A novel method of identifying motor primitives using wavelet decomposition

This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Conference on Wearable and Implantable Body Sensor Networks : Print) Vol. 2018; pp. 122 - 125
Main Authors Popov, Anton, Olesh, Erienne V., Yakovenko, Sergiy, Gritsenko, Valeriya
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.
AbstractList This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.
This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.
Author Popov, Anton
Yakovenko, Sergiy
Gritsenko, Valeriya
Olesh, Erienne V.
Author_xml – sequence: 1
  givenname: Anton
  surname: Popov
  fullname: Popov, Anton
  organization: Electronic Engineering Department, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv 03056, Ukraine
– sequence: 2
  givenname: Erienne V.
  surname: Olesh
  fullname: Olesh, Erienne V.
  organization: West Virginia University Rockefeller Neuroscience Institute, School of Medicine, WVU, Morgantown, WV 26506 USA
– sequence: 3
  givenname: Sergiy
  surname: Yakovenko
  fullname: Yakovenko, Sergiy
  organization: West Virginia University Rockefeller Neuroscience Institute, School of Medicine, WVU, Morgantown, WV 26506 USA
– sequence: 4
  givenname: Valeriya
  surname: Gritsenko
  fullname: Gritsenko, Valeriya
  organization: West Virginia University Rockefeller Neuroscience Institute, School of Medicine, WVU, Morgantown, WV 26506 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29756041$$D View this record in MEDLINE/PubMed
BookMark eNpVUUtLw0AQXqWitfYuCJKjl9ad3ezrItTik6IH9RzymLQrSbZmk0r_vSmtRU_z-L75vmHmlPQqVyEh50DHANRc3769jBkFPdacGanCAzI0SoPgWm5wfUj6jCs50tqEvX2u5QkZev9JKeXQlSCPyQkzSkgaQp88T4LKrbAISmwWLgtcHtgMq8bma1vNg9I1rg6WtS1tY1fog9Zv2t9xN4JNkGHqyqXzHeiqM3KUx4XH4S4OyMf93fv0cTR7fXiaTmYjy5luRiaUsRZpqFCFXNE8AyZoypIQctHlaaJkogQAGJ6h0SznKWUiNcJQwxLJ-IDcbHWXbVJilnbb1nERbZaM63XkYhv9Ryq7iOZuFQkTMjCyE7jaCdTuq0XfRKX1KRZFXKFrfcQo14oCBeiol3-99ia_B-wIF1uCRcQ9vPsQ_wEsMIGW
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
NPM
7X8
5PM
DOI 10.1109/BSN.2018.8329674
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538611098
1538611090
EISSN 2376-8894
EndPage 125
ExternalDocumentID PMC5942196
29756041
8329674
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U54 GM104942
– fundername: NIGMS NIH HHS
  grantid: P20 GM109098
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
NPM
7X8
5PM
ID FETCH-LOGICAL-i328t-946a85c47e74370fd1250c2b41f5d12cb76b7511193de982f3c025c959092b623
IEDL.DBID RIE
ISSN 2376-8886
IngestDate Thu Aug 21 13:49:55 EDT 2025
Fri Jul 11 07:46:54 EDT 2025
Mon Jul 21 05:59:49 EDT 2025
Wed Aug 27 02:52:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i328t-946a85c47e74370fd1250c2b41f5d12cb76b7511193de982f3c025c959092b623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5942196
PMID 29756041
PQID 2038701011
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5942196
proquest_miscellaneous_2038701011
pubmed_primary_29756041
ieee_primary_8329674
PublicationCentury 2000
PublicationDate 20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180301
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings (International Conference on Wearable and Implantable Body Sensor Networks : Print)
PublicationTitleAbbrev BSN
PublicationTitleAlternate Int Conf Wearable Implant Body Sens Netw
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188816
Score 2.028497
Snippet This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 122
SubjectTerms Analysis of variance
Continuous wavelet transforms
Electromyography
Muscles
Tuning
Wavelet analysis
Title A novel method of identifying motor primitives using wavelet decomposition
URI https://ieeexplore.ieee.org/document/8329674
https://www.ncbi.nlm.nih.gov/pubmed/29756041
https://www.proquest.com/docview/2038701011
https://pubmed.ncbi.nlm.nih.gov/PMC5942196
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2PemLX1PnFxF8tLNLk6Z5VHGMgSLoYG-lSVMdSju0VfCv99J2dcoefAtNAiF33P2a-90dwBnVkcelq5yEC-WwxHAH3ZBxIu4mqFNaijIUc3vnjyZsPOXTFpw3uTDGmJJ8Zvp2WMby40wX9qnsArVP-oK1oY0_blWuVvOegroZBIMmEunKi6uHO0vdCvr1trp_yioo-ZcRueRihhtwuzhcxSx56Re56uuvP3Ub_3v6Tej-JPOR-8ZNbUHLpNuwvlSHcAfGlyTNPswrqfpJkywhszKBt0yCIijN7I3MbQMwaxzfiSXLP5HPyDatyElsLC-9Jn91YTK8ebweOXWTBWfm0SB3JPOjgGsmDGIJ4SYxIh5XU8UGCcexVsJXAlEZAr3YyIAmnkaYpCUKWFKF4GkXOmmWmn0gMWWRYlpRoWKGMCfyTEQRAcX4AQ0r78GOvZVwXtXRCOsL6cHpQiAh6rYNWESpyYr3kNrYui2CN-jBXiWgZrPNCPZdhjPil-iaBbZu9u-ZdPZc1s_mkqGd9g9WH-cQ1qzWVDyzI-jkb4U5RuCRq5NS474BH-vZvQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHIALbxjPIHGko8uSpjkCYhqPTUiAxK1q0hQmUDttHUj8epy2K2ziwC1qGsmKLftT_NkGOKE6bHHpKifmQjksNtzBMGSckLsx2pSWIk_FdHte54ndPPPnOTitamGMMTn5zDTsMs_lR6ke26eyM7Q-6Qk2DwsY93mzqNaqXlTQOn2_WeUiXXl28dCz5C2_UR4sJ6j8BSZnOZG_gkx7BboT8QpuyVtjnKmG_prp3Phf-Vdh86ecj9xXgWoN5kyyDsu_OhFuwM05SdIP806KidIkjUk_L-HNy6AI6jMdkoEdAWbd44hYuvwL-Qzt2IqMRMYy00v61yY8ta8eLztOOWbB6beonzmSeaHPNRMG0YRw4wgxj6upYs2Y41or4SmBuAyhXmSkT-OWRqCkJapYUoXwaQtqSZqYHSARZaFiWlGhIoZAJ2yZkCIGivADulZehw17K8Gg6KQRlBdSh-OJQgK0bpuyCBOTjkcBtdl12wavWYftQkHVYVsT7LkMd8SU6qofbOfs6Z2k_5p30OaSoaf2dv8W5wgWO4_du-Duune7B0vWggrW2T7UsuHYHCAMydRhbn3fnp7dBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Conference+on+Wearable+and+Implantable+Body+Sensor+Networks+%3A+Print%29&rft.atitle=A+novel+method+of+identifying+motor+primitives+using+wavelet+decomposition&rft.au=Popov%2C+Anton&rft.au=Olesh%2C+Erienne+V.&rft.au=Yakovenko%2C+Sergiy&rft.au=Gritsenko%2C+Valeriya&rft.date=2018-03-01&rft.pub=IEEE&rft.eissn=2376-8894&rft.spage=122&rft.epage=125&rft_id=info:doi/10.1109%2FBSN.2018.8329674&rft.externalDocID=8329674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-8886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-8886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-8886&client=summon