMS4rvzYkHSCep4QJByL41JncxNyhHLoWO7sN2sSjcA2AxWojksJWFVpD9ZnIrTYhvMU4btB878MILVS1rvg6lT0_IfS2N1afxUA2P98Npnws17MBuI3W1XrkrFfqMmhF2pgPP2se45uggRRduUWEZVOiSeHSSDrz0Im7bqlmgOeVzUV64ajwZ-YuH_170KVx7fzhQx2_G7x7BdYRoce3Vtgvb5WnlHiMMKs0TP91_AwEIB0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+numerical+phase+optimized+upwinding+combined+compact+difference+scheme+for+solving+the+Camassa-Holm+equation+with+different+initial+solitary+waves&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Yu%2C+CH&rft.au=Sheu%2C+Tony+WH&rft.au=Chang%2C+CH&rft.au=Liao%2C+S+J&rft.date=2015-09-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=31&rft.issue=5&rft.spage=1645&rft.epage=1664&rft_id=info:doi/10.1002%2Fnum.21965&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |