Semi-automatic segmentation of the tongue for 3D motion analysis with dynamic MRI

Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over th...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE 10th International Symposium on Biomedical Imaging Vol. 2013; pp. 1465 - 1468
Main Authors Junghoon Lee, Jonghye Woo, Fangxu Xing, Murano, Emi Z., Stone, Maureen, Prince, Jerry L.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 31.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semiautomatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations.
AbstractList Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations.Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations.
Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations.
Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semiautomatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations.
Author Murano, Emi Z.
Junghoon Lee
Jonghye Woo
Fangxu Xing
Stone, Maureen
Prince, Jerry L.
AuthorAffiliation 1 Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
2 Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
3 Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
4 Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
AuthorAffiliation_xml – name: 3 Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
– name: 1 Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
– name: 2 Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
– name: 4 Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
Author_xml – sequence: 1
  surname: Junghoon Lee
  fullname: Junghoon Lee
  organization: Dept. of Radiat. Oncology, Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 2
  surname: Jonghye Woo
  fullname: Jonghye Woo
  organization: Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 3
  surname: Fangxu Xing
  fullname: Fangxu Xing
  organization: Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 4
  givenname: Emi Z.
  surname: Murano
  fullname: Murano, Emi Z.
  organization: Otolaryngology-Head & Neck Surg., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 5
  givenname: Maureen
  surname: Stone
  fullname: Stone, Maureen
  organization: Sch. of Dentistry, Dept. of Neural & Pain Sci., Univ. of Maryland, Baltimore, MD, USA
– sequence: 6
  givenname: Jerry L.
  surname: Prince
  fullname: Prince, Jerry L.
  organization: Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24443699$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1v1DAQhl0oop8_ACEhH7lkyfgr9qVSKV8rtULQHnqLnGS8a5TYbZy02n-PodtCTzOa5513RjMHZDfEgIS8gXIBUJoPy8uPywUrgS-UlEoD7JADEKriSkh5_YLsgxGy0EKyl_-A0rtbUBmm98hxSr_KssyGCoC_JntMCMGVMfvkxyUOvrDzFAc7-ZYmXA0YppzHQKOj0xrpFMNqRuriSPknOsS_zAbbb5JP9N5Pa9ptgh1y-8XP5RF55Wyf8HgbD8nVl89XZ9-K8-9fl2en54XnzEwFKGcq40xZlY3oELhrXAdWS5AWIO_nHHaN5pzJpuJCtE2uMNWIllt0kh-Skwfbm7kZsGvz0qPt65vRD3bc1NH6-jkJfl2v4l3NtWGqgmzwfmswxtsZ01QPPrXY9zZgnFMNmimp_xwtS9_9P-tpyOMZs-Dtg8Aj4hPefoz_BtMMhfQ
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
NPM
7X8
5PM
DOI 10.1109/ISBI.2013.6556811
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 146736455X
9781467364553
9781467364546
1467364541
EISSN 1945-8452
EndPage 1468
ExternalDocumentID PMC3892671
24443699
6556811
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA133015
– fundername: National Cancer Institute : NCI
  grantid: R01 CA133015 || CA
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
23N
ADZIZ
CHZPO
IPLJI
M43
NPM
RNS
7X8
5PM
ID FETCH-LOGICAL-i329t-16f979f9070b4de13fbfd1a8515a11444ffedb83325b7344cb4ff26b4c3aef53
IEDL.DBID RIE
ISBN 1467364568
9781467364560
ISSN 1945-7928
IngestDate Thu Aug 21 18:32:36 EDT 2025
Fri Jul 11 09:39:44 EDT 2025
Thu Jan 02 22:15:27 EST 2025
Wed Aug 27 04:13:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords random walker
segmentation
Tongue
deformable registration
super-resolution reconstruction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i329t-16f979f9070b4de13fbfd1a8515a11444ffedb83325b7344cb4ff26b4c3aef53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3892671
PMID 24443699
PQID 1826580110
PQPubID 23479
PageCount 4
ParticipantIDs pubmed_primary_24443699
ieee_primary_6556811
proquest_miscellaneous_1826580110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3892671
PublicationCentury 2000
PublicationDate 20131231
PublicationDateYYYYMMDD 2013-12-31
PublicationDate_xml – month: 12
  year: 2013
  text: 20131231
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2013 IEEE 10th International Symposium on Biomedical Imaging
PublicationTitleAbbrev ISBI
PublicationTitleAlternate Proc IEEE Int Symp Biomed Imaging
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References 20304720 - IEEE Trans Med Imaging. 2010 Aug;29(8):1560-72
17297803 - J Acoust Soc Am. 2007 Jan;121(1):491-504
23033324 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24
21937342 - IEEE Trans Med Imaging. 2012 Feb;31(2):326-40
3420283 - Radiology. 1988 Oct;169(1):59-63
17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83
10571926 - Magn Reson Med. 1999 Dec;42(6):1048-60
17620891 - Curr Opin Otolaryngol Head Neck Surg. 2007 Aug;15(4):202-7
19394712 - Radiother Oncol. 2009 Jun;91(3):449-54
References_xml – reference: 17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83
– reference: 19394712 - Radiother Oncol. 2009 Jun;91(3):449-54
– reference: 17297803 - J Acoust Soc Am. 2007 Jan;121(1):491-504
– reference: 17620891 - Curr Opin Otolaryngol Head Neck Surg. 2007 Aug;15(4):202-7
– reference: 23033324 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24
– reference: 21937342 - IEEE Trans Med Imaging. 2012 Feb;31(2):326-40
– reference: 3420283 - Radiology. 1988 Oct;169(1):59-63
– reference: 20304720 - IEEE Trans Med Imaging. 2010 Aug;29(8):1560-72
– reference: 10571926 - Magn Reson Med. 1999 Dec;42(6):1048-60
SSID ssj0001106113
ssj0000744304
Score 2.05934
Snippet Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1465
SubjectTerms deformable registration
Dynamics
Image reconstruction
Image resolution
Image segmentation
Magnetic resonance imaging
Motion segmentation
random walker
segmentation
super-resolution reconstruction
Tongue
Title Semi-automatic segmentation of the tongue for 3D motion analysis with dynamic MRI
URI https://ieeexplore.ieee.org/document/6556811
https://www.ncbi.nlm.nih.gov/pubmed/24443699
https://www.proquest.com/docview/1826580110
https://pubmed.ncbi.nlm.nih.gov/PMC3892671
Volume 2013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IBymuBVq7EsVk2sZ3Y10IRW2mr8qjEbeUnrKpNKjY5wK_v2MmGhzj0lsSJEnsc-fvGM98AHBszGlld5EhLFE-YdSZRJhWJsLkUvGDOypCNPPmZX_xmP2757Qp87XNhnHMx-MwNw2Hcy7eVaYKr7CSPclnIdVaRuLW5Wr0_BZdCRjtqEf0rgevE6shI04MqYyZiXleIY0LQIJZyT935csczHcmT8fW3cQj6osPuhV3llfdA6NtYyheL0_kGTJbdamNS_gybWg_N0xvFx__t9ybsPKcBkl_9ArcFK678COsvFAy34fLazWeJauoqSr-Shbubd9lMJak8QXhJEF3eNY4gOib0jLRlg4jqxFBIcAQT-1iqOT4-uRrvwM3595vTi6Sr0pDMaCbrJM29LKRHkj3SaOuUeu1tqhDJcYVkizHvndWC0ozrgjJmNF7Jcs0MVc5zugtrZVW6fSDeGyu4kEgCFXPYrEVWGMO990x7oQewHcZm-rfV4Zh2wzKAL0uzTPHfCBseqnRVs5gG7sRFmAoD2GvN1D-MsIbRXMoBFK8M2N8QdLdft5Sz-6i_jRgvy4v04P3POYQPYe60YpBHsFY_NO4TApdaf44z9h8LoehN
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5VC4AG2hy0cxEkey3cR2Yl-BVrtttwK6SL1F_mxX1SaIJgf49YydbGirHrglcaLEHkfz3njmGeCDMZOJ1UWOtETxhFlnEmVSkQibS8EL5qwM1cjzs3z6gx1f8IsN-DjUwjjnYvKZG4fDuJZva9OGUNlBHuWykOs8Qr_P065aa4iooDNktCcXMcIS2E7cHxmJetBlzESs7AqZTAgbxFrwqT9fr3mmE3kwO_80C2lfdNy_st975SEYej-b8pZ7OnoK83XHuqyU63Hb6LH5c0_z8X97_gx2_xUCkq-Di3sOG67ahie3NAx34Nu5Wy0T1TZ1FH8lN-5y1dczVaT2BAEmQXx52TqC-JjQL6TbOIioXg6FhFAwsb8rtcLH599nu7A4Olx8nib9Pg3JkmaySdLcy0J6pNkTjdZOqdfepgqxHFdItxjz3lktKM24LihjRuOVLNfMUOU8py9gs6ortwfEe2MFFxJpoGIOm7XICmO4955pL_QIdsLYlD87JY6yH5YRvF-bpcS_Iyx5qMrV7U0Z2BMXYSqM4GVnpuFhBDaM5lKOoLhjwOGGoLx9t6VaXkUFbkR5WV6krx7-nHewNV3MT8vT2dnJa3gc5lEnDfkGNptfrXuLMKbR-3H2_gVSN-uW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+10th+International+Symposium+on+Biomedical+Imaging&rft.atitle=Semi-automatic+segmentation+of+the+tongue+for+3D+motion+analysis+with+dynamic+MRI&rft.au=Junghoon+Lee&rft.au=Jonghye+Woo&rft.au=Fangxu+Xing&rft.au=Murano%2C+Emi+Z.&rft.date=2013-12-31&rft.pub=IEEE&rft.isbn=9781467364560&rft.issn=1945-7928&rft.spage=1465&rft.epage=1468&rft_id=info:doi/10.1109%2FISBI.2013.6556811&rft.externalDocID=6556811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon