A generalized dimension-reduction method for multidimensional integration in stochastic mechanics

A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N‐dimensional response function...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 61; no. 12; pp. 1992 - 2019
Main Authors Xu, H., Rahman, S.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 28.11.2004
Subjects
Online AccessGet full text
ISSN0029-5981
1097-0207
DOI10.1002/nme.1135

Cover

Loading…
Abstract A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N‐dimensional response function into at most S‐dimensional functions, where S≪N; an approximation of response moments by moments of input random variables; and a moment‐based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid‐mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension‐reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as first‐ and second‐order Taylor expansion methods, statistically equivalent solutions, quasi‐Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension‐reduction method is comparable to that of the fourth‐order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter. Copyright © 2004 John Wiley & Sons, Ltd.
AbstractList A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N‐dimensional response function into at most S‐dimensional functions, where S≪N; an approximation of response moments by moments of input random variables; and a moment‐based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid‐mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension‐reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as first‐ and second‐order Taylor expansion methods, statistically equivalent solutions, quasi‐Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension‐reduction method is comparable to that of the fourth‐order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter. Copyright © 2004 John Wiley & Sons, Ltd.
A new, generalized, multivariate dimension-reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N-dimensional response function into at most S-dimensional functions, where SN; an approximation of response moments by moments of input random variables; and a moment-based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid-mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension-reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as first- and second-order Taylor expansion methods, statistically equivalent solutions, quasi-Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension-reduction method is comparable to that of the fourth-order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter.
Author Xu, H.
Rahman, S.
Author_xml – sequence: 1
  givenname: H.
  surname: Xu
  fullname: Xu, H.
  organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A
– sequence: 2
  givenname: S.
  surname: Rahman
  fullname: Rahman, S.
  email: rahman@engineering.uiowa.edu
  organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A
BookMark eNpFkE1PAjEQhhuDiYgm_oQ9eVvsx3a3PRKCYET0QOKxKe0sVHe7uC1R_PUuYvD0vpl5Zg7PJer5xgNCNwQPCcb0ztcwJITxM9QnWBYpprjooX63kimXglygyxDeMCaEY9ZHepSswUOrK_cNNrGuBh9c49MW7M7EriU1xE1jk7Jpk3pXRXdidJU4H2Hd6l_O-STExmx0iM50V13zzoQrdF7qKsD1Xw7Q8n6yHM_S-fP0YTyap45RwVNBjYR8pXHGKLeZhJXFJRgroDSUMJJlmsuSUCPKIqNU5t3EcmlyoelKSDZAt8e327b52EGIqnbBQFVpD80uKCppIbIs78D0CH66CvZq27pat3tFsDr4U50_dfCnFk-TQ_7zLkT4OvG6fVd5wQquXhdT9YJnY8ryR0XZD9Tdd2o
ContentType Journal Article
Copyright Copyright © 2004 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2004 John Wiley & Sons, Ltd.
DBID BSCLL
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.1135
DatabaseName Istex
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 2019
ExternalDocumentID NME1135
ark_67375_WNG_P0HC236K_2
Genre article
GrantInformation_xml – fundername: U.S. National Science Foundation
  funderid: CMS‐9733058; CMS‐9900196; DMI‐0355487
– fundername: U.S. Army sponsored Automotive Research Centre
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWS
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-i3285-82c9e6ba04325d49ebd0fecd8efc213144a59f12c8f742296144d59c68a2b893
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Fri Jul 11 16:27:01 EDT 2025
Wed Aug 20 07:24:08 EDT 2025
Wed Oct 30 09:48:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3285-82c9e6ba04325d49ebd0fecd8efc213144a59f12c8f742296144d59c68a2b893
Notes istex:282104A3489051F8DDBB3845A71CD03E092BCA50
ark:/67375/WNG-P0HC236K-2
U.S. National Science Foundation - No. CMS-9733058; No. CMS-9900196; No. DMI-0355487
ArticleID:NME1135
U.S. Army sponsored Automotive Research Centre
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29278446
PQPubID 23500
PageCount 28
ParticipantIDs proquest_miscellaneous_29278446
wiley_primary_10_1002_nme_1135_NME1135
istex_primary_ark_67375_WNG_P0HC236K_2
PublicationCentury 2000
PublicationDate 28 November 2004
PublicationDateYYYYMMDD 2004-11-28
PublicationDate_xml – month: 11
  year: 2004
  text: 28 November 2004
  day: 28
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2004
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Davenport WB, Root WL. An Introduction to the Theory of Random Signals and Noise. McGraw-Hill: New York, 1958.
Madsen HO, Krenk S, Lind NC. Methods of Structural Safety. Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1986.
Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 2004, in press.
Spanos PD, Ghanem RG. Stochastic finite element expansion for random media. Journal of Engineering Mechanics (ASCE) 1989; 115:1035-1053.
Adomian G. Applied Stochastic Processes. Academic Press: New York, NY, 1980.
Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability. Structural Safety 1993; 12:255-276.
Genz AC, Monahan J. A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight. Journal of Computational and Applied Mathematics 1999; 112:71-81.
Rosenblueth E. Two-point estimates in probabilities. Applied Mathematical Modelling 1981; 5:329-335.
IASSAR Subcommittee on Computational stochastic Structural Mechanics. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics 1997; 12(4):197-321.
Grigoriu M. Statistically equivalent solutions of stochastic mechanics problems. Journal of Engineering Mechanics (ASCE) 1991; 117:1906-1918.
Grigoriu M. Stochastic Calculus-Applications in Science and Engineering. Birkhäuser, Springer: New York, NY, 2002.
Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics (ASCE) 1988; 114:1285-1302.
McKay MD, Conover WJ, Beckman RJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979; 21:239-245.
Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall: London, 1996.
Yamazaki F, Shinozuka M. Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics (ASCE) 1988; 114:1335-1354.
Adomian G. Stochastic Systems. Academic Press: New York, NY, 1980.
Melchers RE. Importance sampling in structural systems. Structural Safety 1989; 6:3-10.
Liu WK, Belytschko T, Mani A. Random field finite elements. International Journal for Numerical Methods in Engineering 1986; 23:1831-1845.
Shinozuka M, Astill J. Random eigenvalue problems in structural mechanics. AIAA Journal 1972; 10:456-462.
Abramowitz M, Stegun IA. Handbook of Mathematical Functions (9th edn). Dover Publications, Inc.: New York, NY, 1972.
Nie J, Ellingwood BR. Directional methods for structural reliability analysis. Structural Safety 2000; 22:233-249.
Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. Springer: New York, NY, 1991.
Adomian G, Malakian K. Inversion of stochastic partial differential operators-the linear case. Journal of Mathematical Analysis and Applications 1980; 77:505-512.
Nelson BL. Decomposition of some well-known variance reduction techniques. Journal of Statistical Computation and Simulation 1986; 23:183-209.
Genz AC, Malik AA. An imbedded family of fully symmetric numerical integration rules. SIAM Journal on Numerical Analysis 1983; 20:580-588.
Kleiber M, Hien TD. The Stochastic Finite Element Method. Wiley: New York, NY, 1992.
Rahman S, Xu H. A meshless method for computational stochastic mechanics. International Journal of Computational Engineering Science, 2004, in press.
Genz AC, Keister BD. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics 1996; 71:299-309.
Rahman S, Rao BN. A perturbation method for stochastic meshless analysis in elastostatics. International Journal for Numerical Methods in Engineering 2001; 50:1969-1991.
Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics 1952; 23:470-472.
Niederreiter H, Spanier J. Monte Carlo and Quasi-Monte Carlo Methods. Springer: Berlin, 2000.
Rubinstein RY. Simulation and the Monte Carlo Method. Wiley: New York, 1981.
Stein M. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987; 29:143-150.
Entacher K. Quasi-Monte Carlo methods for numerical integration of multivariate Haar Series. BIT 1997; 4(37):845-860.
Sobol IM. On Quasi-Monte Carlo integrations. Mathematics and Computers in Simulation 1998; 47:103-112.
2001; 50
1989; 115
1989; 6
2000; 22
1981; 5
1996; 71
1996
1972
2004
1992
2002
1991
1991; 117
1997; 4
1958
1998; 47
1952; 23
1993; 12
2000
1986; 23
1980; 77
1997; 12
1983; 20
1988; 114
1986
1972; 10
1981
1999; 112
1980
1979; 21
1987; 29
References_xml – reference: Adomian G, Malakian K. Inversion of stochastic partial differential operators-the linear case. Journal of Mathematical Analysis and Applications 1980; 77:505-512.
– reference: Rahman S, Rao BN. A perturbation method for stochastic meshless analysis in elastostatics. International Journal for Numerical Methods in Engineering 2001; 50:1969-1991.
– reference: Rahman S, Xu H. A meshless method for computational stochastic mechanics. International Journal of Computational Engineering Science, 2004, in press.
– reference: Genz AC, Malik AA. An imbedded family of fully symmetric numerical integration rules. SIAM Journal on Numerical Analysis 1983; 20:580-588.
– reference: Adomian G. Stochastic Systems. Academic Press: New York, NY, 1980.
– reference: Spanos PD, Ghanem RG. Stochastic finite element expansion for random media. Journal of Engineering Mechanics (ASCE) 1989; 115:1035-1053.
– reference: Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 2004, in press.
– reference: Melchers RE. Importance sampling in structural systems. Structural Safety 1989; 6:3-10.
– reference: Grigoriu M. Stochastic Calculus-Applications in Science and Engineering. Birkhäuser, Springer: New York, NY, 2002.
– reference: Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics 1952; 23:470-472.
– reference: Niederreiter H, Spanier J. Monte Carlo and Quasi-Monte Carlo Methods. Springer: Berlin, 2000.
– reference: Nie J, Ellingwood BR. Directional methods for structural reliability analysis. Structural Safety 2000; 22:233-249.
– reference: Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. Springer: New York, NY, 1991.
– reference: Stein M. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987; 29:143-150.
– reference: Grigoriu M. Statistically equivalent solutions of stochastic mechanics problems. Journal of Engineering Mechanics (ASCE) 1991; 117:1906-1918.
– reference: Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall: London, 1996.
– reference: Shinozuka M, Astill J. Random eigenvalue problems in structural mechanics. AIAA Journal 1972; 10:456-462.
– reference: Abramowitz M, Stegun IA. Handbook of Mathematical Functions (9th edn). Dover Publications, Inc.: New York, NY, 1972.
– reference: Liu WK, Belytschko T, Mani A. Random field finite elements. International Journal for Numerical Methods in Engineering 1986; 23:1831-1845.
– reference: Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics (ASCE) 1988; 114:1285-1302.
– reference: Genz AC, Keister BD. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics 1996; 71:299-309.
– reference: McKay MD, Conover WJ, Beckman RJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979; 21:239-245.
– reference: Nelson BL. Decomposition of some well-known variance reduction techniques. Journal of Statistical Computation and Simulation 1986; 23:183-209.
– reference: Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability. Structural Safety 1993; 12:255-276.
– reference: Genz AC, Monahan J. A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight. Journal of Computational and Applied Mathematics 1999; 112:71-81.
– reference: Yamazaki F, Shinozuka M. Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics (ASCE) 1988; 114:1335-1354.
– reference: Rosenblueth E. Two-point estimates in probabilities. Applied Mathematical Modelling 1981; 5:329-335.
– reference: Adomian G. Applied Stochastic Processes. Academic Press: New York, NY, 1980.
– reference: Davenport WB, Root WL. An Introduction to the Theory of Random Signals and Noise. McGraw-Hill: New York, 1958.
– reference: Rubinstein RY. Simulation and the Monte Carlo Method. Wiley: New York, 1981.
– reference: Sobol IM. On Quasi-Monte Carlo integrations. Mathematics and Computers in Simulation 1998; 47:103-112.
– reference: Madsen HO, Krenk S, Lind NC. Methods of Structural Safety. Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1986.
– reference: Kleiber M, Hien TD. The Stochastic Finite Element Method. Wiley: New York, NY, 1992.
– reference: Entacher K. Quasi-Monte Carlo methods for numerical integration of multivariate Haar Series. BIT 1997; 4(37):845-860.
– reference: IASSAR Subcommittee on Computational stochastic Structural Mechanics. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics 1997; 12(4):197-321.
– volume: 23
  start-page: 1831
  year: 1986
  end-page: 1845
  article-title: Random field finite elements
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 77
  start-page: 505
  year: 1980
  end-page: 512
  article-title: Inversion of stochastic partial differential operators—the linear case
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 4
  start-page: 845
  issue: 37
  year: 1997
  end-page: 860
  article-title: Quasi‐Monte Carlo methods for numerical integration of multivariate Haar Series
  publication-title: BIT
– year: 1958
– year: 2004
  article-title: A univariate dimension‐reduction method for multi‐dimensional integration in stochastic mechanics
  publication-title: Probabilistic Engineering Mechanics
– year: 1981
– volume: 12
  start-page: 255
  year: 1993
  end-page: 276
  article-title: A benchmark study on importance sampling techniques in structural reliability
  publication-title: Structural Safety
– volume: 47
  start-page: 103
  year: 1998
  end-page: 112
  article-title: On Quasi‐Monte Carlo integrations
  publication-title: Mathematics and Computers in Simulation
– volume: 23
  start-page: 470
  year: 1952
  end-page: 472
  article-title: Remarks on a multivariate transformation
  publication-title: Annals of Mathematical Statistics
– volume: 5
  start-page: 329
  year: 1981
  end-page: 335
  article-title: Two‐point estimates in probabilities
  publication-title: Applied Mathematical Modelling
– year: 2000
– year: 1996
– volume: 114
  start-page: 1335
  year: 1988
  end-page: 1354
  article-title: Neumann expansion for stochastic finite element analysis
  publication-title: Journal of Engineering Mechanics
– volume: 10
  start-page: 456
  year: 1972
  end-page: 462
  article-title: Random eigenvalue problems in structural mechanics
  publication-title: AIAA Journal
– volume: 112
  start-page: 71
  year: 1999
  end-page: 81
  article-title: A stochastic algorithm for high‐dimensional integrals over unbounded regions with Gaussian weight
  publication-title: Journal of Computational and Applied Mathematics
– year: 1992
– volume: 50
  start-page: 1969
  year: 2001
  end-page: 1991
  article-title: A perturbation method for stochastic meshless analysis in elastostatics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 6
  start-page: 3
  year: 1989
  end-page: 10
  article-title: Importance sampling in structural systems
  publication-title: Structural Safety
– year: 1986
– year: 2004
  article-title: A meshless method for computational stochastic mechanics
  publication-title: International Journal of Computational Engineering Science
– year: 1980
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– year: 2002
– year: 1972
– volume: 20
  start-page: 580
  year: 1983
  end-page: 588
  article-title: An imbedded family of fully symmetric numerical integration rules
  publication-title: SIAM Journal on Numerical Analysis
– volume: 29
  start-page: 143
  year: 1987
  end-page: 150
  article-title: Large sample properties of simulations using latin hypercube sampling
  publication-title: Technometrics
– volume: 22
  start-page: 233
  year: 2000
  end-page: 249
  article-title: Directional methods for structural reliability analysis
  publication-title: Structural Safety
– year: 1991
– volume: 115
  start-page: 1035
  year: 1989
  end-page: 1053
  article-title: Stochastic finite element expansion for random media
  publication-title: Journal of Engineering Mechanics
– volume: 117
  start-page: 1906
  year: 1991
  end-page: 1918
  article-title: Statistically equivalent solutions of stochastic mechanics problems
  publication-title: Journal of Engineering Mechanics
– volume: 23
  start-page: 183
  year: 1986
  end-page: 209
  article-title: Decomposition of some well‐known variance reduction techniques
  publication-title: Journal of Statistical Computation and Simulation
– volume: 12
  start-page: 197
  issue: 4
  year: 1997
  end-page: 321
  article-title: A state‐of‐the‐art report on computational stochastic mechanics
  publication-title: Probabilistic Engineering Mechanics
– volume: 71
  start-page: 299
  year: 1996
  end-page: 309
  article-title: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight
  publication-title: Journal of Computational and Applied Mathematics
– volume: 114
  start-page: 1285
  year: 1988
  end-page: 1302
  article-title: Probability integration by directional simulation
  publication-title: Journal of Engineering Mechanics
SSID ssj0011503
Score 2.347345
Snippet A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to...
A new, generalized, multivariate dimension-reduction method is presented for calculating statistical moments of the response of mechanical systems subject to...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1992
SubjectTerms dimension reduction
moment-based quadrature
multidimensional integration
statistical moments
stochastic finite element and meshless methods
stochastic mechanics
Title A generalized dimension-reduction method for multidimensional integration in stochastic mechanics
URI https://api.istex.fr/ark:/67375/WNG-P0HC236K-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1135
https://www.proquest.com/docview/29278446
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG3Ekx5couLuHMTbJJme9KT7GEJiUBJEIgY8NL1FQ3AiWUBy8hP8Rr_EqtmInsTTMNAbU11Tr7qrXhFyCUappq2t-lzpyAd7i8nKLPQVOtoadoBNgse7vajzULsZsEEWVYm5MCk_RHHghpqR_K9RwZWeVVZIQ18dFiTB_HIM1UI8dF8wRyHOCfPoDiZ4kPPOVmkl7whwFL_k-w9suYpQExPT3iZP-eLSyJJxeTHXZbP8xdv4v9XvkK0MeXqNdKvskjUXl8h2hkK9TMdnJbK5QlEIb92C13W2R0zDe055qkdL6GSxNAAet319fE6RAxal7KVFqT1Aw14Srli0gtlzdgpsN4o9QJ7mRSFVNPTCHGSYZZ_0261-s-NnZRr8UUg5A9ka4SKtkNyP2Zpw2laHzljuhoYGIXhsiolhQA0fgh9OBbqglgkTcUU1wKUDsh5PYndIPGFN3SnuKDhtMI5RToWOa7CYwlkVsCNylUhMvqVMHFJNxxiYVmfysXct76qdJg2jW0mPyEUuUgnqgncgKnaTxUxSgTettQiGSsRTDJXSN1MJgpEoGNnrtvB5_NeGJ2QjJYEMfMpPyfp8unBnAFjm-jzZmt9Vrenq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb_FtD-Ktuk03NcGTiLo-dhFZ0YMQ8lpdxCr7APHkT_A3-kucabdl9SSeSiGThE6m800y-QZgG51S1ThXCYU2SYj-li4r8zjUFGgbXAEuSx6vN5LaTfX8jt-NwEFxFybnhyg33Mgysv81GThtSO8NsYY-e6pIwkdhnAp6Z_HUdckdRUgnLvI7uBRRwTxbYXuFJAJS-pZvP9DlMEbNnMzJDNwX08tzS552-z2za99_MTf-c_6zMD0An8FhvlrmYMSn8zAzAKLBwMy78zA1xFKIb_WS2rW7APYweMipqtvvKOSoOgDtuH19fHaIBpYUHeR1qQMExEGWsVi2wtELggpq104DBJ_2URNbNErRNWQcZRGaJ8fNo1o4qNQQtmMmOKrXSp8YTfx-3FWlN67S8tYJ37IsijFo01y2ImZFC0NxJikKdVzaRGhmEDEtwVj6kvplCKSz-14LzzBuw36s9jr2wqDTlN7piK_ATqYy9ZqTcSjdeaLctH2ubhun6qpSO2JxcqHYCmwVOlVoMXQMolP_0u8qJumwtZpgV5l-yq5yBmemUDGKFKMa9WN6rv614RZM1Jr1S3V51rhYg8mcEzIKmViHsV6n7zcQv_TMZrZOvwHmu-4F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTtxAEC2xSBE5hF0hJOADys1gt92m-4iAYVhmhBBRkDi0ejMZoRg0ixRxyifwjfmSVHnTwAlxsiz1JleV61V39SuAHXRKqXEuCoU2WYj-li4r8yTUFGgb1ABXJo_3-ln3R3p2w2_qrEq6C1PxQ7QbbmQZ5f-aDPzR5XtTpKG_PRUk4bMwn2aRII0-umqpowjoJE16B5cibohnI7bX9EQ8Sp_yzwtwOQ1RSx_TWYTbZnVVasn97mRsdu3TK-LG9y1_CT7V0DM4qHRlGWZ8sQKLNQwNaiMfrcDHKY5CfOu1xK6jVbAHwV1FVD14wk6OagPQftu_v89DIoElMQdVVeoA4XBQ5iu2rXD2hp6C2g2KAKGn_aWJKxp70SVknGUNrjvH14fdsK7TEA4SJjgK10qfGU3sftyl0hsX5d464XPL4gRDNs1lHjMrcgzEmaQY1HFpM6GZQby0DnPFQ-E_QyCd3fdaeIZRG45jtdeJFwZdpvROx3wDvpcSU48VFYfSw3vKTNvn6mf_RF1G3UOWZOeKbcB2I1KF9kKHILrwD5ORYpKOWtMMhyrF0w5V8TczhYJRJBjV7x3T88tbG27Dh8ujjro47Z9vwkJFCBmHTHyFufFw4r8heBmbrVJL_wNTSOy9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+dimension-reduction+method+for+multidimensional+integration+in+stochastic+mechanics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Xu%2C+H&rft.au=Rahman%2C+S&rft.date=2004-11-28&rft.issn=0029-5981&rft.volume=61&rft.issue=12&rft.spage=1992&rft.epage=2019&rft_id=info:doi/10.1002%2Fnme.1135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon