Fast multistation water/fat imaging at 3T using DREAM-based RF shimming

Purpose To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)‐based B1+ shimming in whole‐body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging. Materials and Methods 3D multistation, dual‐echo mDixon g...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 42; no. 1; pp. 217 - 223
Main Authors Hooijmans, Melissa T., Dzyubachyk, Oleh, Nehrke, Kay, Koken, Peter, Versluis, Maarten J., Kan, Hermien E., Börnert, Peter
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.24775

Cover

Loading…
Abstract Purpose To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)‐based B1+ shimming in whole‐body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging. Materials and Methods 3D multistation, dual‐echo mDixon gradient echo imaging was performed in 10 healthy subjects on a clinical 3T dual‐transmit MRI system using station‐to‐station adapted B1+ shimming based on fast DREAM B1+ mapping. Whole‐body data were obtained using conventional quadrature excitation and station‐by‐station adapted DREAM‐based B1+ shimmed excitation, along with the corresponding B1+ maps for both excitation modes to assess image quality and radiofrequency (RF) performance. Results Station‐dependent DREAM‐based B1+ shimming showed significantly improved image quality in the stations covering the upper legs, pelvis, and upper body region for all subjects (P < 0.02). This finding is supported by corresponding B1+ maps showing an improved B1+ homogeneity and a more precise flip angle in the DREAM‐based B1+ shimmed excitation (P < 0.01). Furthermore, the very short dual‐channel DREAM B1+ mapping times of less than 2 seconds facilitate quick B1+ shimming. Conclusion Station‐dependent DREAM‐based B1+ shimming improved RF performance and image quality and is therefore a promising technique for whole‐body multistation imaging applications. J. Magn. Reson. Imaging 2015;42:217–223. © 2014 Wiley Periodicals, Inc.
AbstractList To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)-based B1+ shimming in whole-body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging.PURPOSETo show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)-based B1+ shimming in whole-body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging.3D multistation, dual-echo mDixon gradient echo imaging was performed in 10 healthy subjects on a clinical 3T dual-transmit MRI system using station-to-station adapted B1+ shimming based on fast DREAM B1+ mapping. Whole-body data were obtained using conventional quadrature excitation and station-by-station adapted DREAM-based B1+ shimmed excitation, along with the corresponding B1+ maps for both excitation modes to assess image quality and radiofrequency (RF) performance.MATERIALS AND METHODS3D multistation, dual-echo mDixon gradient echo imaging was performed in 10 healthy subjects on a clinical 3T dual-transmit MRI system using station-to-station adapted B1+ shimming based on fast DREAM B1+ mapping. Whole-body data were obtained using conventional quadrature excitation and station-by-station adapted DREAM-based B1+ shimmed excitation, along with the corresponding B1+ maps for both excitation modes to assess image quality and radiofrequency (RF) performance.Station-dependent DREAM-based B1+ shimming showed significantly improved image quality in the stations covering the upper legs, pelvis, and upper body region for all subjects (P < 0.02). This finding is supported by corresponding B1+ maps showing an improved B1+ homogeneity and a more precise flip angle in the DREAM-based B1+ shimmed excitation (P < 0.01). Furthermore, the very short dual-channel DREAM B1+ mapping times of less than 2 seconds facilitate quick B1+ shimming.RESULTSStation-dependent DREAM-based B1+ shimming showed significantly improved image quality in the stations covering the upper legs, pelvis, and upper body region for all subjects (P < 0.02). This finding is supported by corresponding B1+ maps showing an improved B1+ homogeneity and a more precise flip angle in the DREAM-based B1+ shimmed excitation (P < 0.01). Furthermore, the very short dual-channel DREAM B1+ mapping times of less than 2 seconds facilitate quick B1+ shimming.Station-dependent DREAM-based B1+ shimming improved RF performance and image quality and is therefore a promising technique for whole-body multistation imaging applications.CONCLUSIONStation-dependent DREAM-based B1+ shimming improved RF performance and image quality and is therefore a promising technique for whole-body multistation imaging applications.
To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)-based B1+ shimming in whole-body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging. 3D multistation, dual-echo mDixon gradient echo imaging was performed in 10 healthy subjects on a clinical 3T dual-transmit MRI system using station-to-station adapted B1+ shimming based on fast DREAM B1+ mapping. Whole-body data were obtained using conventional quadrature excitation and station-by-station adapted DREAM-based B1+ shimmed excitation, along with the corresponding B1+ maps for both excitation modes to assess image quality and radiofrequency (RF) performance. Station-dependent DREAM-based B1+ shimming showed significantly improved image quality in the stations covering the upper legs, pelvis, and upper body region for all subjects (P < 0.02). This finding is supported by corresponding B1+ maps showing an improved B1+ homogeneity and a more precise flip angle in the DREAM-based B1+ shimmed excitation (P < 0.01). Furthermore, the very short dual-channel DREAM B1+ mapping times of less than 2 seconds facilitate quick B1+ shimming. Station-dependent DREAM-based B1+ shimming improved RF performance and image quality and is therefore a promising technique for whole-body multistation imaging applications.
Purpose To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)‐based B1+ shimming in whole‐body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging. Materials and Methods 3D multistation, dual‐echo mDixon gradient echo imaging was performed in 10 healthy subjects on a clinical 3T dual‐transmit MRI system using station‐to‐station adapted B1+ shimming based on fast DREAM B1+ mapping. Whole‐body data were obtained using conventional quadrature excitation and station‐by‐station adapted DREAM‐based B1+ shimmed excitation, along with the corresponding B1+ maps for both excitation modes to assess image quality and radiofrequency (RF) performance. Results Station‐dependent DREAM‐based B1+ shimming showed significantly improved image quality in the stations covering the upper legs, pelvis, and upper body region for all subjects (P < 0.02). This finding is supported by corresponding B1+ maps showing an improved B1+ homogeneity and a more precise flip angle in the DREAM‐based B1+ shimmed excitation (P < 0.01). Furthermore, the very short dual‐channel DREAM B1+ mapping times of less than 2 seconds facilitate quick B1+ shimming. Conclusion Station‐dependent DREAM‐based B1+ shimming improved RF performance and image quality and is therefore a promising technique for whole‐body multistation imaging applications. J. Magn. Reson. Imaging 2015;42:217–223. © 2014 Wiley Periodicals, Inc.
Purpose To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)-based B 1 + shimming in whole-body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging. Materials and Methods 3D multistation, dual-echo mDixon gradient echo imaging was performed in 10 healthy subjects on a clinical 3T dual-transmit MRI system using station-to-station adapted B 1 + shimming based on fast DREAM B 1 + mapping. Whole-body data were obtained using conventional quadrature excitation and station-by-station adapted DREAM-based B 1 + shimmed excitation, along with the corresponding B 1 + maps for both excitation modes to assess image quality and radiofrequency (RF) performance. Results Station-dependent DREAM-based B 1 + shimming showed significantly improved image quality in the stations covering the upper legs, pelvis, and upper body region for all subjects (P<0.02). This finding is supported by corresponding B 1 + maps showing an improved B 1 + homogeneity and a more precise flip angle in the DREAM-based B 1 + shimmed excitation (P<0.01). Furthermore, the very short dual-channel DREAM B 1 + mapping times of less than 2 seconds facilitate quick B 1 + shimming. Conclusion Station-dependent DREAM-based B 1 + shimming improved RF performance and image quality and is therefore a promising technique for whole-body multistation imaging applications. J. Magn. Reson. Imaging 2015;42:217-223. © 2014 Wiley Periodicals, Inc.
Author Hooijmans, Melissa T.
Versluis, Maarten J.
Koken, Peter
Dzyubachyk, Oleh
Börnert, Peter
Kan, Hermien E.
