Graph Spectral Analysis of Voxel-Wise Brain Graphs from Diffusion-Weighted Mri

Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural connectivity has been useful, but is often limited to defining nodes as regions from a brain atlas. Here, we propose two methods for encoding...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 159 - 163
Main Authors Tarun, Anjali, Abramian, David, Behjat, Hamid, De Ville, Dimitri Van
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2019
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI.2019.8759496

Cover

Abstract Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural connectivity has been useful, but is often limited to defining nodes as regions from a brain atlas. Here, we propose two methods for encoding structural connectivity in a huge brain graph at the voxel-level resolution (i.e., 850'000 voxels) based on diffusion tensor imaging (DTI) and the orientation density functions (ODF), respectively. The eigendecomposition of the brain graph's Laplacian operator is then showing highly-resolved eigenmodes that reflect distributed structural features which are in good correspondence with major white matter tracks. To investigate the intrinsic dimensionality of eigenspace across subjects, we used a Procrustes validation that characterizes inter-subject variability. We found that the ODF approach using 3-neighborhood captures the most in-formation from the diffusion-weighted MRI. The proposed methods open a wide range of possibilities for new research avenues, especially in the field of graph signal processing applied to functional brain imaging.
AbstractList Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural connectivity has been useful, but is often limited to defining nodes as regions from a brain atlas. Here, we propose two methods for encoding structural connectivity in a huge brain graph at the voxel-level resolution (i.e., 850'000 voxels) based on diffusion tensor imaging (DTI) and the orientation density functions (ODF), respectively. The eigendecomposition of the brain graph's Laplacian operator is then showing highly-resolved eigenmodes that reflect distributed structural features which are in good correspondence with major white matter tracks. To investigate the intrinsic dimensionality of eigenspace across subjects, we used a Procrustes validation that characterizes inter-subject variability. We found that the ODF approach using 3-neighborhood captures the most in-formation from the diffusion-weighted MRI. The proposed methods open a wide range of possibilities for new research avenues, especially in the field of graph signal processing applied to functional brain imaging.
Author Tarun, Anjali
Abramian, David
Behjat, Hamid
De Ville, Dimitri Van
Author_xml – sequence: 1
  givenname: Anjali
  surname: Tarun
  fullname: Tarun, Anjali
  organization: Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Bioengineering, Switzerland
– sequence: 2
  givenname: David
  surname: Abramian
  fullname: Abramian, David
  organization: Department of Biomedical Engineering, University of Linkping, Sweden
– sequence: 3
  givenname: Hamid
  surname: Behjat
  fullname: Behjat, Hamid
  organization: Department of Biomedical Engineering, Lund University, Lund, Sweden
– sequence: 4
  givenname: Dimitri Van
  surname: De Ville
  fullname: De Ville, Dimitri Van
  organization: Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Bioengineering, Switzerland
BookMark eNotkMFOAjEURavRREQ-wLjpDwz2TV-n7RJQkQR1gcqSdGZepWaYmbSYyN9rlLs5m5OzuJfsrO1aYuwaxBhA2NvFaroY5wLs2Ghl0RYnbGS1ASVNIQsEOGUDsKgygyq_YKOUPsXvNKIUOGDP8-j6LV_1VO2ja_ikdc0hhcQ7z9-7b2qydUjEp9GFlv-5ifvY7fhd8P4rha7N1hQ-tnuq-VMMV-zcuybR6Mghe3u4f509ZsuX-WI2WWZBYrHPcgNQS3RKSFCCdClEibUnpSuvUeSkoBQ1YY2VNzkoJayRNheVqrQqoZJDdvPfDUS06WPYuXjYHB-QP8e9T70
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2019.8759496
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538636411
1538636417
EISSN 1945-8452
EndPage 163
ExternalDocumentID 8759496
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i346t-2811d34a503150e7b00b4dfe57cf7402e51b0de4d4cf821550983920c5c75b1c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i346t-2811d34a503150e7b00b4dfe57cf7402e51b0de4d4cf821550983920c5c75b1c3
OpenAccessLink http://infoscience.epfl.ch/record/270737
PageCount 5
ParticipantIDs ieee_primary_8759496
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.0994434
Snippet Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural...
SourceID ieee
SourceType Publisher
StartPage 159
SubjectTerms brain graph
Brain modeling
Diffusion tensor imaging
eigenmodes
Ellipsoids
orientation density functions
Visualization
White matter
Title Graph Spectral Analysis of Voxel-Wise Brain Graphs from Diffusion-Weighted Mri
URI https://ieeexplore.ieee.org/document/8759496
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG6QJ33xAsZ7-uCjhXVrx_aKimACMVGEN7K2p8miYQa2xPjr7dkAL_HBt2VZt6WXfD1fz_k-Qi6li9aCJOJMaxkw4SfAktg3TAmHpgkKQpXC88NR2B-L-6mc1sjVphYGAMrkM2jhZXmWbzJdIFXWdnvrWMThFtly06yq1drwKQ4KhQvNVweX3Ivbg8fuAHO33GSo2v0wUCnxo7dLhusvV2kjL60iVy398UuU8b-_tkeaX5V69GGDQfukBvMDsvNNZLBBRneoSU3RaB5ZDbqWIaGZpc_ZO7yySboE2kWvCFo-u6RYdEJvUmsLJNPYpORPwdDhIm2Sce_26brPVi4KLA1EmDM_4twEIpHo5-BBx60zJYwFiYJELnoEyZVnQBihbeRjxBLjpsnTUnek4jo4JPV5NocjQhMPTJi4trGKRQAmMtwCN-5VNgqlio5JA3tm9lYJZcxWnXLy9-1Tso2jU6XBnJF6vijg3CF8ri7Kof0EiMemUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG4QH9QXL2C82wcfLezSju0VFUEZMRGEN7K2Z8miYQa2xPjr7dkQL_HBt2VZ16bd8vV8Pef7CLkQJlpzI99mSgmXcScCFgWOZpIbNI1QEKoQng8HXnfE7yZiUiGXq1oYACiSz6CBl8VZvk5VjlRZ0-ytAx54a2Td4D4XZbXWilExYMhNcL48urStoNl7bPcwe8t8DmXLHxYqBYJ0tkn42XeZOPLcyDPZUO-_ZBn_O7gdUv-q1aMPKxTaJRWY7ZGtbzKDNTK4RVVqilbzyGvQTyESmsb0KX2DFzZOFkDb6BZBi2cXFMtO6HUSxznSaWxcMKigaThP6mTUuRleddnSR4ElLvcy5vi2rV0eCXR0sKBl_jTJdQwCJYlM_AjClpYGrrmKfQdjlgC3TZYSqiWkrdx9Up2lMzggNLJAe5FpG8iAu6B9bcdga_Oq2PeE9A9JDWdm-lpKZUyXk3L09-1zstEdhv1pvze4PyabuFJlUswJqWbzHE4N3mfyrFjmD23UqZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Graph+Spectral+Analysis+of+Voxel-Wise+Brain+Graphs+from+Diffusion-Weighted+Mri&rft.au=Tarun%2C+Anjali&rft.au=Abramian%2C+David&rft.au=Behjat%2C+Hamid&rft.au=De+Ville%2C+Dimitri+Van&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=159&rft.epage=163&rft_id=info:doi/10.1109%2FISBI.2019.8759496&rft.externalDocID=8759496