Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping

Breakdown of the blood‐brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast‐enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy h...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 65; no. 4; pp. 1036 - 1042
Main Authors Taheri, Saeid, Gasparovic, Charles, Shah, Nadim Jon, Rosenberg, Gary A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2011
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.22686

Cover

Loading…
Abstract Breakdown of the blood‐brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast‐enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T1 mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd‐DTPA) from plasma into brain. A quarter of the standard Gd‐DTPA dose for dynamic contrast‐enhanced magnetic resonance imaging was found to give both sufficient contrast‐to‐noise and high T1 sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T1. Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10−4 L/g min. MRI measurements correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast‐enhanced magnetic resonance imaging with low dose Gd‐DTPA and fast T1 imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T 1 mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T 1 sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/ T 1 . Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10 −4 L/g min. MRI measurements correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T 1 imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes.
Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T(1) mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T(1) sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T(1). Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10(-4) L/g min. MRI measurements were not [corrected] correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T(1) imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes.Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T(1) mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T(1) sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T(1). Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10(-4) L/g min. MRI measurements were not [corrected] correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T(1) imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes.
Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T(1) mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T(1) sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T(1). Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10(-4) L/g min. MRI measurements were not [corrected] correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T(1) imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes.
Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T1 mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T1 sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T1. Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 X 10-4 L/g min. MRI measurements correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T1 imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes. Magn Reson Med, 2010. [copy 2010 Wiley-Liss, Inc.
Breakdown of the blood‐brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast‐enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T1 mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd‐DTPA) from plasma into brain. A quarter of the standard Gd‐DTPA dose for dynamic contrast‐enhanced magnetic resonance imaging was found to give both sufficient contrast‐to‐noise and high T1 sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T1. Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10−4 L/g min. MRI measurements correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast‐enhanced magnetic resonance imaging with low dose Gd‐DTPA and fast T1 imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
Author Gasparovic, Charles
Taheri, Saeid
Shah, Nadim Jon
Rosenberg, Gary A.
AuthorAffiliation 5 Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
2 Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
6 Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
4 Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
3 Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
AuthorAffiliation_xml – name: 6 Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
– name: 5 Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
– name: 3 Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
– name: 2 Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
– name: 4 Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
– name: 1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
Author_xml – sequence: 1
  givenname: Saeid
  surname: Taheri
  fullname: Taheri, Saeid
  email: staheri@salud.unm.edu
  organization: Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
– sequence: 2
  givenname: Charles
  surname: Gasparovic
  fullname: Gasparovic, Charles
  organization: Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
– sequence: 3
  givenname: Nadim Jon
  surname: Shah
  fullname: Shah, Nadim Jon
  organization: Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
– sequence: 4
  givenname: Gary A.
  surname: Rosenberg
  fullname: Rosenberg, Gary A.
  organization: Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21413067$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFBX8Aeccq7fVrnGyQ0IiWSp0iqvIQG8uJbzqGxBnspGU2_HbcThnBCla27v3O0bF8DsheGAIS8pzBEQPgx33sjzifl_NHZMYU5wVXldwjM9ASCsEquU8OUvoKAFWl5ROyz5lkAuZ6Rn6-n2wY_WhHf4O0R5umiD2GkQ4trbthcEUdrQ-0tjF6jHSNMVO17_y4oXm-mnob6JR8uKZuE2zvG9oMYYw2jQWGlQ0NOrq8PKO3flzRNo_pFaO9Xa-z5Cl53Nou4bOH85B8OHlztXhbnL87PVu8Pi-8UHpeOCFbhfmJTY6tNBdOKEAtVQuuZq3kLW9LKZ3Tpa6FVaAbXTlQoLBppUNxSF5tfddT3aNr8C5gZ9bR9zZuzGC9-XsT_MpcDzdGVgoqqbPByweDOHyfMI2m96nBrrMBhymZshQgoQL5XyQHycp_k0qXDMpKZPLFn_F3uX__YwaOt8Ct73Cz2zMwdwUxuSDmviBmebm8v2RFsVX4NOKPncLGbyb7aWU-XZyajxfqhC0-fzFc_AIPkMCQ
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Copyright © 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: Copyright © 2010 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
5PM
DOI 10.1002/mrm.22686
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Engineering Research Database
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1042
ExternalDocumentID PMC4950947
21413067
MRM22686
ark_67375_WNG_VN5F1CXZ_2
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Bayer Pharmaceutical
– fundername: National Institutes of Health
  funderid: R01 NS045847; R01 NS052305
– fundername: NINDS NIH HHS
  grantid: R01 NS052305
– fundername: NINDS NIH HHS
  grantid: R01 NS045847
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AGHNM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
7QO
7TK
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-i3576-d34f5e226c1305723d350e745f0db1f42f2f844dd787b3a507c79d0505ecf4de3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 14:22:05 EDT 2025
Thu Sep 04 18:23:51 EDT 2025
Fri Sep 05 03:39:34 EDT 2025
Thu Sep 04 17:18:37 EDT 2025
Thu Apr 03 07:00:46 EDT 2025
Wed Jan 22 17:11:58 EST 2025
Wed Oct 30 09:52:13 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3576-d34f5e226c1305723d350e745f0db1f42f2f844dd787b3a507c79d0505ecf4de3
Notes istex:5327D02D935E51B04A479330F43CAA5E0FC207E9
ark:/67375/WNG-VN5F1CXZ-2
ArticleID:MRM22686
National Institutes of Health - No. R01 NS045847; No. R01 NS052305
Bayer Pharmaceutical
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4950947
PMID 21413067
PQID 857810893
PQPubID 23462
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4950947
proquest_miscellaneous_883040904
proquest_miscellaneous_883020418
proquest_miscellaneous_857810893
pubmed_primary_21413067
wiley_primary_10_1002_mrm_22686_MRM22686
istex_primary_ark_67375_WNG_VN5F1CXZ_2
PublicationCentury 2000
PublicationDate April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: April 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Hanyu H, Asano T, Tanaka Y, Iwamoto T, Takasaki M, Abe K. Increased blood-brain barrier permeability in white matter lesions of Binswanger's disease evaluated by contrast-enhanced MRI. Dement Geriatr Cogn Disord 2002; 14: 1-6.
Steinhoff S, Zaitsev M, Zilles K, Shah NJ. Fast T(1) mapping with volume coverage. Magn Reson Med 2001; 46: 131-140.
Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, Virmani S, Pohlman S, Dillon WP, Wintermark M. Dynamic perfusion CT assessment of the blood-brain barrier permeability: first pass versus delayed acquisition. AJNR Am J Neuroradiol 2008; 29: 1671-1676.
Sood RR, Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Early beneficial effect of matrix metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 2008; 28: 431-438.
Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 1990; 16: 117-131.
Shah NJ, Neeb H, Zaitsev M, Steinhoff S, Kircheis G, Amunts K, Haussinger D, Zilles K. Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 2003; 38: 1219-1226.
Taheri S, Sood R. Kalman filtering for reliable estimation of BBB permeability. Magn Reson Imaging 2006; 24: 1039-1049.
Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 2010; 81: 192-197.
Lin K, Kazmi KS, Law M, Babb J, Peccerelli N, Pramanik BK. Measuring elevated microvascular permeability and predicting hemorrhagic transformation in acute ischemic stroke using first-pass dynamic perfusion CT imaging. AJNR Am J Neuroradiol 2007; 28: 1292-1298.
Zaitsev M, Steinhoff S, Shah NJ. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping. Magn Reson Med 2003; 49: 1121-1132.
Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, Wendland M, Dillon WP. Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006; 27: 409-417.
Young IT. Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem 1977; 25: 935-941.
Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Spatiotemporal correlations between blood-brain barrier permeability and apparent diffusion coefficient in a rat model of ischemic stroke. PLoS One 2009; 4: e6597.
Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M. Optimal duration of acquisition for dynamic perfusion ct assessment of blood-brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol 2009; 30: 1366-1370.
Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD. Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 2003; 50: 283-292.
Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17: 87-97.
Neeb H, Ermer V, Stocker T, Shah NJ. Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 2008; 42: 1094-1109.
Soon D, Altmann DR, Fernando KT, Giovannoni G, Barkhof F, Polman CH, O'Connor P, Gray B, Panzara M, Miller DH. A study of subtle blood brain barrier disruption in a placebo-controlled trial of natalizumab in relapsing remitting multiple sclerosis. J Neurol 2007; 254: 306-314.
Shah NJ, Zaitsev M, Steinhoff S, Zilles K. A new method for fast multislice T(1) mapping. Neuroimage 2001; 14: 1175-1185.
Bradbury MW. The blood-brain barrier. [Review] Exp Physiol 1993; 78: 453-472.
Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease-systematic review and meta-analysis. Neurobiol Aging 2009; 30: 337-352.
Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J. Blood-brain barrier permeability in Alzheimer's disease: a case-control MRI study. Psychiatry Res 2009; 171: 232-241.
Soon D, Tozer DJ, Altmann DR, Tofts PS, Miller DH. Quantification of subtle blood-brain barrier disruption in non-enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes. Mult Scler 2007; 13: 884-894.
Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 2006; 26: 310-320.
Dillman JR, Ellis JH, Cohan RH, Strouse PJ, Jan SC. Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am J Roentgenol 2007; 189: 1533-1538.
Tofts PS. Optimal detection of blood-brain barrier defects with Gd-DTPA MRI-the influences of delayed imaging and optimised repetition time. Magn Reson Imaging 1996; 14: 373-380.
Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891-899.
Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985; 5: 584-590.
Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 2: 250-251.
Chernavskii DS, Nikitin AP, Chernavskaia OD. [Origination of Pareto distribution in complex dynamic systems]. Biofizika 2008; 53: 351-358.
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57: 178-201.
Larsson HB, Courivaud F, Rostrup E, Hansen AE. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 2009; 62: 1270-1281.
2002; 14
2007; 189
2009; 62
1985; 5
1990; 16
1977; 25
2000; 21
2002; 10
2008; 57
2003; 38
2003
1992
2008; 53
1996; 14
2010; 81
2003; 50
2001; 46
2007; 13
1970; 2
2007; 28
1993; 78
1998; 17
2009; 30
2001
2006; 24
2009; 171
2008; 29
2006; 27
2007; 254
2008; 28
2006; 26
2003; 49
2009; 4
2008; 42
2001; 14
14578860 - Hepatology. 2003 Nov;38(5):1219-26
Magn Reson Med. 2011 May;65(5):1508
16997074 - Magn Reson Imaging. 2006 Oct;24(8):1039-49
18215617 - Neuron. 2008 Jan 24;57(2):178-201
10815665 - AJNR Am J Neuroradiol. 2000 May;21(5):891-9
12053125 - Dement Geriatr Cogn Disord. 2002;14(1):1-6
2255233 - Magn Reson Med. 1990 Oct;16(1):117-31
17468443 - Mult Scler. 2007 Aug;13(7):884-94
16079791 - J Cereb Blood Flow Metab. 2006 Mar;26(3):310-20
17869382 - Neurobiol Aging. 2009 Mar;30(3):337-52
11697949 - Neuroimage. 2001 Nov;14(5):1175-85
19710048 - J Neurol Neurosurg Psychiatry. 2010 Feb;81(2):192-7
18635616 - AJNR Am J Neuroradiol. 2008 Oct;29(9):1671-6
19369610 - AJNR Am J Neuroradiol. 2009 Aug;30(7):1366-70
894009 - J Histochem Cytochem. 1977 Jul;25(7):935-41
17277910 - J Neurol. 2007 Mar;254(3):306-14
12876704 - Magn Reson Med. 2003 Aug;50(2):283-92
4055928 - J Cereb Blood Flow Metab. 1985 Dec;5(4):584-90
18543778 - Biofizika. 2008 Mar-Apr;53(2):351-8
11443719 - Magn Reson Med. 2001 Jul;46(1):131-40
19780145 - Magn Reson Med. 2009 Nov;62(5):1270-81
19211227 - Psychiatry Res. 2009 Mar 31;171(3):232-41
17700631 - J Cereb Blood Flow Metab. 2008 Feb;28(2):431-8
17698530 - AJNR Am J Neuroradiol. 2007 Aug;28(7):1292-8
9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
8782175 - Magn Reson Imaging. 1996;14(4):373-80
18632287 - Neuroimage. 2008 Sep 1;42(3):1094-109
8398100 - Exp Physiol. 1993 Jul;78(4):453-72
16484420 - AJNR Am J Neuroradiol. 2006 Feb;27(2):409-17
18029897 - AJR Am J Roentgenol. 2007 Dec;189(6):1533-8
12768591 - Magn Reson Med. 2003 Jun;49(6):1121-32
19668371 - PLoS One. 2009 Aug 11;4(8):e6597
References_xml – reference: Larsson HB, Courivaud F, Rostrup E, Hansen AE. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 2009; 62: 1270-1281.