Nehrke, Kay
Author_xml – sequence: 1
  givenname: Melissa T.
  surname: Hooijmans
  fullname: Hooijmans, Melissa T.
  email: m.t.hooijmans@lumc.nl
  organization: Department of Radiology, C.J. Gorter Center for High Field MRI, LUMC, Leiden, the Netherlands
– sequence: 2
  givenname: Oleh
  surname: Dzyubachyk
  fullname: Dzyubachyk, Oleh
  organization: Department of Radiology, Division of Image Processing, LUMC, Leiden, the Netherlands
– sequence: 3
  givenname: Kay
  surname: Nehrke
  fullname: Nehrke, Kay
  organization: Philips Research Laboratories, Hamburg, Germany
– sequence: 4
  givenname: Peter
  surname: Koken
  fullname: Koken, Peter
  organization: Philips Research Laboratories, Hamburg, Germany
– sequence: 5
  givenname: Maarten J.
  surname: Versluis
  fullname: Versluis, Maarten J.
  organization: Department of Radiology, C.J. Gorter Center for High Field MRI, LUMC, Leiden, the Netherlands
– sequence: 6
  givenname: Hermien E.
  surname: Kan
  fullname: Kan, Hermien E.
  organization: Department of Radiology, C.J. Gorter Center for High Field MRI, LUMC, Leiden, the Netherlands
– sequence: 7
  givenname: Peter
  surname: Börnert
  fullname: Börnert, Peter
  organization: Department of Radiology, C.J. Gorter Center for High Field MRI, LUMC, Leiden, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25331294$$D View this record in MEDLINE/PubMed
BookMark eNpdkE1PwjAchxujEXy5-AHMEi9eBn1Z2_VIEBAFTYjGxEvTbh0W94LrFuXbW0Q5mB76S_v8_mmfE3BYVqUB4ALBHoIQ91dFbXs44pwegC6iGIeYxuzQZ0hJiGLIO-DEuRWEUIiIHoMOpoQgLKIumIyVa4KizRvrGtXYqgw-VWPqfqaawBZqactl4CN5Clq3zTeL0WAeauVMGizGgXuzReHPz8BRpnJnzn_3U_A8Hj0Nb8PZ42Q6HMxCSyilYRbDhKIswtBgwSjjSqVppHFMkpRmCmnBU80QYSmniGgMEyRgxmNtkI6STJFTcL2bu66rj9a4RhbWJSbPVWmq1knEBGSRICz26NU_dFW1delf56lYCOgX99TlL9XqwqRyXftf1xv5p8gDaAd82txs9vcIyq18uZUvf-TLu_li-pN8J9x1vFTzte-o-l0yTjz68jCRs9t7Ie5f55KTb3K3hcE
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.24775
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 223
ExternalDocumentID 3720411391
25331294
JMRI24775
ark_67375_WNG_LHK99KZM_7
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Dutch Organization for Health Research and Development (ZonMW)
  funderid: 113302001
– fundername: Dutch Technology Foundation (STW)
  funderid: 10894
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-i3555-f80c51f420e296567aadd4b283cd5fa1b97db6136d7513b20c190f78be1b4cfa3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 11:41:48 EDT 2025
Fri Jul 04 22:40:39 EDT 2025
Mon Jul 21 06:07:13 EDT 2025
Wed Aug 20 07:26:09 EDT 2025
Wed Oct 30 09:46:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 3T
RF shimming
whole-body imaging
DREAM
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3555-f80c51f420e296567aadd4b283cd5fa1b97db6136d7513b20c190f78be1b4cfa3
Notes ark:/67375/WNG-LHK99KZM-7
ArticleID:JMRI24775
Dutch Organization for Health Research and Development (ZonMW) - No. 113302001
Dutch Technology Foundation (STW) - No. 10894
istex:A0F6E2A3CBEA847AD5CCC7A9B4B691E5A4505980
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.24775
PMID 25331294
PQID 1689909097
PQPubID 1006400
PageCount 7
ParticipantIDs proquest_miscellaneous_1690649368
proquest_journals_1689909097
pubmed_primary_25331294
wiley_primary_10_1002_jmri_24775_JMRI24775
istex_primary_ark_67375_WNG_LHK99KZM_7
PublicationCentury 2000
PublicationDate 2015-07
July 2015
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kullberg J, Johansson L, Ahlstrom H, et al. Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 2009;30:185-193.
Cunningham CH, Pauly JM, Nayak KS. Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 2006;55:1326-1333.
Belaroussi B, Milles J, Carme S, Zhu YM, Benoit-Cattin H. Intensity non-uniformity correction in MRI: existing methods and their validation. Med Image Anal 2006;10:234-246.
Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3T MRI: physical background and reduction strategies. Eur J Radiol 2008;65:29-35.
Hoult DI. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000;12:46-67.
Nehrke K, Sprinkart AM, Börnert P. An in vivo comparison of the DREAM sequence with current RF shim technology. MAGMA 2014 [Epub ahead of print].
Kuhl CK, Traber F, Gieseke J, et al. Whole-body high-field strength (3.0T) MR imaging in clinical practice. Part II. Technical considerations and clinical applications. Radiology 2008;247:16-35.
Childs AS, Malik SJ, O'Regan DP, Hajnal JV. Impact of the number of channels on RF shimming at 3T. MAGMA 2013;26:401-410.
Stranges S, Trevisan M, Dorn JM, Dmochowski J, Donahue RP. Body fat distribution, liver enzymes, and risk of hypertension: evidence from the Western New York Study. Hypertension 2005;46:1186-1193.
Siegel MJ, Acharyya S, Hoffer FA, et al. Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology 2013;266:599-609.
Stollberger R, Wach P. Imaging of the active B1 field in vivo. Magn Reson Med 1996;35:246-251.
Sacolick LI, Wiesinger F, Hancu I, Vogell MW. B1 mapping by Bloch-Siegert shift. Magn Reson Med 2010;63:1315-1322.
Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 2011;65:96-107.
Willinek WA, Gieseke J, Kukuk GM, et al. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0T: initial clinical experience. Radiology 2010;256:966-975.
Tofts PS. Standing waves in uniform water phantoms. J Magn Reson Imaging B 1994;104:143-147.
Machan J, Schlemmer H, Schick F. Technical challenges and opportunities of whole-body magnetic resonance imaging at 3T. Phys Medica 2008;24:63-70.
Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005;15:946-959.
Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille PML. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imaging 2001;19:219-226.
Franklin KM, Dale BM, Merkle EM. Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using radiofrequency cushion. J Magn Reson Imaging 2008;27:1443-1447.
Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57:192-200.
Nielsen YJW. Whole-body MR angiography in patients with peripheral arterial disease. Dan Med Bull 2010;57:B4231.
Nehrke K, Börnert P. DREAM-a novel approach for robust, ultrafast, multislice B1+ mapping. Magn Reson Med 2012;68:1517-1526.
2013; 26
2009; 30
2010; 57
1994; 104
2000; 12
2006; 10
2006; 55
2008; 27
2010; 256
2013; 266
2001; 19
2008; 24
2011; 65
2008; 65
2008; 247
2014
2013
2005; 15
1996; 35
2012; 68
2007; 57
2010; 63
2005; 46
References_xml – reference: Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3T MRI: physical background and reduction strategies. Eur J Radiol 2008;65:29-35.
– reference: Nehrke K, Sprinkart AM, Börnert P. An in vivo comparison of the DREAM sequence with current RF shim technology. MAGMA 2014 [Epub ahead of print].
– reference: Stranges S, Trevisan M, Dorn JM, Dmochowski J, Donahue RP. Body fat distribution, liver enzymes, and risk of hypertension: evidence from the Western New York Study. Hypertension 2005;46:1186-1193.
– reference: Nehrke K, Börnert P. DREAM-a novel approach for robust, ultrafast, multislice B1+ mapping. Magn Reson Med 2012;68:1517-1526.
– reference: Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005;15:946-959.
– reference: Stollberger R, Wach P. Imaging of the active B1 field in vivo. Magn Reson Med 1996;35:246-251.
– reference: Machan J, Schlemmer H, Schick F. Technical challenges and opportunities of whole-body magnetic resonance imaging at 3T. Phys Medica 2008;24:63-70.
– reference: Ibrahim TS, Lee R, Abduljalil AM, Baertlein BA, Robitaille PML. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imaging 2001;19:219-226.
– reference: Kullberg J, Johansson L, Ahlstrom H, et al. Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 2009;30:185-193.
– reference: Kuhl CK, Traber F, Gieseke J, et al. Whole-body high-field strength (3.0T) MR imaging in clinical practice. Part II. Technical considerations and clinical applications. Radiology 2008;247:16-35.
– reference: Belaroussi B, Milles J, Carme S, Zhu YM, Benoit-Cattin H. Intensity non-uniformity correction in MRI: existing methods and their validation. Med Image Anal 2006;10:234-246.
– reference: Franklin KM, Dale BM, Merkle EM. Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using radiofrequency cushion. J Magn Reson Imaging 2008;27:1443-1447.
– reference: Willinek WA, Gieseke J, Kukuk GM, et al. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0T: initial clinical experience. Radiology 2010;256:966-975.
– reference: Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 2011;65:96-107.
– reference: Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57:192-200.
– reference: Hoult DI. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000;12:46-67.
– reference: Childs AS, Malik SJ, O'Regan DP, Hajnal JV. Impact of the number of channels on RF shimming at 3T. MAGMA 2013;26:401-410.
– reference: Nielsen YJW. Whole-body MR angiography in patients with peripheral arterial disease. Dan Med Bull 2010;57:B4231.
– reference: Tofts PS. Standing waves in uniform water phantoms. J Magn Reson Imaging B 1994;104:143-147.
– reference: Cunningham CH, Pauly JM, Nayak KS. Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 2006;55:1326-1333.
– reference: Sacolick LI, Wiesinger F, Hancu I, Vogell MW. B1 mapping by Bloch-Siegert shift. Magn Reson Med 2010;63:1315-1322.
– reference: Siegel MJ, Acharyya S, Hoffer FA, et al. Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology 2013;266:599-609.
– volume: 57
  start-page: B4231
  year: 2010
  article-title: Whole‐body MR angiography in patients with peripheral arterial disease
  publication-title: Dan Med Bull
– year: 2014
  article-title: An in vivo comparison of the DREAM sequence with current RF shim technology
  publication-title: MAGMA
– volume: 247
  start-page: 16
  year: 2008
  end-page: 35
  article-title: Whole‐body high‐field strength (3.0T) MR imaging in clinical practice. Part II. Technical considerations and clinical applications
  publication-title: Radiology
– volume: 35
  start-page: 246
  year: 1996
  end-page: 251
  article-title: Imaging of the active B field in vivo
  publication-title: Magn Reson Med
– volume: 30
  start-page: 185
  year: 2009
  end-page: 193
  article-title: Automated assessment of whole‐body adipose tissue depots from continuously moving bed MRI: a feasibility study
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 234
  year: 2006
  end-page: 246
  article-title: Intensity non‐uniformity correction in MRI: existing methods and their validation
  publication-title: Med Image Anal
– volume: 63
  start-page: 1315
  year: 2010
  end-page: 1322
  article-title: B mapping by Bloch‐Siegert shift
  publication-title: Magn Reson Med
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 15
  start-page: 946
  year: 2005
  end-page: 959
  article-title: Whole‐body MRI at high field: technical limits and clinical potential
  publication-title: Eur Radiol
– volume: 65
  start-page: 96
  year: 2011
  end-page: 107
  article-title: Dual‐echo Dixon imaging with flexible choice of echo times
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1517
  year: 2012
  end-page: 1526
  article-title: DREAM—a novel approach for robust, ultrafast, multislice mapping
  publication-title: Magn Reson Med
– volume: 26
  start-page: 401
  year: 2013
  end-page: 410
  article-title: Impact of the number of channels on RF shimming at 3T
  publication-title: MAGMA
– volume: 46
  start-page: 1186
  year: 2005
  end-page: 1193
  article-title: Body fat distribution, liver enzymes, and risk of hypertension: evidence from the Western New York Study
  publication-title: Hypertension
– volume: 12
  start-page: 46
  year: 2000
  end-page: 67
  article-title: Sensitivity and power deposition in a high‐field imaging experiment
  publication-title: J Magn Reson Imaging
– volume: 55
  start-page: 1326
  year: 2006
  end-page: 1333
  article-title: Saturated double‐angle method for rapid mapping
  publication-title: Magn Reson Med
– volume: 65
  start-page: 29
  year: 2008
  end-page: 35
  article-title: Artifacts in 3T MRI: physical background and reduction strategies
  publication-title: Eur J Radiol
– volume: 24
  start-page: 63
  year: 2008
  end-page: 70
  article-title: Technical challenges and opportunities of whole‐body magnetic resonance imaging at 3T
  publication-title: Phys Medica
– volume: 19
  start-page: 219
  year: 2001
  end-page: 226
  article-title: Dielectric resonances and B field inhomogeneity in UHFMRI: computational analysis and experimental findings
  publication-title: Magn Reson Imaging
– volume: 266
  start-page: 599
  year: 2013
  end-page: 609
  article-title: Whole‐body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial
  publication-title: Radiology
– volume: 256
  start-page: 966
  year: 2010
  end-page: 975
  article-title: Dual‐source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0T: initial clinical experience
  publication-title: Radiology
– volume: 27
  start-page: 1443
  year: 2008
  end-page: 1447
  article-title: Improvement in B ‐inhomogeneity artifacts in the abdomen at 3T MR imaging using radiofrequency cushion
  publication-title: J Magn Reson Imaging
– volume: 104
  start-page: 143
  year: 1994
  end-page: 147
  article-title: Standing waves in uniform water phantoms
  publication-title: J Magn Reson Imaging B
– year: 2014
– year: 2013
SSID ssj0009945
Score 2.214076
Snippet Purpose To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)‐based B1+ shimming in...
To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)-based B1+ shimming in whole-body...
Purpose To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)-based B 1 + shimming in...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 217
SubjectTerms Adipose Tissue - anatomy & histology
Adipose Tissue - metabolism
Algorithms
Body Water - metabolism
DREAM
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic resonance imaging
Radio Waves
Reproducibility of Results
RF shimming
Sensitivity and Specificity
Whole Body Imaging - methods
whole-body imaging
Title Fast multistation water/fat imaging at 3T using DREAM-based RF shimming
URI https://api.istex.fr/ark:/67375/WNG-LHK99KZM-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24775
https://www.ncbi.nlm.nih.gov/pubmed/25331294
https://www.proquest.com/docview/1689909097
https://www.proquest.com/docview/1690649368
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMefph3QLrAxGN0GMhLigJQ2cX44kbhMsNKutIeqFRXSZNmxs3VV0qlJBeLEn8DfyF_Cs9OmAnEB5WLJzi-_PPvj-PlrgFcRU4GMleswqnCAErMU20GlHKG9FPsfX2hloy1GUW8aXM3C2R683a6FqfUhmh9uxjNse20cXMiysxMNvctX8zYNGDMrzE2wliGi8U47KknsDsXID77jxS5rtElpZ3cqIqmpza9_48vfcdX2N91HcL190jrMZNFeV7KdfvtDxPF_X-UQHm5AlFzUX84R7OniMTwYbqbaj6HfFWVFbLxhWU_Xky_IpatOJioyz-3mRgST_oSY2Pkb8n58eTH8-f2H6RcVGXdJeTvPc8x5AtPu5eRdz9nsu-DMkT5CJ4vdNPSygLqaJsh7TGAjGEgEkVSFmfBkwpREDIgUCz1fUtdYNWOx1J4M0kz4T2G_WBb6GRCEK19QKbRRsZc0E0gfMmApS12BF_Ba8NrWP7-vtTW4WC1MqBkL-afRB_6xN0iSwechZy043xqIb7ys5F6Eo0UXD8x-2WSjf5hJD1Ho5dqUSZC6Ej-KW3BSG7a5GUXWRd4JWvDGmqfJqLWcKTeG4dYw_Go47tvU6b8UPoMDJKywju89h_1qtdbPkWIq-cJ-rb8AvBbsNg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMePxpDGXgYbuxQGeBLiYVLaxLk4eZxgXbs2fag6Me3FsmNn66Z2U5MKxBMfgc_IJ-HYCalAewHlxZKdRPHx5Wf75H8A3kdMBTJWrsOowgVKzDIcB5VyhPYynH98oZX1thhFvYvg_DK8rH1zzL8wlT5Es-FmeoYdr00HNxvSnZVq6O1sMW3TgLHwCTw1Ib3timq8Uo9KEhujGAnCd7zYZY06Ke2s7kUoNfX59THC_BNY7YzTfV6FVS2sUKFxNLlrL0vZzr79JeP43x_zArZqFiUnVePZhjU934GNtD5tfwn9rihKYl0Oi-rEnnxBNF10clGS6czGNyKY9CfEuM9fk0_j05P05_cfZmpUZNwlxc10NsOcXbjonk4-9pw69IIzRQAJnTx2s9DLA-pqmiDyMYHjYCCRRTIV5sKTCVMSSSBSDOtdUtcYNmex1J4Mslz4e7A-v5_rAyDIV76gUmgjZC9pLhBAZMAylrkCH-C14IM1AH-o5DW4WNwZbzMW8s-jMz7sDZJkcJVy1oLD3xbidUcruBfhgtHFC7OPmmzsIubcQ8z1_dKUSRC8Ej-KW7BfWbZ5GUXcReQJWnBs7dNkVHLOlBvDcGsYfp6O-zb16l8Kv4NnvUk65MP-aPAaNhG4wsrd9xDWy8VSv0GoKeVb23R_AYKr8FE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9swFMcPXQtlL93aXZqtFw3GHgZObFm2bNhLaeomTRNGaFkZDCFZ8paVpCVx2NjTPsI-4z5Jj-TEYWMvHX4RSL7p6Eg_Wcd_AbyOuWYq0b7HqcYJSsJz7Ae19qQJchx_Qmm0i7YYxJ1LdnYVXa3Bu-W_MJU-RP3BzXqG66-tg9_qorUSDf06no6alHEePYANFvuJbdPt4Uo8Kk3dFsUIEKEXJD6vxUlpa3UuMqmtzu__Asw_edUNONkj-LR81CrO5Lo5L1Uz__GXiuP_vstj2FqQKDmqms42rJnJDmz2F2vtT6CbyVlJXMDhrFqvJ98QTKetQpZkNHa7GxFMhhfEBs9_Ju3hyVH_989fdmDUZJiR2ZfReIw5T-EyO7k47niLjRe8EeJH5BWJn0dBwahvaIrAxyX2gkwhieQ6KmSgUq4VckCseRSEivrWrAVPlAkUywsZPoP1yc3E7AJBugolVdJYGXtFC4n4oRjPee5LvEDQgDeu_sVtJa4h5PTaxprxSHwYnIrzTi9Nex_7gjdgb2kgsXCzmQhinC76eGD2qzobHcSuesiJuZnbMiliVxrGSQOeV4atb0YRdhF4WAPeOvPUGZWYMxXWMMIZRpz1h12XenGfwoew-b6difPuoPcSHiJtRVWs7x6sl9O52UeiKdWBa7h32bHvCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+multistation+water%2Ffat+imaging+at+3T+using+DREAM-based+RF+shimming&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Hooijmans%2C+Melissa+T&rft.au=Dzyubachyk%2C+Oleh&rft.au=Nehrke%2C+Kay&rft.au=Koken%2C+Peter&rft.date=2015-07-01&rft.eissn=1522-2586&rft.volume=42&rft.issue=1&rft.spage=217&rft_id=info:doi/10.1002%2Fjmri.24775&rft_id=info%3Apmid%2F25331294&rft.externalDocID=25331294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon