Reinforcement Learning for Visual Object Detection
One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have been successful and effective for many years, they are still brute-force, independent of the image content and the visual category being search...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Vol. 2016-January; pp. 2894 - 2902 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Book Chapter |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have been successful and effective for many years, they are still brute-force, independent of the image content and the visual category being searched. In this paper we present principled sequential models that accumulate evidence collected at a small set of image locations in order to detect visual objects effectively. By formulating sequential search as reinforcement learning of the search policy (including the stopping condition), our fully trainable model can explicitly balance for each class, specifically, the conflicting goals of exploration - sampling more image regions for better accuracy -, and exploitation - stopping the search efficiently when sufficiently confident about the target's location. The methodology is general and applicable to any detector response function. We report encouraging results in the PASCAL VOC 2012 object detection test set showing that the proposed methodology achieves almost two orders of magnitude speed-up over sliding window methods. |
---|---|
AbstractList | One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have been successful and effective for many years, they are still brute-force, independent of the image content and the visual category being searched. In this paper we present principled sequential models that accumulate evidence collected at a small set of image locations in order to detect visual objects effectively. By formulating sequential search as reinforcement learning of the search policy (including the stopping condition), our fully trainable model can explicitly balance for each class, specifically, the conflicting goals of exploration - sampling more image regions for better accuracy -, and exploitation - stopping the search efficiently when sufficiently confident about the target's location. The methodology is general and applicable to any detector response function. We report encouraging results in the PASCAL VOC 2012 object detection test set showing that the proposed methodology achieves almost two orders of magnitude speed-up over sliding window methods. |
Author | Mathe, Stefan Sminchisescu, Cristian Pirinen, Aleksis |
Author_xml | – sequence: 1 givenname: Stefan surname: Mathe fullname: Mathe, Stefan email: stefan.mathe@imar.ro organization: Inst. of Math., Bucharest, Romania – sequence: 2 givenname: Aleksis surname: Pirinen fullname: Pirinen, Aleksis email: aleksis.pirinen@math.lth.se organization: Dept. of Math., Lund Univ., Lund, Sweden – sequence: 3 givenname: Cristian surname: Sminchisescu fullname: Sminchisescu, Cristian email: cristian.sminchisescu@math.lth.se organization: Dept. of Math., Lund Univ., Lund, Sweden |
BackLink | https://lup.lub.lu.se/record/7a9e0d3d-4779-4f7e-8633-b43597a6338f$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/7a9e0d3d-4779-4f7e-8633-b43597a6338f$$DView record from Swedish Publication Index |
BookMark | eNqNjktLw0AUhccXWGuXrtzkD6TOdN5LqU8IVIp2O8xM7uiUmIRMgvjvjbS4EAQXl3M59_Kdc4aO66YGhC4InhOC9dVy87SeLzARc0rEAZppqQgTkirFCTlEE4IFzYUm-ujX7RTNUtpijIkWiig9QYs1xDo0nYd3qPusANvVsX7NRivbxDTYKlu5Lfg-u4F-lNjU5-gk2CrBbK9T9HJ3-7x8yIvV_ePyusgjpazPPXDFGOHaC2JtqbjXWuFgveJlAKcdwzZ4q6XGmgfmnfKSMGeZ58AhAJ0iu-OmD2gHZ9ouvtvu0zQ2mrbpeluZDtJY2L-ZajAJzPhVRW-_SyYjrQZc0tIwKbVhQYJRglLjGOVa2nFVYcwo_syohnYct2f_E3e5w0UA-IFJqbBQnH4BtaOF-g |
CODEN | IEEPAD |
ContentType | Conference Proceeding Book Chapter |
CorporateAuthor | Research groups at the Centre for Mathematical Sciences Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments Faculty of Science Lund University ELLIIT: the Linköping-Lund initiative on IT and mobile communication Strategiska forskningsområden (SFO) Centre for Mathematical Sciences Forskargrupper vid Matematikcentrum Mathematical Imaging Group Strategic research areas (SRA) Matematikcentrum Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication – name: Strategiska forskningsområden (SFO) – name: Research groups at the Centre for Mathematical Sciences – name: Strategic research areas (SRA) – name: Faculty of Science – name: Lunds universitet – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Centre for Mathematical Sciences – name: Profile areas and other strong research environments – name: Forskargrupper vid Matematikcentrum – name: Mathematical Imaging Group – name: Matematikcentrum |
DBID | 6IE 6IH CBEJK RIE RIO ADTPV BNKNJ D95 BMRNB |
DOI | 10.1109/CVPR.2016.316 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present SwePub SwePub Conference SWEPUB Lunds universitet SwePub Book Chapter |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 2902 |
ExternalDocumentID | oai_portal_research_lu_se_publications_7a9e0d3d_4779_4f7e_8633_b43597a6338f oai_lup_lub_lu_se_7a9e0d3d_4779_4f7e_8633_b43597a6338f 7780685 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 6IF 6IG 6IL 6IM 6IN AAJGR AAWTH ADFMO ADTPV BEFXN BFFAM BGNUA BKEBE BNKNJ BPEOZ D95 IEGSK IERZE IJVOP OCL RIB RIC RIL BMRNB |
ID | FETCH-LOGICAL-i334t-ce5844159c61aad85c9980fac85dfeb9b40afca979095f4cb8c714ba4c5e5efe3 |
IEDL.DBID | RIE |
ISBN | 9781467388511 1467388513 |
IngestDate | Thu Aug 21 06:24:17 EDT 2025 Tue Apr 15 03:10:31 EDT 2025 Wed Aug 27 01:54:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i334t-ce5844159c61aad85c9980fac85dfeb9b40afca979095f4cb8c714ba4c5e5efe3 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_lup_lub_lu_se_7a9e0d3d_4779_4f7e_8633_b43597a6338f ieee_primary_7780685 swepub_primary_oai_portal_research_lu_se_publications_7a9e0d3d_4779_4f7e_8633_b43597a6338f |
PublicationCentury | 2000 |
PublicationDate | 2016-June 2016 |
PublicationDateYYYYMMDD | 2016-06-01 2016-01-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.4458368 |
Snippet | One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have... |
SourceID | swepub ieee |
SourceType | Open Access Repository Publisher |
StartPage | 2894 |
SubjectTerms | Computational efficiency Computational modeling Computer and Information Science Computer and Information Sciences Computer graphics and computer vision Computer Vision and Robotics (Autonomous Systems) Data- och informationsvetenskap (Datateknik) Datorgrafik och datorseende Datorseende och robotik (autonoma system) Detectors Feature extraction History Natural Sciences Naturvetenskap Object detection Visualization |
Title | Reinforcement Learning for Visual Object Detection |
URI | https://ieeexplore.ieee.org/document/7780685 https://lup.lub.lu.se/record/7a9e0d3d-4779-4f7e-8633-b43597a6338f oai:portal.research.lu.se:publications/7a9e0d3d-4779-4f7e-8633-b43597a6338f |
Volume | 2016-January |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ07QAmKhrXLg2CzJ2rHjMwWhSlCEACEu1tgZAwLtrtjk0l_fcZLNVogDB0vORBpZY1vz8Mw3AEeCjRD0Kk_R5y6VATF1xlSpFKWSDgWKKsY7Li7V-a38fV_cr8HPoRaGiNrkMxrHafuWX818E0Nlx1qXmSqLdVhnx62r1VrFU4xi3WOGb8GejTLDi8IkdmNZYWwen9xdXcfELsVOq-o7q7xDC201zNkWXCzX1iWWvIyb2o3933ewjZ9d_Dbsrmr5kqtBS32BNZp-ha3e-Ez6q71g0rK_w5K2A5NranFVfRtCTHoo1seEScnd86LB1-SPi3Gc5BfVbUrXdBduz05vTs7TvsdC-iyErFNPbIGwEje8X4hVWXj2v7KAviyqQM44mWHwaLRhWyxI70qvc95E6QsqKJDYg43pbEr7kGTKa3ZPYuaflmS8KTBMMORFEAaVy0ewE6Vi5x2Mhu0FMoLTTurDj4h4_drMeTgedkFWo6GsEpWVWhsrgyZbKiGsY2PPaORpGUbw8AGfzomxPXLSU89v_l9I9FPMDz5e-yFsxjPUpY59g436raHvbKTU7kd7Ov8B0TzmsQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoBTKS1iS6E5wDHbJHbs-NBTH9rSB1XVVhUXYzvjUlFtV91ECH4Lf4X_xjjJZlHVA5dKHCI5jjRyPE7m4c_fALxn5IQYJ9LYuNTG3BsTW6XKmLNCcGuYYWXIdxwdi9E5_3iZXy7Ar_4sDCI24DMchmazl1_eujqkyjalLBJRzCCUB_jjOwVo0639HdLmhyzb2z3bHsVdDYH4mjFexQ7JwpKRUjQeY8oidxRfJN64Ii89WmV5YrwzSiryNTx3tnAypUFyl2OOHhnJfQJPyc_Is_Z02DyDowRZO9XfM4qlhOr3MLJQ_2XO6rm5fXFyGqBkgsJk0dVyucdP2ti0vSX4PZuNFsrybVhXduh-3iOK_F-n6wWszk8rRie9HV6GBRy_hKXOvY66n9eUumYVLGZ9K5CdYsMc65okadSRzV5F1BVdXE9rcxN9siFTFe1g1YDWxqtw_iiv9AoWx7djfA1RIpykACxgGyVH5VRufGZ8mnumjLDpAFaCFvSkJQrRnQIGsNtquX8QOL1v6gldli49RS2NwqRkpeZSKs29RF0IxrQld1ZJQ83CD-DzA3LaME133FBfO3mTv5K-_yR87eGxb8Cz0dnRoT7cPz54A8_D-m2BcuuwWN3V-JZcssq-a76MCL489tr6A-skR6I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition%2C+CVPR+2016&rft.au=Mathe%2C+Stefan&rft.au=Pirinen%2C+Aleksis&rft.au=Sminchisescu%2C+Cristian&rft.atitle=Reinforcement+learning+for+visual+object+detection&rft.date=2016-01-01&rft.isbn=9781467388511&rft.volume=2016-January&rft.spage=2894&rft_id=info:doi/10.1109%2FCVPR.2016.316&rft.externalDocID=oai_portal_research_lu_se_publications_7a9e0d3d_4779_4f7e_8633_b43597a6338f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467388511/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467388511/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467388511/sc.gif&client=summon&freeimage=true |