Development of a numerical phase optimized upwinding combined compact difference scheme for solving the Camassa-Holm equation with different initial solitary waves

In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first‐order...

Full description

Saved in:
Bibliographic Details
Published inNumerical methods for partial differential equations Vol. 31; no. 5; pp. 1645 - 1664
Main Authors Yu, C. H., Sheu, Tony W. H., Chang, C. H., Liao, S. J.
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.09.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first‐order derivative term. For the purpose of retaining both of the long‐term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure‐like variable is approximated by the sixth‐order accurate three‐point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high‐order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first‐order advection term κux in the CH equation will be addressed. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1645–1664, 2015
AbstractList In this article, the solution of Camassa-Holm (CH) equation is solved by the proposed two-step method. In the first step, the sixth-order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first-order derivative term. For the purpose of retaining both of the long-term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure-like variable is approximated by the sixth-order accurate three-point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high-order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first-order advection term [kappa]ux in the CH equation will be addressed. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1645-1664, 2015
In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first‐order derivative term. For the purpose of retaining both of the long‐term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure‐like variable is approximated by the sixth‐order accurate three‐point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high‐order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first‐order advection term κux in the CH equation will be addressed. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1645–1664, 2015
In this article, the solution of Camassa-Holm (CH) equation is solved by the proposed two-step method. In the first step, the sixth-order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first-order derivative term. For the purpose of retaining both of the long-term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure-like variable is approximated by the sixth-order accurate three-point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high-order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first-order advection term Kappa u sub(x) in the CH equation will be addressed. Numer Methods Partial Differential Eq 31: 1645-1664, 2015
Author Liao, S. J.
Sheu, Tony W. H.
Chang, C. H.
Yu, C. H.
Author_xml – sequence: 1
  givenname: C. H.
  surname: Yu
  fullname: Yu, C. H.
  organization: Department of Ocean Science and Engineering, Zhejiang University, Yuhangtang Road, Hangzhou, Zhejiang, People's Republic of China
– sequence: 2
  givenname: Tony W. H.
  surname: Sheu
  fullname: Sheu, Tony W. H.
  email: twhsheu@ntu.edu.tw
  organization: Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, Republic of China
– sequence: 3
  givenname: C. H.
  surname: Chang
  fullname: Chang, C. H.
  organization: Center of Advanced Study in Theoretical Sciences (CASTS), Department of Mathematics, National Taiwan University, Taiwan, Taipei, Republic of China
– sequence: 4
  givenname: S. J.
  surname: Liao
  fullname: Liao, S. J.
  organization: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNpdkcFu1DAQQC1UJLaFA39giQuXtLZjJ_ERLXSLtJQLFb1Zk2TCusR2Gju7lN_hR3G7qAdOMxq9N2PPnJITHzwS8pazc86YuPCLOxdcV-oFWXGmm0JIUZ2QFaulLrjSt6_IaYx3jHGuuF6RPx9xj2OYHPpEw0CB5g442w5GOu0gIg1Tss7-xp4u08H63voftAuutT6XcjJBl2hvhwFn9B3S2O3QIR3CTGMY94942iFdg4MYobgKo6N4v0CywdODTbtnOVHrbbJ5chZtgvmBHmCP8TV5OcAY8c2_eEZuLj99W18V26-bz-sP28KWlVQFlLxnLaDSQtRCtlx2rezKmgP0QjdC1wOvVAVV3QqpuGi6th1QiTavQmgJ5Rl5f-w7zeF-wZiMs7HDcQSPYYmG17zRipVNldF3_6F3YZl9fp3hlW50U-ZRmbo4Ugc74oOZZuvypwxn5vFWJm_aPN3KXN98eUqyURwNGxP-ejZg_mmquqyV-X69MZttw2_XQppN-ReUup0g
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.21965
DatabaseName Istex
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 1664
ExternalDocumentID 3758796581
NUM21965
ark_67375_WNG_GL81XC24_G
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2014QNA4030
– fundername: National Science Council
  funderid: NSC 99‐2221‐E‐002‐225‐MY3
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
7SC
7TB
8FD
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-i3645-a31d0bae5922724b14cb4c371aad298297f1656a67b245128cbbfe52b115294a3
IEDL.DBID DR2
ISSN 0749-159X
IngestDate Fri Jul 11 05:13:44 EDT 2025
Fri Jul 25 12:14:52 EDT 2025
Wed Jan 22 16:21:45 EST 2025
Wed Oct 30 09:54:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3645-a31d0bae5922724b14cb4c371aad298297f1656a67b245128cbbfe52b115294a3
Notes ArticleID:NUM21965
istex:EE76E176F159AACFEB8139BC06ED9C82E481D079
ark:/67375/WNG-GL81XC24-G
Fundamental Research Funds for the Central Universities - No. 2014QNA4030
National Science Council - No. NSC 99-2221-E-002-225-MY3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1698983165
PQPubID 1016406
PageCount 20
ParticipantIDs proquest_miscellaneous_1718950386
proquest_journals_1698983165
wiley_primary_10_1002_num_21965_NUM21965
istex_primary_ark_67375_WNG_GL81XC24_G
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationTitleAlternate Numer. Methods Partial Differential Eq
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References A. B. De Monvel, A. Kostenko, D. Shepelsky, and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J Math Anal 41 (2009), 1559-1588.
P. C. Chu and C. Fan, A three-point combined compact difference scheme, J Comput Phys 140 (1998), 370-399.
R. I. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer Math 66 (1994), 465-492.
A. Constantin and W. A. Strauss, Stability of Camassa-Holm solitons, J Nonlinear Sci 12 (2002), 415-422.
P. H. Chiu and T. W. H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation, J Comput Phys 228 (2009), 3640-3655.
T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J Physics A 39 (2006), 5287-5320.
S. Hakkaev, Stability of peakons for an integrable shallow water equation, Phys Letter A 354 (2006), 137-144.
W. Oevel and M. Sofroniou, Symplectic Runge-Kutta schemes II: classification of symmetric method, University of Paderborn, Germany, Preprint, 1997.
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Commun Math Phys 211 (2000), 45-61.
R. Camassa and L. Lee, Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation, J Comput Phys 227 (2008), 7206-7221.
R. Camassa, Characteristics and initial value problem of a completely integrable shallow water equation, Discrete Continuous Dyn Syst Ser B 3 (2003), 115-139.
H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm Partial Diff Equat 32 (2006), 1511-154.
Tony W. H. Sheu, P. H. Chiu, and C. H. Yu, On the development of a high-order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa-Holm equation, J Comput Phys 230 (2011), 5399-5416.
T. Matsuo and H. Yamaguchi, An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J Comput Phys 228 (2009), 4346-4358.
D. Cohen, B. Owren, and X. Raynaud, Multi-symplectic integration of the Camassa-Holm equation, J Comput Phys 227 (2008), 5492-5512.
C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J Comput Phys 107 (1993), 262-281.
Y. Ohta, K -I. Maruno and B. -F. Feng, An integrable semi-discretization of the Camassa-Holm equation and its determinant solution, J Phys A: Math Theor 41 (2008), 355205.
R. Camassa, J. Huang, and L. Lee, Integral and integrable algorithm for a nonlinear shallow-water wave equation, J Comput Phys 216 (2006), 547-572.
Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J Numer Anal 46 (2008), 1998-2021.
R. Camassa, D. Holm, and J. Hyman, A new integrable shallow water equation, Adv Appl Mech 31 (1994), 1-33.
B. -F. Feng, K. Maruno and Y. Ohta, A self-adaptive mesh method for the Camassa-Holm equation, J Comput Appl Math 235 (2010), 229-243.
P. H. Chiu, L. Lee, and T. W. H. Sheu, A sixth-order dual preserving algorithm for the Camassa-Holm equation, J Comput Appl Math 233 (2010), 2267-2278.
H. Kalisch and X. Raynaud, Convergence of a spectral projection of the Camassa-Holm equation, Numer Method Part D E 22 (2006), 1197-1215.
S. J. Liao, Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations, Sci China, Phys, Mechan Astron 55 (2012), 2469-2475.
H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin Dyn Syst 14 (2006), 503-523.
P. H. Chiu, L. Lee, and T. W. H. Sheu, A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation, J Comput Phys 228 (2009), 8034-8052.
A. M. Wazwaz, A modified KdV-equaiton that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons, Phys Scr 86 (2012), 045501.
T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys Letter A 284 (2001), 184-193.
M. Stanislavova and A. Stefanov, On global finite energy solutions of the Camassa-Holm equation, J Fourier Anal Appl 11 (2005), 511-531.
H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J Numer Anal 44 (2006), 1655-1680.
G. Ashcroft and X. Zhang, Optimized prefactored compact schemes, J Comput Phys 190 (2003), 459-477.
D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J Appl Dyn Syst 2 (2003), 323-380.
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys Rev Lett 71 (1993), 1661-1664.
H. Kalisch and J. Lenells, Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos, Solitons Fractals 25 (2005), 287-298.
R. Camassa and L. Lee, A complete integral particle method for a nonlinear shallow-water wave equation in periodic domains, DCDIS, Series A 14 (2007), 1-5.
R. Camassa, J. Huang, and L. Lee, On a completely integral numerical solution for a nonlinear shallow-water wave equation, J Nonlinear Math Phys 12 (2005), 146-162.
R. Artebrant and H. J. Schroll, Numerical simulation of Camassa-Holm peakons by adaptive upwinding, Appl Numer Math 56 (2006), 695-711.
J. Lenells, Stability of periodic peakons, Int Math Res Notices 10 (2004), 485-499.
2009; 41
1993; 107
2001; 284
2006; 56
2006; 32
2002; 12
2006; 39
2006; 14
1994; 66
1997
2008; 227
2003; 190
2000; 211
2006; 216
2012; 55
2006; 354
2007; 14
1999
2011; 230
2005; 25
2004; 10
1993; 71
2006; 44
2006; 22
2010; 235
2010; 233
2003; 2
2003; 3
2008; 46
2008; 41
2009; 228
2005; 11
1998; 140
2005; 12
2012; 86
1994; 31
References_xml – reference: A. B. De Monvel, A. Kostenko, D. Shepelsky, and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J Math Anal 41 (2009), 1559-1588.
– reference: Y. Ohta, K -I. Maruno and B. -F. Feng, An integrable semi-discretization of the Camassa-Holm equation and its determinant solution, J Phys A: Math Theor 41 (2008), 355205.
– reference: R. Camassa, J. Huang, and L. Lee, Integral and integrable algorithm for a nonlinear shallow-water wave equation, J Comput Phys 216 (2006), 547-572.
– reference: B. -F. Feng, K. Maruno and Y. Ohta, A self-adaptive mesh method for the Camassa-Holm equation, J Comput Appl Math 235 (2010), 229-243.
– reference: H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm Partial Diff Equat 32 (2006), 1511-154.
– reference: J. Lenells, Stability of periodic peakons, Int Math Res Notices 10 (2004), 485-499.
– reference: P. H. Chiu, L. Lee, and T. W. H. Sheu, A sixth-order dual preserving algorithm for the Camassa-Holm equation, J Comput Appl Math 233 (2010), 2267-2278.
– reference: R. Camassa and L. Lee, Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation, J Comput Phys 227 (2008), 7206-7221.
– reference: R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys Rev Lett 71 (1993), 1661-1664.
– reference: G. Ashcroft and X. Zhang, Optimized prefactored compact schemes, J Comput Phys 190 (2003), 459-477.
– reference: D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J Appl Dyn Syst 2 (2003), 323-380.
– reference: H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J Numer Anal 44 (2006), 1655-1680.
– reference: A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Commun Math Phys 211 (2000), 45-61.
– reference: R. Camassa, Characteristics and initial value problem of a completely integrable shallow water equation, Discrete Continuous Dyn Syst Ser B 3 (2003), 115-139.
– reference: P. H. Chiu, L. Lee, and T. W. H. Sheu, A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation, J Comput Phys 228 (2009), 8034-8052.
– reference: T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J Physics A 39 (2006), 5287-5320.
– reference: D. Cohen, B. Owren, and X. Raynaud, Multi-symplectic integration of the Camassa-Holm equation, J Comput Phys 227 (2008), 5492-5512.
– reference: S. Hakkaev, Stability of peakons for an integrable shallow water equation, Phys Letter A 354 (2006), 137-144.
– reference: H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin Dyn Syst 14 (2006), 503-523.
– reference: R. Camassa, D. Holm, and J. Hyman, A new integrable shallow water equation, Adv Appl Mech 31 (1994), 1-33.
– reference: R. I. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer Math 66 (1994), 465-492.
– reference: Tony W. H. Sheu, P. H. Chiu, and C. H. Yu, On the development of a high-order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa-Holm equation, J Comput Phys 230 (2011), 5399-5416.
– reference: H. Kalisch and J. Lenells, Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos, Solitons Fractals 25 (2005), 287-298.
– reference: S. J. Liao, Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations, Sci China, Phys, Mechan Astron 55 (2012), 2469-2475.
– reference: W. Oevel and M. Sofroniou, Symplectic Runge-Kutta schemes II: classification of symmetric method, University of Paderborn, Germany, Preprint, 1997.
– reference: P. H. Chiu and T. W. H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation, J Comput Phys 228 (2009), 3640-3655.
– reference: A. Constantin and W. A. Strauss, Stability of Camassa-Holm solitons, J Nonlinear Sci 12 (2002), 415-422.
– reference: P. C. Chu and C. Fan, A three-point combined compact difference scheme, J Comput Phys 140 (1998), 370-399.
– reference: M. Stanislavova and A. Stefanov, On global finite energy solutions of the Camassa-Holm equation, J Fourier Anal Appl 11 (2005), 511-531.
– reference: A. M. Wazwaz, A modified KdV-equaiton that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons, Phys Scr 86 (2012), 045501.
– reference: H. Kalisch and X. Raynaud, Convergence of a spectral projection of the Camassa-Holm equation, Numer Method Part D E 22 (2006), 1197-1215.
– reference: T. Matsuo and H. Yamaguchi, An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J Comput Phys 228 (2009), 4346-4358.
– reference: T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys Letter A 284 (2001), 184-193.
– reference: Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J Numer Anal 46 (2008), 1998-2021.
– reference: R. Artebrant and H. J. Schroll, Numerical simulation of Camassa-Holm peakons by adaptive upwinding, Appl Numer Math 56 (2006), 695-711.
– reference: R. Camassa, J. Huang, and L. Lee, On a completely integral numerical solution for a nonlinear shallow-water wave equation, J Nonlinear Math Phys 12 (2005), 146-162.
– reference: C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J Comput Phys 107 (1993), 262-281.
– reference: R. Camassa and L. Lee, A complete integral particle method for a nonlinear shallow-water wave equation in periodic domains, DCDIS, Series A 14 (2007), 1-5.
– volume: 56
  start-page: 695
  year: 2006
  end-page: 711
  article-title: Numerical simulation of Camassa‐Holm peakons by adaptive upwinding
  publication-title: Appl Numer Math
– volume: 14
  start-page: 1
  year: 2007
  end-page: 5
  article-title: A complete integral particle method for a nonlinear shallow‐water wave equation in periodic domains, DCDIS
  publication-title: Series A
– volume: 230
  start-page: 5399
  year: 2011
  end-page: 5416
  article-title: On the development of a high‐order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa‐Holm equation
  publication-title: J Comput Phys
– volume: 44
  start-page: 1655
  year: 2006
  end-page: 1680
  article-title: Convergence of a finite difference scheme for the Camassa‐Holm equation
  publication-title: SIAM J Numer Anal
– volume: 190
  start-page: 459
  year: 2003
  end-page: 477
  article-title: Optimized prefactored compact schemes
  publication-title: J Comput Phys
– volume: 107
  start-page: 262
  year: 1993
  end-page: 281
  article-title: Dispersion‐relation‐preserving finite difference schemes for computational acoustics
  publication-title: J Comput Phys
– volume: 228
  start-page: 3640
  year: 2009
  end-page: 3655
  article-title: On the development of a dispersion‐relation‐preserving dual‐compact upwind scheme for convection‐diffusion equation
  publication-title: J Comput Phys
– volume: 32
  start-page: 1511
  year: 2006
  end-page: 154
  article-title: Global conservative solutions of the Camassa‐Holm equation‐a Lagrangian point of view
  publication-title: Comm Partial Diff Equat
– volume: 12
  start-page: 146
  year: 2005
  end-page: 162
  article-title: On a completely integral numerical solution for a nonlinear shallow‐water wave equation
  publication-title: J Nonlinear Math Phys
– volume: 55
  start-page: 2469
  year: 2012
  end-page: 2475
  article-title: Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations, Sci China, Phys
  publication-title: Mechan Astron
– volume: 2
  start-page: 323
  year: 2003
  end-page: 380
  article-title: Wave structure and nonlinear balances in a family of evolutionary PDEs
  publication-title: SIAM J Appl Dyn Syst
– start-page: 23
  year: 1999
  end-page: 27
– volume: 14
  start-page: 503
  year: 2006
  end-page: 523
  article-title: A convergent numerical scheme for the Camassa‐Holm equation based on multipeakons
  publication-title: Discrete Contin Dyn Syst
– volume: 11
  start-page: 511
  year: 2005
  end-page: 531
  article-title: On global finite energy solutions of the Camassa‐Holm equation
  publication-title: J Fourier Anal Appl
– volume: 235
  start-page: 229
  year: 2010
  end-page: 243
  article-title: A self‐adaptive mesh method for the Camassa‐Holm equation
  publication-title: J Comput Appl Math
– volume: 140
  start-page: 370
  year: 1998
  end-page: 399
  article-title: A three‐point combined compact difference scheme
  publication-title: J Comput Phys
– volume: 233
  start-page: 2267
  year: 2010
  end-page: 2278
  article-title: A sixth‐order dual preserving algorithm for the Camassa‐Holm equation
  publication-title: J Comput Appl Math
– volume: 354
  start-page: 137
  year: 2006
  end-page: 144
  article-title: Stability of peakons for an integrable shallow water equation
  publication-title: Phys Letter A
– volume: 3
  start-page: 115
  year: 2003
  end-page: 139
  article-title: Characteristics and initial value problem of a completely integrable shallow water equation
  publication-title: Discrete Continuous Dyn Syst Ser B
– volume: 41
  start-page: 1559
  year: 2009
  end-page: 1588
  article-title: Long‐time asymptotics for the Camassa‐Holm equation
  publication-title: SIAM J Math Anal
– volume: 31
  start-page: 1
  year: 1994
  end-page: 33
  article-title: A new integrable shallow water equation
  publication-title: Adv Appl Mech
– volume: 25
  start-page: 287
  year: 2005
  end-page: 298
  article-title: Numerical study of traveling‐wave solutions for the Camassa‐Holm equation, Chaos
  publication-title: Solitons Fractals
– volume: 71
  start-page: 1661
  year: 1993
  end-page: 1664
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys Rev Lett
– volume: 284
  start-page: 184
  year: 2001
  end-page: 193
  article-title: Multi‐symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
  publication-title: Phys Letter A
– volume: 216
  start-page: 547
  year: 2006
  end-page: 572
  article-title: Integral and integrable algorithm for a nonlinear shallow‐water wave equation
  publication-title: J Comput Phys
– volume: 12
  start-page: 415
  year: 2002
  end-page: 422
  article-title: Stability of Camassa‐Holm solitons
  publication-title: J Nonlinear Sci
– volume: 41
  start-page: 355205
  year: 2008
  article-title: An integrable semi‐discretization of the Camassa‐Holm equation and its determinant solution
  publication-title: J Phys A: Math Theor
– volume: 228
  start-page: 4346
  year: 2009
  end-page: 4358
  article-title: An energy‐conserving Galerkin scheme for a class of nonlinear dispersive equations
  publication-title: J Comput Phys
– volume: 22
  start-page: 1197
  year: 2006
  end-page: 1215
  article-title: Convergence of a spectral projection of the Camassa‐Holm equation
  publication-title: Numer Method Part D E
– volume: 46
  start-page: 1998
  year: 2008
  end-page: 2021
  article-title: A local discontinuous Galerkin method for the Camassa‐Holm equation
  publication-title: SIAM J Numer Anal
– year: 1997
– volume: 227
  start-page: 7206
  year: 2008
  end-page: 7221
  article-title: Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow‐water wave equation
  publication-title: J Comput Phys
– volume: 66
  start-page: 465
  year: 1994
  end-page: 492
  article-title: Symplectic integration of Hamiltonian wave equations
  publication-title: Numer Math
– volume: 10
  start-page: 485
  year: 2004
  end-page: 499
  article-title: Stability of periodic peakons
  publication-title: Int Math Res Notices
– volume: 211
  start-page: 45
  year: 2000
  end-page: 61
  article-title: Global weak solutions for a shallow water equation
  publication-title: Commun Math Phys
– volume: 227
  start-page: 5492
  year: 2008
  end-page: 5512
  article-title: Multi‐symplectic integration of the Camassa‐Holm equation
  publication-title: J Comput Phys
– volume: 39
  start-page: 5287
  year: 2006
  end-page: 5320
  article-title: Numerical methods for Hamiltonian PDEs
  publication-title: J Physics A
– volume: 86
  start-page: 045501
  year: 2012
  article-title: A modified KdV‐equaiton that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons
  publication-title: Phys Scr
– volume: 228
  start-page: 8034
  year: 2009
  end-page: 8052
  article-title: A dispersion‐relation‐preserving algorithm for a nonlinear shallow‐water wave equation
  publication-title: J Comput Phys
SSID ssj0011519
Score 2.0487468
Snippet In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate...
In this article, the solution of Camassa-Holm (CH) equation is solved by the proposed two-step method. In the first step, the sixth-order spatially accurate...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1645
SubjectTerms Approximation
Camassa-Holm equation
Derivatives
Fluid dynamics
Hamiltonian
Integrity
long-term accurate
Mathematical analysis
Mathematical models
Partial differential equations
upwinding combined compact difference scheme
Wave propagation
Title Development of a numerical phase optimized upwinding combined compact difference scheme for solving the Camassa-Holm equation with different initial solitary waves
URI https://api.istex.fr/ark:/67375/WNG-GL81XC24-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.21965
https://www.proquest.com/docview/1698983165
https://www.proquest.com/docview/1718950386
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZWywUO_CMKy2qQEOKSbu04zVqcdgvtCtEeEBU9IFm244hqaVo2CYv2xDvwDLwYT8KM00SFE-JWpUnsdmzPN_Y33zD2jGdGJC5Po1xxEUlnskipdBBlNvYYjg1TF7Lep7Ph2Vy-WSSLPfayzYVp9CG6DTeaGWG9pglubHm0Ixpar_qC9PBw_SWuFgGid510FAKdUNQDPaSK0GUvWlWhgTjqnkRASv_ltz_Q5S5GDU5mfIt9bLvXcEvO-3Vl--7qL-XG_-z_bXZzCz7hpBktd9ieL-6yG9NOubW8x37usIhgnYOBom4OdT7D5hO6PFjjIrNaXvkM6s3lMiTFALaNETZeCpR2V0Fbd8V5wPDZrzwgOAYc57R_AdgejMwKcbv59f0HZUWA_9JojgNtDHePV7AkchO2XRJPD38sXJqvvrzP5uPX70dn0baUQ7Skc87IxDwbWOMTJUQqpOXSWenilBuTCUXpvTnJAJlhaoVEDHLsrM19IizaUShp4gdsv1gX_iGDBANE4mtl3EkK32zulOX4FuuNxfCxx54Ho-pNI9ehzcU5sdfSRH-YTfTk7TFfjITUkx47aK2utxO31DwU1IyxMz32tPsapxydo5jCr2u8B_25IhmdYY-9CCbu2mpEoAWVc9HBuHo2n4YPj_791sfsOsKypGGyHbD96qL2TxD6VPaQXTs5fXU6Pgxj_TcM1wXr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcoAe-K9IKTBICHFxGq_tuJa4VIEmQJIDakQuaLW7XouojZM2NkU98Q48Q1-MJ2FmHVuBE-Jm2bveXc-u55vdmW8AXvqpEpHJYi9LfOGFRqVeksQdL9WBJXOsGxsX9T4adweT8MM0mm7BmzoWpuKHaDbceGW4_zUvcN6QPthgDS3nbcGEeDfgJmf0Zub8t58a8iiCOi6tB-nIxCOlPa15hTrioKlKkJS_5vc_8OUmSnVq5vgufKk7WHmXnLbLQrfN1V_cjf87gntwZ40_8aiaMPdhy-YPYGfUkLeuHsL1hiMRLjJUmJfVuc4ZLr-S1sMF_WfmsyubYrm8nLm4GKTGycimW86r3RRYp14xFsmCtnOLhI-RpjpvYSC1hz01J-iufv34yYERaM8r2nHkveGmeoEz9m-itlfsqkejxUv1za4eweT43Ulv4K2zOXgzPur0VOCnHa1slAgRi1D7odGhCWJfqVQkHOGbMROQ6sZahARDDo3WmY2EJkGKJFTBLmzni9w-BozIRmSXrdQ3IVtwOjOJ9ukt2ipNFmQLXjmpymXF2CHVxSk7sMWR_Dzuy_7w0J_2RCj7LdivxS7Xa3clfZdTM6DOtOBF85hWHR-lqNwuSipDKj1hJp1uC147GTdtVTzQgjO6SCdcOZ6M3MXevxd9DrcGJ6OhHL4ff3wCtwmlRZVj2z5sFxelfUpIqNDP3IT_DQ97CJU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NISF4YPwVhQFGQoiXdI3jJLN4mjraAWuFEBV9QLJsxxHVaFrWhKE97TvsM_DF-CTcOU1UeEK8RYkd2zk79zv77ncAz8NM89jmaZDLkAfC6iyQMu0FmYkcmmNJan3U-2icHE3E22k83YJXTSxMzQ_RbrjRyvD_a1rgyyzf2yANreZdTnx4V-CqSHqS8jYcfmi5oxDp-KweqCJlgDp72tAK9fheWxURKX3MH3_Ay02Q6rXMYAc-N_2rnUtOulVpuvb8L-rG_xzALbi5Rp_soJ4ut2HLFXfgxqilbl3dhZ8bbkRskTPNiqo-1fnKll9Q57EF_mXms3OXsWp5NvNRMQzbRhMbb3mfdluyJvGKdQztZzd3DNExw4lOGxgM22N9PUfgrn9dXFJYBHPfatJxRjvDbfWSzci7CdtekaMeDpad6e9udQ8mg9cf-0fBOpdDMKODzkBHYdYz2sWS85QLEwprhI3SUOuMS4rvzYkHSCep4QJByL41JncxNyhHLoWO7sN2sSjcA2AxWojksJWFVpD9ZnIrTYhvMU4btB878MILVS1rvg6lT0_IfS2N1afxUA2P98Npnws17MBuI3W1XrkrFfqMmhF2pgPP2se45uggRRduUWEZVOiSeHSSDrz0Im7bqlmgOeVzUV64ajwZ-YuH_170KVx7fzhQx2_G7x7BdYRoce3Vtgvb5WnlHiMMKs0TP91_AwEIB0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+numerical+phase+optimized+upwinding+combined+compact+difference+scheme+for+solving+the+Camassa-Holm+equation+with+different+initial+solitary+waves&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Yu%2C+CH&rft.au=Sheu%2C+Tony+WH&rft.au=Chang%2C+CH&rft.au=Liao%2C+S+J&rft.date=2015-09-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=31&rft.issue=5&rft.spage=1645&rft.epage=1664&rft_id=info:doi/10.1002%2Fnum.21965&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon