Reinforcement Learning for Visual Object Detection

One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have been successful and effective for many years, they are still brute-force, independent of the image content and the visual category being search...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Vol. 2016-January; pp. 2894 - 2902
Main Authors Mathe, Stefan, Pirinen, Aleksis, Sminchisescu, Cristian
Format Conference Proceeding Book Chapter
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have been successful and effective for many years, they are still brute-force, independent of the image content and the visual category being searched. In this paper we present principled sequential models that accumulate evidence collected at a small set of image locations in order to detect visual objects effectively. By formulating sequential search as reinforcement learning of the search policy (including the stopping condition), our fully trainable model can explicitly balance for each class, specifically, the conflicting goals of exploration - sampling more image regions for better accuracy -, and exploitation - stopping the search efficiently when sufficiently confident about the target's location. The methodology is general and applicable to any detector response function. We report encouraging results in the PASCAL VOC 2012 object detection test set showing that the proposed methodology achieves almost two orders of magnitude speed-up over sliding window methods.
AbstractList One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have been successful and effective for many years, they are still brute-force, independent of the image content and the visual category being searched. In this paper we present principled sequential models that accumulate evidence collected at a small set of image locations in order to detect visual objects effectively. By formulating sequential search as reinforcement learning of the search policy (including the stopping condition), our fully trainable model can explicitly balance for each class, specifically, the conflicting goals of exploration - sampling more image regions for better accuracy -, and exploitation - stopping the search efficiently when sufficiently confident about the target's location. The methodology is general and applicable to any detector response function. We report encouraging results in the PASCAL VOC 2012 object detection test set showing that the proposed methodology achieves almost two orders of magnitude speed-up over sliding window methods.
Author Mathe, Stefan
Sminchisescu, Cristian
Pirinen, Aleksis
Author_xml – sequence: 1
  givenname: Stefan
  surname: Mathe
  fullname: Mathe, Stefan
  email: stefan.mathe@imar.ro
  organization: Inst. of Math., Bucharest, Romania
– sequence: 2
  givenname: Aleksis
  surname: Pirinen
  fullname: Pirinen, Aleksis
  email: aleksis.pirinen@math.lth.se
  organization: Dept. of Math., Lund Univ., Lund, Sweden
– sequence: 3
  givenname: Cristian
  surname: Sminchisescu
  fullname: Sminchisescu, Cristian
  email: cristian.sminchisescu@math.lth.se
  organization: Dept. of Math., Lund Univ., Lund, Sweden
BackLink https://lup.lub.lu.se/record/7a9e0d3d-4779-4f7e-8633-b43597a6338f$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/7a9e0d3d-4779-4f7e-8633-b43597a6338f$$DView record from Swedish Publication Index
BookMark eNqNjktLw0AUhccXWGuXrtzkD6TOdN5LqU8IVIp2O8xM7uiUmIRMgvjvjbS4EAQXl3M59_Kdc4aO66YGhC4InhOC9dVy87SeLzARc0rEAZppqQgTkirFCTlEE4IFzYUm-ujX7RTNUtpijIkWiig9QYs1xDo0nYd3qPusANvVsX7NRivbxDTYKlu5Lfg-u4F-lNjU5-gk2CrBbK9T9HJ3-7x8yIvV_ePyusgjpazPPXDFGOHaC2JtqbjXWuFgveJlAKcdwzZ4q6XGmgfmnfKSMGeZ58AhAJ0iu-OmD2gHZ9ouvtvu0zQ2mrbpeluZDtJY2L-ZajAJzPhVRW-_SyYjrQZc0tIwKbVhQYJRglLjGOVa2nFVYcwo_syohnYct2f_E3e5w0UA-IFJqbBQnH4BtaOF-g
CODEN IEEPAD
ContentType Conference Proceeding
Book Chapter
CorporateAuthor Research groups at the Centre for Mathematical Sciences
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Faculty of Science
Lund University
ELLIIT: the Linköping-Lund initiative on IT and mobile communication
Strategiska forskningsområden (SFO)
Centre for Mathematical Sciences
Forskargrupper vid Matematikcentrum
Mathematical Imaging Group
Strategic research areas (SRA)
Matematikcentrum
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication
– name: Strategiska forskningsområden (SFO)
– name: Research groups at the Centre for Mathematical Sciences
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Centre for Mathematical Sciences
– name: Profile areas and other strong research environments
– name: Forskargrupper vid Matematikcentrum
– name: Mathematical Imaging Group
– name: Matematikcentrum
DBID 6IE
6IH
CBEJK
RIE
RIO
ADTPV
BNKNJ
D95
BMRNB
DOI 10.1109/CVPR.2016.316
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
SwePub
SwePub Conference
SWEPUB Lunds universitet
SwePub Book Chapter
DatabaseTitleList


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 2902
ExternalDocumentID oai_portal_research_lu_se_publications_7a9e0d3d_4779_4f7e_8633_b43597a6338f
oai_lup_lub_lu_se_7a9e0d3d_4779_4f7e_8633_b43597a6338f
7780685
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
6IF
6IG
6IL
6IM
6IN
AAJGR
AAWTH
ADFMO
ADTPV
BEFXN
BFFAM
BGNUA
BKEBE
BNKNJ
BPEOZ
D95
IEGSK
IERZE
IJVOP
OCL
RIB
RIC
RIL
BMRNB
ID FETCH-LOGICAL-i334t-ce5844159c61aad85c9980fac85dfeb9b40afca979095f4cb8c714ba4c5e5efe3
IEDL.DBID RIE
ISBN 9781467388511
1467388513
IngestDate Thu Aug 21 06:24:17 EDT 2025
Tue Apr 15 03:10:31 EDT 2025
Wed Aug 27 01:54:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i334t-ce5844159c61aad85c9980fac85dfeb9b40afca979095f4cb8c714ba4c5e5efe3
PageCount 9
ParticipantIDs swepub_primary_oai_lup_lub_lu_se_7a9e0d3d_4779_4f7e_8633_b43597a6338f
ieee_primary_7780685
swepub_primary_oai_portal_research_lu_se_publications_7a9e0d3d_4779_4f7e_8633_b43597a6338f
PublicationCentury 2000
PublicationDate 2016-June
2016
PublicationDateYYYYMMDD 2016-06-01
2016-01-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.4458368
Snippet One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have...
SourceID swepub
ieee
SourceType Open Access Repository
Publisher
StartPage 2894
SubjectTerms Computational efficiency
Computational modeling
Computer and Information Science
Computer and Information Sciences
Computer graphics and computer vision
Computer Vision and Robotics (Autonomous Systems)
Data- och informationsvetenskap (Datateknik)
Datorgrafik och datorseende
Datorseende och robotik (autonoma system)
Detectors
Feature extraction
History
Natural Sciences
Naturvetenskap
Object detection
Visualization
Title Reinforcement Learning for Visual Object Detection
URI https://ieeexplore.ieee.org/document/7780685
https://lup.lub.lu.se/record/7a9e0d3d-4779-4f7e-8633-b43597a6338f
oai:portal.research.lu.se:publications/7a9e0d3d-4779-4f7e-8633-b43597a6338f
Volume 2016-January
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ07QAmKhrXLg2CzJ2rHjMwWhSlCEACEu1tgZAwLtrtjk0l_fcZLNVogDB0vORBpZY1vz8Mw3AEeCjRD0Kk_R5y6VATF1xlSpFKWSDgWKKsY7Li7V-a38fV_cr8HPoRaGiNrkMxrHafuWX818E0Nlx1qXmSqLdVhnx62r1VrFU4xi3WOGb8GejTLDi8IkdmNZYWwen9xdXcfELsVOq-o7q7xDC201zNkWXCzX1iWWvIyb2o3933ewjZ9d_Dbsrmr5kqtBS32BNZp-ha3e-Ez6q71g0rK_w5K2A5NranFVfRtCTHoo1seEScnd86LB1-SPi3Gc5BfVbUrXdBduz05vTs7TvsdC-iyErFNPbIGwEje8X4hVWXj2v7KAviyqQM44mWHwaLRhWyxI70qvc95E6QsqKJDYg43pbEr7kGTKa3ZPYuaflmS8KTBMMORFEAaVy0ewE6Vi5x2Mhu0FMoLTTurDj4h4_drMeTgedkFWo6GsEpWVWhsrgyZbKiGsY2PPaORpGUbw8AGfzomxPXLSU89v_l9I9FPMDz5e-yFsxjPUpY59g436raHvbKTU7kd7Ov8B0TzmsQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoBTKS1iS6E5wDHbJHbs-NBTH9rSB1XVVhUXYzvjUlFtV91ECH4Lf4X_xjjJZlHVA5dKHCI5jjRyPE7m4c_fALxn5IQYJ9LYuNTG3BsTW6XKmLNCcGuYYWXIdxwdi9E5_3iZXy7Ar_4sDCI24DMchmazl1_eujqkyjalLBJRzCCUB_jjOwVo0639HdLmhyzb2z3bHsVdDYH4mjFexQ7JwpKRUjQeY8oidxRfJN64Ii89WmV5YrwzSiryNTx3tnAypUFyl2OOHhnJfQJPyc_Is_Z02DyDowRZO9XfM4qlhOr3MLJQ_2XO6rm5fXFyGqBkgsJk0dVyucdP2ti0vSX4PZuNFsrybVhXduh-3iOK_F-n6wWszk8rRie9HV6GBRy_hKXOvY66n9eUumYVLGZ9K5CdYsMc65okadSRzV5F1BVdXE9rcxN9siFTFe1g1YDWxqtw_iiv9AoWx7djfA1RIpykACxgGyVH5VRufGZ8mnumjLDpAFaCFvSkJQrRnQIGsNtquX8QOL1v6gldli49RS2NwqRkpeZSKs29RF0IxrQld1ZJQ83CD-DzA3LaME133FBfO3mTv5K-_yR87eGxb8Cz0dnRoT7cPz54A8_D-m2BcuuwWN3V-JZcssq-a76MCL489tr6A-skR6I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition%2C+CVPR+2016&rft.au=Mathe%2C+Stefan&rft.au=Pirinen%2C+Aleksis&rft.au=Sminchisescu%2C+Cristian&rft.atitle=Reinforcement+learning+for+visual+object+detection&rft.date=2016-01-01&rft.isbn=9781467388511&rft.volume=2016-January&rft.spage=2894&rft_id=info:doi/10.1109%2FCVPR.2016.316&rft.externalDocID=oai_portal_research_lu_se_publications_7a9e0d3d_4779_4f7e_8633_b43597a6338f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467388511/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467388511/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467388511/sc.gif&client=summon&freeimage=true