– reference: Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 1990; 16: 117-131.
– reference: Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Spatiotemporal correlations between blood-brain barrier permeability and apparent diffusion coefficient in a rat model of ischemic stroke. PLoS One 2009; 4: e6597.
– reference: Steinhoff S, Zaitsev M, Zilles K, Shah NJ. Fast T(1) mapping with volume coverage. Magn Reson Med 2001; 46: 131-140.
– reference: Neeb H, Ermer V, Stocker T, Shah NJ. Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 2008; 42: 1094-1109.
– reference: Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891-899.
– reference: Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, Wendland M, Dillon WP. Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006; 27: 409-417.
– reference: Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M. Optimal duration of acquisition for dynamic perfusion ct assessment of blood-brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol 2009; 30: 1366-1370.
– reference: Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J. Blood-brain barrier permeability in Alzheimer's disease: a case-control MRI study. Psychiatry Res 2009; 171: 232-241.
– reference: Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, Virmani S, Pohlman S, Dillon WP, Wintermark M. Dynamic perfusion CT assessment of the blood-brain barrier permeability: first pass versus delayed acquisition. AJNR Am J Neuroradiol 2008; 29: 1671-1676.
– reference: Sood RR, Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Early beneficial effect of matrix metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 2008; 28: 431-438.
– reference: Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD. Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 2003; 50: 283-292.
– reference: Taheri S, Sood R. Kalman filtering for reliable estimation of BBB permeability. Magn Reson Imaging 2006; 24: 1039-1049.
– reference: Shah NJ, Zaitsev M, Steinhoff S, Zilles K. A new method for fast multislice T(1) mapping. Neuroimage 2001; 14: 1175-1185.
– reference: Zaitsev M, Steinhoff S, Shah NJ. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping. Magn Reson Med 2003; 49: 1121-1132.
– reference: Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 2: 250-251.
– reference: Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease-systematic review and meta-analysis. Neurobiol Aging 2009; 30: 337-352.
– reference: Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17: 87-97.
– reference: Chernavskii DS, Nikitin AP, Chernavskaia OD. [Origination of Pareto distribution in complex dynamic systems]. Biofizika 2008; 53: 351-358.
– reference: Tofts PS. Optimal detection of blood-brain barrier defects with Gd-DTPA MRI-the influences of delayed imaging and optimised repetition time. Magn Reson Imaging 1996; 14: 373-380.
– reference: Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985; 5: 584-590.
– reference: Hanyu H, Asano T, Tanaka Y, Iwamoto T, Takasaki M, Abe K. Increased blood-brain barrier permeability in white matter lesions of Binswanger's disease evaluated by contrast-enhanced MRI. Dement Geriatr Cogn Disord 2002; 14: 1-6.
– reference: Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 2006; 26: 310-320.
– reference: Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 2010; 81: 192-197.
– reference: Shah NJ, Neeb H, Zaitsev M, Steinhoff S, Kircheis G, Amunts K, Haussinger D, Zilles K. Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 2003; 38: 1219-1226.
– reference: Dillman JR, Ellis JH, Cohan RH, Strouse PJ, Jan SC. Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am J Roentgenol 2007; 189: 1533-1538.
– reference: Soon D, Altmann DR, Fernando KT, Giovannoni G, Barkhof F, Polman CH, O'Connor P, Gray B, Panzara M, Miller DH. A study of subtle blood brain barrier disruption in a placebo-controlled trial of natalizumab in relapsing remitting multiple sclerosis. J Neurol 2007; 254: 306-314.
– reference: Young IT. Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem 1977; 25: 935-941.
– reference: Lin K, Kazmi KS, Law M, Babb J, Peccerelli N, Pramanik BK. Measuring elevated microvascular permeability and predicting hemorrhagic transformation in acute ischemic stroke using first-pass dynamic perfusion CT imaging. AJNR Am J Neuroradiol 2007; 28: 1292-1298.
– reference: Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57: 178-201.
– reference: Bradbury MW. The blood-brain barrier. [Review] Exp Physiol 1993; 78: 453-472.
– reference: Soon D, Tozer DJ, Altmann DR, Tofts PS, Miller DH. Quantification of subtle blood-brain barrier disruption in non-enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes. Mult Scler 2007; 13: 884-894.
– volume: 38
  start-page: 1219
  year: 2003
  end-page: 1226
  article-title: Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging
  publication-title: Hepatology
– volume: 21
  start-page: 891
  year: 2000
  end-page: 899
  article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: correlation with histologic grade
  publication-title: AJNR Am J Neuroradiol
– volume: 30
  start-page: 337
  year: 2009
  end-page: 352
  article-title: Blood‐brain barrier: ageing and microvascular disease—systematic review and meta‐analysis
  publication-title: Neurobiol Aging
– volume: 81
  start-page: 192
  year: 2010
  end-page: 197
  article-title: Blood‐brain barrier permeability is increased in normal‐appearing white matter in patients with lacunar stroke and leucoaraiosis
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 26
  start-page: 310
  year: 2006
  end-page: 320
  article-title: Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor
  publication-title: J Cereb Blood Flow Metab
– start-page: 237
  year: 1992
  end-page: 252
  article-title: Proceedings of the Second European Conference on Computer Vision
– volume: 254
  start-page: 306
  year: 2007
  end-page: 314
  article-title: A study of subtle blood brain barrier disruption in a placebo‐controlled trial of natalizumab in relapsing remitting multiple sclerosis
  publication-title: J Neurol
– year: 2001
– year: 2003
– volume: 57
  start-page: 178
  year: 2008
  end-page: 201
  article-title: The blood‐brain barrier in health and chronic neurodegenerative disorders
  publication-title: Neuron
– volume: 46
  start-page: 131
  year: 2001
  end-page: 140
  article-title: Fast T(1) mapping with volume coverage
  publication-title: Magn Reson Med
– volume: 171
  start-page: 232
  year: 2009
  end-page: 241
  article-title: Blood‐brain barrier permeability in Alzheimer's disease: a case‐control MRI study
  publication-title: Psychiatry Res
– volume: 53
  start-page: 351
  year: 2008
  end-page: 358
  article-title: [Origination of Pareto distribution in complex dynamic systems]
  publication-title: Biofizika
– volume: 16
  start-page: 117
  year: 1990
  end-page: 131
  article-title: Quantitation of blood‐brain barrier defect by magnetic resonance imaging and gadolinium‐DTPA in patients with multiple sclerosis and brain tumors
  publication-title: Magn Reson Med
– volume: 189
  start-page: 1533
  year: 2007
  end-page: 1538
  article-title: Frequency and severity of acute allergic‐like reactions to gadolinium‐containing i.v. contrast media in children and adults
  publication-title: AJR Am J Roentgenol
– volume: 24
  start-page: 1039
  year: 2006
  end-page: 1049
  article-title: Kalman filtering for reliable estimation of BBB permeability
  publication-title: Magn Reson Imaging
– volume: 78
  start-page: 453
  year: 1993
  end-page: 472
  article-title: The blood‐brain barrier
  publication-title: [Review] Exp Physiol
– volume: 29
  start-page: 1671
  year: 2008
  end-page: 1676
  article-title: Dynamic perfusion CT assessment of the blood‐brain barrier permeability: first pass versus delayed acquisition
  publication-title: AJNR Am J Neuroradiol
– volume: 28
  start-page: 1292
  year: 2007
  end-page: 1298
  article-title: Measuring elevated microvascular permeability and predicting hemorrhagic transformation in acute ischemic stroke using first‐pass dynamic perfusion CT imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 30
  start-page: 1366
  year: 2009
  end-page: 1370
  article-title: Optimal duration of acquisition for dynamic perfusion ct assessment of blood‐brain barrier permeability using the Patlak model
  publication-title: AJNR Am J Neuroradiol
– volume: 25
  start-page: 935
  year: 1977
  end-page: 941
  article-title: Proof without prejudice: use of the Kolmogorov‐Smirnov test for the analysis of histograms from flow systems and other sources
  publication-title: J Histochem Cytochem
– volume: 5
  start-page: 584
  year: 1985
  end-page: 590
  article-title: Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. Generalizations
  publication-title: J Cereb Blood Flow Metab
– volume: 28
  start-page: 431
  year: 2008
  end-page: 438
  article-title: Early beneficial effect of matrix metalloproteinase inhibition on blood‐brain barrier permeability as measured by magnetic resonance imaging countered by impaired long‐term recovery after stroke in rat brain
  publication-title: J Cereb Blood Flow Metab
– volume: 14
  start-page: 1
  year: 2002
  end-page: 6
  article-title: Increased blood‐brain barrier permeability in white matter lesions of Binswanger's disease evaluated by contrast‐enhanced MRI
  publication-title: Dement Geriatr Cogn Disord
– volume: 49
  start-page: 1121
  year: 2003
  end-page: 1132
  article-title: Error reduction and parameter optimization of the TAPIR method for fast T1 mapping
  publication-title: Magn Reson Med
– volume: 4
  start-page: e6597
  year: 2009
  article-title: Spatiotemporal correlations between blood‐brain barrier permeability and apparent diffusion coefficient in a rat model of ischemic stroke
  publication-title: PLoS One
– volume: 14
  start-page: 373
  year: 1996
  end-page: 380
  article-title: Optimal detection of blood‐brain barrier defects with Gd‐DTPA MRI‐the influences of delayed imaging and optimised repetition time
  publication-title: Magn Reson Imaging
– volume: 13
  start-page: 884
  year: 2007
  end-page: 894
  article-title: Quantification of subtle blood‐brain barrier disruption in non‐enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes
  publication-title: Mult Scler
– volume: 50
  start-page: 283
  year: 2003
  end-page: 292
  article-title: Patlak plots of Gd‐DTPA MRI data yield blood‐brain transfer constants concordant with those of 14C‐sucrose in areas of blood‐brain opening
  publication-title: Magn Reson Med
– volume: 27
  start-page: 409
  year: 2006
  end-page: 417
  article-title: Comparison of microvascular permeability measurements, K(trans), determined with conventional steady‐state T1‐weighted and first‐pass T2*‐weighted MR imaging methods in gliomas and meningiomas
  publication-title: AJNR Am J Neuroradiol
– volume: 14
  start-page: 1175
  year: 2001
  end-page: 1185
  article-title: A new method for fast multislice T(1) mapping
  publication-title: Neuroimage
– volume: 2
  start-page: 250
  year: 1970
  end-page: 251
  article-title: Time saving in measurement of NMR and EPR relaxation times
  publication-title: Rev Sci Instrum
– volume: 10
  start-page: 1314
  year: 2002
  article-title: Quantitative 4T determination of normal human brain vascular properties suggests CR transport across BBB
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 1094
  year: 2008
  end-page: 1109
  article-title: Fast quantitative mapping of absolute water content with full brain coverage
  publication-title: Neuroimage
– volume: 62
  start-page: 1270
  year: 2009
  end-page: 1281
  article-title: Measurement of brain perfusion, blood volume, and blood‐brain barrier permeability, using dynamic contrast‐enhanced T(1)‐weighted MRI at 3 tesla
  publication-title: Magn Reson Med
– reference: 17468443 - Mult Scler. 2007 Aug;13(7):884-94
– reference: 19710048 - J Neurol Neurosurg Psychiatry. 2010 Feb;81(2):192-7
– reference: 16484420 - AJNR Am J Neuroradiol. 2006 Feb;27(2):409-17
– reference: 17277910 - J Neurol. 2007 Mar;254(3):306-14
– reference: 18632287 - Neuroimage. 2008 Sep 1;42(3):1094-109
– reference: 8782175 - Magn Reson Imaging. 1996;14(4):373-80
– reference: 17869382 - Neurobiol Aging. 2009 Mar;30(3):337-52
– reference: 12768591 - Magn Reson Med. 2003 Jun;49(6):1121-32
– reference: 11697949 - Neuroimage. 2001 Nov;14(5):1175-85
– reference: 19211227 - Psychiatry Res. 2009 Mar 31;171(3):232-41
– reference: 19780145 - Magn Reson Med. 2009 Nov;62(5):1270-81
– reference: 18215617 - Neuron. 2008 Jan 24;57(2):178-201
– reference: 19668371 - PLoS One. 2009 Aug 11;4(8):e6597
– reference: 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
– reference: 17700631 - J Cereb Blood Flow Metab. 2008 Feb;28(2):431-8
– reference: 4055928 - J Cereb Blood Flow Metab. 1985 Dec;5(4):584-90
– reference: 2255233 - Magn Reson Med. 1990 Oct;16(1):117-31
– reference: 17698530 - AJNR Am J Neuroradiol. 2007 Aug;28(7):1292-8
– reference: - Magn Reson Med. 2011 May;65(5):1508
– reference: 18635616 - AJNR Am J Neuroradiol. 2008 Oct;29(9):1671-6
– reference: 8398100 - Exp Physiol. 1993 Jul;78(4):453-72
– reference: 11443719 - Magn Reson Med. 2001 Jul;46(1):131-40
– reference: 16997074 - Magn Reson Imaging. 2006 Oct;24(8):1039-49
– reference: 10815665 - AJNR Am J Neuroradiol. 2000 May;21(5):891-9
– reference: 18543778 - Biofizika. 2008 Mar-Apr;53(2):351-8
– reference: 14578860 - Hepatology. 2003 Nov;38(5):1219-26
– reference: 894009 - J Histochem Cytochem. 1977 Jul;25(7):935-41
– reference: 16079791 - J Cereb Blood Flow Metab. 2006 Mar;26(3):310-20
– reference: 12876704 - Magn Reson Med. 2003 Aug;50(2):283-92
– reference: 18029897 - AJR Am J Roentgenol. 2007 Dec;189(6):1533-8
– reference: 12053125 - Dement Geriatr Cogn Disord. 2002;14(1):1-6
– reference: 19369610 - AJNR Am J Neuroradiol. 2009 Aug;30(7):1366-70
SSID ssj0009974
Score 2.3195188
Snippet Breakdown of the blood‐brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic...
Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic...
SourceID pubmedcentral
proquest
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1036
SubjectTerms Adult
Aged
Albumin
albumin index
Algorithms
Blood-brain barrier
Blood-Brain Barrier - anatomy & histology
Blood-Brain Barrier - physiology
Brain
Brain mapping
Capillary Permeability - physiology
Cerebrospinal fluid
contrast agent
Contrast Media
Data processing
DCEMRI
fast T1 mapping
Female
Gadolinium
Gadolinium DTPA
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Leakage
Magnetic Resonance Angiography - methods
Magnetic resonance imaging
Male
Membrane permeability
Middle Aged
N.M.R
Neuroimaging
Neurological diseases
Reproducibility of Results
Sensitivity and Specificity
Substantia alba
Young Adult
Title Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping
URI https://api.istex.fr/ark:/67375/WNG-VN5F1CXZ-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22686
https://www.ncbi.nlm.nih.gov/pubmed/21413067
https://www.proquest.com/docview/857810893
https://www.proquest.com/docview/883020418
https://www.proquest.com/docview/883040904
https://pubmed.ncbi.nlm.nih.gov/PMC4950947
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LguKLruttXJU8iPjS2TZNmhafZHFchQ447OogQkhz2R2Wdpa5gOuT-Av8jf4Sz0lnOq7KIr6VJilJc3LyJfnyHUKe5sY4wXgWMWZNxFnsIwD1IrJ5pZlxhZcSLwqXw-zwmL8di_EWebG-C9PqQ3Qbbjgygr_GAa6r-f5GNLSe1X3ADjnKbSNXCwHRaCMdVRStArPk6GcKvlYVitl-VxIAKf7Lz39Dl3-SJH8Fr2H2Gdwin9b1bkknZ_3louqbL79JOv5nw3bIzRUqpS9bM7pNtlyzS66Xq3P3XXItEEXN_A759m6pm3AxDdwkrTc7jHTqaWDB__j6vcK4E7TSMwyHR8_B-btWDvyCwvsQFpAi4f6E2otG1xNDA2NezxdQ2DWngZVAy9EbitvE1EMCPUporVFM4uQuOR68Ojo4jFZxHKJJCsuZyKbcCwdNMjBhCslSm4rYSS58bKvEc-aZzzm3FpxHlWpAqEYWFkPsOeO5dek9st1MG_eAUM1cxjNvnWMxl85ol4B_hi9UTvDEuh55FnpUnbdaHUrPzpC6JoX6MHyt3g_FIDkYf1SsR-i6yxUMKDwl0Y2bLucqBx-WxADjrsiComkxT_Krs8DSOeY9cr-1o65KLEHgkMkekZcsrMuAit-XU5rJaVD-htUsLMeh5PNgQF2JVnuaKTAdFUxHlaMyPDz896x75Ea7YY60pEdkezFbuseAuBbVkzC0fgKe8y3T
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKEccLR7mW0w8I8ZJt4tg5JF5QYdlCsxKrLawqIcvx0a6qZKs9JMoT4hfwG_klzDh7UEAV4i2K7SiJZyafJ5-_IeRpprUVjCcBY0YHnIUuAFAvApOVimmbuzTFjcJFL-nu87dDMdwgL5Z7YRp9iFXCDT3Dx2t0cExIb69VQ6tJ1QbwkCUXyEWs6I1u-aq_Fo_K80aDOeUYaXK-1BUK2fZqKEBSfJuf_4Yv_6RJ_gpf_fenc518Wt55Qzs5bs9nZVt_-U3U8X8f7Qa5tgCm9GVjSTfJhq23yOVi8et9i1zyXFE9vUW-vZ-r2u9Ng0hJq3WSkY4d9UT4H1-_l1h6gpZqghXx6AnEf9sogp9SOO8rA1Lk3B9Sc1qraqSpJ82r6QwG2_rIExNo0d-lmCmmDhroIKKVQj2Jw9tkv_N6sNMNFqUcglEMK5rAxNwJC4-k4ZspUhabWIQ25cKFpowcZ465jHNjIH6UsQKQqtPcYJU9qx03Nr5DNutxbe8RqphNeOKMtSzkqdXKRhCi4QqlFTwytkWe-SmVJ41ch1STY2SvpUJ-7L2RH3qiE-0MDyRrEbqccwk-hT9KVG3H86nMIIxFISC5c7qgblrIo-z8LrB6DnmL3G0MaXVLLELskKQtkp4xsVUHFP0-21KPjrz4NyxoYUUOI597C1qNaOSnmQTTkd50ZNEv_MH9f-_6hFzpDoo9ubfbe_eAXG3y58hSekg2Z5O5fQQAbFY-9n72Ezy_Mew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ0x74TIuK1c_IMRLusRx4lQ8oY2yAamg2qBCSJbjy1ZNSateJMYT4hfwG_klHDttygBNiLcotqM4Pj75jv35OwCPM6VMQlkaUKpVwGhoAwT1SaCzQlJlOpZzd1A476X7R-zVIBmswbPlWZhaH6JZcHMzw_trN8HH2u6sREPLSdlG7JCll-AyS8PMRV57_ZV2VKdTSzBz5hxNhy1lhUK60zRFROo-5ue_wcs_WZK_olf_--leg0_LF69ZJ6ft-axoqy-_aTr-Z8-uw9UFLCXPazu6AWum2oKNfLHxvgVXPFNUTW_Ct3dzWfmTaegnSblaYiQjSzwN_sfX74VLPEEKOXH58MgYvb-p9cDPCN73eQGJY9wfE31WyXKoiKfMy-kMG5vqxNMSSN4_IG6dmFgsIIcRKaVTkzi-BUfdF4e7-8EikUMwjDGeCXTMbGKwSwr_mAmnsY6T0HCW2FAXkWXUUpsxpjV6jyKWCFEV72iXY88oy7SJb8N6NarMNhBJTcpSq42hIeNGSROhg8YnFCZhkTYteOJHVIxrsQ4hJ6eOu8YT8aH3UrzvJd1od_BR0BaQ5ZALnFFum0RWZjSfigydWBQijrugilNNC1mUXVwFY-eQteBObUfNK9HIIYeUt4Cfs7CmgpP8Pl9SDU-89DeGsxiPY8un3oCaFrX4NBVoOsKbjsj7ub-4--9VH8HG272ueHPQe30PNuvFc0dRug_rs8ncPED0NSse-ln2E7VeMKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+measurement+of+blood-brain+barrier+permeability+in+human+using+dynamic+contrast-enhanced+MRI+with+fast+T1+mapping&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Taheri%2C+Saeid&rft.au=Gasparovic%2C+Charles&rft.au=Shah%2C+Nadim+Jon&rft.au=Rosenberg%2C+Gary+A&rft.date=2011-04-01&rft.eissn=1522-2594&rft.volume=65&rft.issue=4&rft.spage=1036&rft_id=info:doi/10.1002%2Fmrm.22686&rft_id=info%3Apmid%2F21413067&rft.externalDocID=21413067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon