Graph Spectral Analysis of Voxel-Wise Brain Graphs from Diffusion-Weighted Mri
Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural connectivity has been useful, but is often limited to defining nodes as regions from a brain atlas. Here, we propose two methods for encoding...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 159 - 163 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1945-8452 |
DOI | 10.1109/ISBI.2019.8759496 |
Cover
Abstract | Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural connectivity has been useful, but is often limited to defining nodes as regions from a brain atlas. Here, we propose two methods for encoding structural connectivity in a huge brain graph at the voxel-level resolution (i.e., 850'000 voxels) based on diffusion tensor imaging (DTI) and the orientation density functions (ODF), respectively. The eigendecomposition of the brain graph's Laplacian operator is then showing highly-resolved eigenmodes that reflect distributed structural features which are in good correspondence with major white matter tracks. To investigate the intrinsic dimensionality of eigenspace across subjects, we used a Procrustes validation that characterizes inter-subject variability. We found that the ODF approach using 3-neighborhood captures the most in-formation from the diffusion-weighted MRI. The proposed methods open a wide range of possibilities for new research avenues, especially in the field of graph signal processing applied to functional brain imaging. |
---|---|
AbstractList | Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural connectivity has been useful, but is often limited to defining nodes as regions from a brain atlas. Here, we propose two methods for encoding structural connectivity in a huge brain graph at the voxel-level resolution (i.e., 850'000 voxels) based on diffusion tensor imaging (DTI) and the orientation density functions (ODF), respectively. The eigendecomposition of the brain graph's Laplacian operator is then showing highly-resolved eigenmodes that reflect distributed structural features which are in good correspondence with major white matter tracks. To investigate the intrinsic dimensionality of eigenspace across subjects, we used a Procrustes validation that characterizes inter-subject variability. We found that the ODF approach using 3-neighborhood captures the most in-formation from the diffusion-weighted MRI. The proposed methods open a wide range of possibilities for new research avenues, especially in the field of graph signal processing applied to functional brain imaging. |
Author | Tarun, Anjali Abramian, David Behjat, Hamid De Ville, Dimitri Van |
Author_xml | – sequence: 1 givenname: Anjali surname: Tarun fullname: Tarun, Anjali organization: Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Bioengineering, Switzerland – sequence: 2 givenname: David surname: Abramian fullname: Abramian, David organization: Department of Biomedical Engineering, University of Linkping, Sweden – sequence: 3 givenname: Hamid surname: Behjat fullname: Behjat, Hamid organization: Department of Biomedical Engineering, Lund University, Lund, Sweden – sequence: 4 givenname: Dimitri Van surname: De Ville fullname: De Ville, Dimitri Van organization: Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Bioengineering, Switzerland |
BookMark | eNotkMFOAjEURavRREQ-wLjpDwz2TV-n7RJQkQR1gcqSdGZepWaYmbSYyN9rlLs5m5OzuJfsrO1aYuwaxBhA2NvFaroY5wLs2Ghl0RYnbGS1ASVNIQsEOGUDsKgygyq_YKOUPsXvNKIUOGDP8-j6LV_1VO2ja_ikdc0hhcQ7z9-7b2qydUjEp9GFlv-5ifvY7fhd8P4rha7N1hQ-tnuq-VMMV-zcuybR6Mghe3u4f509ZsuX-WI2WWZBYrHPcgNQS3RKSFCCdClEibUnpSuvUeSkoBQ1YY2VNzkoJayRNheVqrQqoZJDdvPfDUS06WPYuXjYHB-QP8e9T70 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI.2019.8759496 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781538636411 1538636417 |
EISSN | 1945-8452 |
EndPage | 163 |
ExternalDocumentID | 8759496 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i346t-2811d34a503150e7b00b4dfe57cf7402e51b0de4d4cf821550983920c5c75b1c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:54:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i346t-2811d34a503150e7b00b4dfe57cf7402e51b0de4d4cf821550983920c5c75b1c3 |
OpenAccessLink | http://infoscience.epfl.ch/record/270737 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8759496 |
PublicationCentury | 2000 |
PublicationDate | 2019-April |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-April |
PublicationDecade | 2010 |
PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.0994434 |
Snippet | Non-invasive characterization of brain structure has been made possible by the introduction of magnetic resonance imaging (MRI). Graph modeling of structural... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 159 |
SubjectTerms | brain graph Brain modeling Diffusion tensor imaging eigenmodes Ellipsoids orientation density functions Visualization White matter |
Title | Graph Spectral Analysis of Voxel-Wise Brain Graphs from Diffusion-Weighted Mri |
URI | https://ieeexplore.ieee.org/document/8759496 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG6QJ33xAsZ7-uCjhXVrx_aKimACMVGEN7K2p8miYQa2xPjr7dkAL_HBt2VZt6WXfD1fz_k-Qi6li9aCJOJMaxkw4SfAktg3TAmHpgkKQpXC88NR2B-L-6mc1sjVphYGAMrkM2jhZXmWbzJdIFXWdnvrWMThFtly06yq1drwKQ4KhQvNVweX3Ivbg8fuAHO33GSo2v0wUCnxo7dLhusvV2kjL60iVy398UuU8b-_tkeaX5V69GGDQfukBvMDsvNNZLBBRneoSU3RaB5ZDbqWIaGZpc_ZO7yySboE2kWvCFo-u6RYdEJvUmsLJNPYpORPwdDhIm2Sce_26brPVi4KLA1EmDM_4twEIpHo5-BBx60zJYwFiYJELnoEyZVnQBihbeRjxBLjpsnTUnek4jo4JPV5NocjQhMPTJi4trGKRQAmMtwCN-5VNgqlio5JA3tm9lYJZcxWnXLy9-1Tso2jU6XBnJF6vijg3CF8ri7Kof0EiMemUA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG4QH9QXL2C82wcfLezSju0VFUEZMRGEN7K2Z8miYQa2xPjr7dkQL_HBt2VZ16bd8vV8Pef7CLkQJlpzI99mSgmXcScCFgWOZpIbNI1QEKoQng8HXnfE7yZiUiGXq1oYACiSz6CBl8VZvk5VjlRZ0-ytAx54a2Td4D4XZbXWilExYMhNcL48urStoNl7bPcwe8t8DmXLHxYqBYJ0tkn42XeZOPLcyDPZUO-_ZBn_O7gdUv-q1aMPKxTaJRWY7ZGtbzKDNTK4RVVqilbzyGvQTyESmsb0KX2DFzZOFkDb6BZBi2cXFMtO6HUSxznSaWxcMKigaThP6mTUuRleddnSR4ElLvcy5vi2rV0eCXR0sKBl_jTJdQwCJYlM_AjClpYGrrmKfQdjlgC3TZYSqiWkrdx9Up2lMzggNLJAe5FpG8iAu6B9bcdga_Oq2PeE9A9JDWdm-lpKZUyXk3L09-1zstEdhv1pvze4PyabuFJlUswJqWbzHE4N3mfyrFjmD23UqZ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Graph+Spectral+Analysis+of+Voxel-Wise+Brain+Graphs+from+Diffusion-Weighted+Mri&rft.au=Tarun%2C+Anjali&rft.au=Abramian%2C+David&rft.au=Behjat%2C+Hamid&rft.au=De+Ville%2C+Dimitri+Van&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=159&rft.epage=163&rft_id=info:doi/10.1109%2FISBI.2019.8759496&rft.externalDocID=8759496 |