Semi-automatic segmentation of the tongue for 3D motion analysis with dynamic MRI
Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over th...
Saved in:
Published in | 2013 IEEE 10th International Symposium on Biomedical Imaging Vol. 2013; pp. 1465 - 1468 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
31.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semiautomatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations. |
---|---|
AbstractList | Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations.Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations. Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations. Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual segmentation of every 2D slice and time frame is time-consuming due to the large number of volumes captured over the entire task cycle. In this paper, we propose a semi-automatic segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise seeding a few slices, seed propagation by deformable registration, random walker segmentation of the temporal stack of images and 3D super-resolution volumes. This method was validated on the tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semiautomatic segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9 with reduced segmented volume variability compared to manual segmentations. |
Author | Murano, Emi Z. Junghoon Lee Jonghye Woo Fangxu Xing Stone, Maureen Prince, Jerry L. |
AuthorAffiliation | 1 Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA 2 Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA 3 Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA 4 Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA |
AuthorAffiliation_xml | – name: 3 Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA – name: 1 Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA – name: 2 Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA – name: 4 Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA |
Author_xml | – sequence: 1 surname: Junghoon Lee fullname: Junghoon Lee organization: Dept. of Radiat. Oncology, Johns Hopkins Univ., Baltimore, MD, USA – sequence: 2 surname: Jonghye Woo fullname: Jonghye Woo organization: Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 3 surname: Fangxu Xing fullname: Fangxu Xing organization: Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 4 givenname: Emi Z. surname: Murano fullname: Murano, Emi Z. organization: Otolaryngology-Head & Neck Surg., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 5 givenname: Maureen surname: Stone fullname: Stone, Maureen organization: Sch. of Dentistry, Dept. of Neural & Pain Sci., Univ. of Maryland, Baltimore, MD, USA – sequence: 6 givenname: Jerry L. surname: Prince fullname: Prince, Jerry L. organization: Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24443699$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1v1DAQhl0oop8_ACEhH7lkyfgr9qVSKV8rtULQHnqLnGS8a5TYbZy02n-PodtCTzOa5513RjMHZDfEgIS8gXIBUJoPy8uPywUrgS-UlEoD7JADEKriSkh5_YLsgxGy0EKyl_-A0rtbUBmm98hxSr_KssyGCoC_JntMCMGVMfvkxyUOvrDzFAc7-ZYmXA0YppzHQKOj0xrpFMNqRuriSPknOsS_zAbbb5JP9N5Pa9ptgh1y-8XP5RF55Wyf8HgbD8nVl89XZ9-K8-9fl2en54XnzEwFKGcq40xZlY3oELhrXAdWS5AWIO_nHHaN5pzJpuJCtE2uMNWIllt0kh-Skwfbm7kZsGvz0qPt65vRD3bc1NH6-jkJfl2v4l3NtWGqgmzwfmswxtsZ01QPPrXY9zZgnFMNmimp_xwtS9_9P-tpyOMZs-Dtg8Aj4hPefoz_BtMMhfQ |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL NPM 7X8 5PM |
DOI | 10.1109/ISBI.2013.6556811 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 146736455X 9781467364553 9781467364546 1467364541 |
EISSN | 1945-8452 |
EndPage | 1468 |
ExternalDocumentID | PMC3892671 24443699 6556811 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA133015 – fundername: National Cancer Institute : NCI grantid: R01 CA133015 || CA |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL 23N ADZIZ CHZPO IPLJI M43 NPM RNS 7X8 5PM |
ID | FETCH-LOGICAL-i329t-16f979f9070b4de13fbfd1a8515a11444ffedb83325b7344cb4ff26b4c3aef53 |
IEDL.DBID | RIE |
ISBN | 1467364568 9781467364560 |
ISSN | 1945-7928 |
IngestDate | Thu Aug 21 18:32:36 EDT 2025 Fri Jul 11 09:39:44 EDT 2025 Thu Jan 02 22:15:27 EST 2025 Wed Aug 27 04:13:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | random walker segmentation Tongue deformable registration super-resolution reconstruction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i329t-16f979f9070b4de13fbfd1a8515a11444ffedb83325b7344cb4ff26b4c3aef53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3892671 |
PMID | 24443699 |
PQID | 1826580110 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | pubmed_primary_24443699 ieee_primary_6556811 proquest_miscellaneous_1826580110 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3892671 |
PublicationCentury | 2000 |
PublicationDate | 20131231 |
PublicationDateYYYYMMDD | 2013-12-31 |
PublicationDate_xml | – month: 12 year: 2013 text: 20131231 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | 2013 IEEE 10th International Symposium on Biomedical Imaging |
PublicationTitleAbbrev | ISBI |
PublicationTitleAlternate | Proc IEEE Int Symp Biomed Imaging |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | 20304720 - IEEE Trans Med Imaging. 2010 Aug;29(8):1560-72 17297803 - J Acoust Soc Am. 2007 Jan;121(1):491-504 23033324 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24 21937342 - IEEE Trans Med Imaging. 2012 Feb;31(2):326-40 3420283 - Radiology. 1988 Oct;169(1):59-63 17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83 10571926 - Magn Reson Med. 1999 Dec;42(6):1048-60 17620891 - Curr Opin Otolaryngol Head Neck Surg. 2007 Aug;15(4):202-7 19394712 - Radiother Oncol. 2009 Jun;91(3):449-54 |
References_xml | – reference: 17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83 – reference: 19394712 - Radiother Oncol. 2009 Jun;91(3):449-54 – reference: 17297803 - J Acoust Soc Am. 2007 Jan;121(1):491-504 – reference: 17620891 - Curr Opin Otolaryngol Head Neck Surg. 2007 Aug;15(4):202-7 – reference: 23033324 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24 – reference: 21937342 - IEEE Trans Med Imaging. 2012 Feb;31(2):326-40 – reference: 3420283 - Radiology. 1988 Oct;169(1):59-63 – reference: 20304720 - IEEE Trans Med Imaging. 2010 Aug;29(8):1560-72 – reference: 10571926 - Magn Reson Med. 1999 Dec;42(6):1048-60 |
SSID | ssj0001106113 ssj0000744304 |
Score | 2.05934 |
Snippet | Accurate segmentation is an important preprocessing step for measuring the internal deformation of the tongue during speech and swallowing using 3D dynamic... |
SourceID | pubmedcentral proquest pubmed ieee |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1465 |
SubjectTerms | deformable registration Dynamics Image reconstruction Image resolution Image segmentation Magnetic resonance imaging Motion segmentation random walker segmentation super-resolution reconstruction Tongue |
Title | Semi-automatic segmentation of the tongue for 3D motion analysis with dynamic MRI |
URI | https://ieeexplore.ieee.org/document/6556811 https://www.ncbi.nlm.nih.gov/pubmed/24443699 https://www.proquest.com/docview/1826580110 https://pubmed.ncbi.nlm.nih.gov/PMC3892671 |
Volume | 2013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IBymuBVq7EsVk2sZ3Y10IRW2mr8qjEbeUnrKpNKjY5wK_v2MmGhzj0lsSJEnsc-fvGM98AHBszGlld5EhLFE-YdSZRJhWJsLkUvGDOypCNPPmZX_xmP2757Qp87XNhnHMx-MwNw2Hcy7eVaYKr7CSPclnIdVaRuLW5Wr0_BZdCRjtqEf0rgevE6shI04MqYyZiXleIY0LQIJZyT935csczHcmT8fW3cQj6osPuhV3llfdA6NtYyheL0_kGTJbdamNS_gybWg_N0xvFx__t9ybsPKcBkl_9ArcFK678COsvFAy34fLazWeJauoqSr-Shbubd9lMJak8QXhJEF3eNY4gOib0jLRlg4jqxFBIcAQT-1iqOT4-uRrvwM3595vTi6Sr0pDMaCbrJM29LKRHkj3SaOuUeu1tqhDJcYVkizHvndWC0ozrgjJmNF7Jcs0MVc5zugtrZVW6fSDeGyu4kEgCFXPYrEVWGMO990x7oQewHcZm-rfV4Zh2wzKAL0uzTPHfCBseqnRVs5gG7sRFmAoD2GvN1D-MsIbRXMoBFK8M2N8QdLdft5Sz-6i_jRgvy4v04P3POYQPYe60YpBHsFY_NO4TApdaf44z9h8LoehN |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5VC4AG2hy0cxEkey3cR2Yl-BVrtttwK6SL1F_mxX1SaIJgf49YydbGirHrglcaLEHkfz3njmGeCDMZOJ1UWOtETxhFlnEmVSkQibS8EL5qwM1cjzs3z6gx1f8IsN-DjUwjjnYvKZG4fDuJZva9OGUNlBHuWykOs8Qr_P065aa4iooDNktCcXMcIS2E7cHxmJetBlzESs7AqZTAgbxFrwqT9fr3mmE3kwO_80C2lfdNy_st975SEYej-b8pZ7OnoK83XHuqyU63Hb6LH5c0_z8X97_gx2_xUCkq-Di3sOG67ahie3NAx34Nu5Wy0T1TZ1FH8lN-5y1dczVaT2BAEmQXx52TqC-JjQL6TbOIioXg6FhFAwsb8rtcLH599nu7A4Olx8nib9Pg3JkmaySdLcy0J6pNkTjdZOqdfepgqxHFdItxjz3lktKM24LihjRuOVLNfMUOU8py9gs6ortwfEe2MFFxJpoGIOm7XICmO4955pL_QIdsLYlD87JY6yH5YRvF-bpcS_Iyx5qMrV7U0Z2BMXYSqM4GVnpuFhBDaM5lKOoLhjwOGGoLx9t6VaXkUFbkR5WV6krx7-nHewNV3MT8vT2dnJa3gc5lEnDfkGNptfrXuLMKbR-3H2_gVSN-uW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+10th+International+Symposium+on+Biomedical+Imaging&rft.atitle=Semi-automatic+segmentation+of+the+tongue+for+3D+motion+analysis+with+dynamic+MRI&rft.au=Junghoon+Lee&rft.au=Jonghye+Woo&rft.au=Fangxu+Xing&rft.au=Murano%2C+Emi+Z.&rft.date=2013-12-31&rft.pub=IEEE&rft.isbn=9781467364560&rft.issn=1945-7928&rft.spage=1465&rft.epage=1468&rft_id=info:doi/10.1109%2FISBI.2013.6556811&rft.externalDocID=6556811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon |