A generalized dimension-reduction method for multidimensional integration in stochastic mechanics
A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N‐dimensional response function...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 61; no. 12; pp. 1992 - 2019 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
28.11.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-5981 1097-0207 |
DOI | 10.1002/nme.1135 |
Cover
Loading…
Abstract | A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N‐dimensional response function into at most S‐dimensional functions, where S≪N; an approximation of response moments by moments of input random variables; and a moment‐based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid‐mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension‐reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as first‐ and second‐order Taylor expansion methods, statistically equivalent solutions, quasi‐Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension‐reduction method is comparable to that of the fourth‐order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter. Copyright © 2004 John Wiley & Sons, Ltd. |
---|---|
AbstractList | A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N‐dimensional response function into at most S‐dimensional functions, where S≪N; an approximation of response moments by moments of input random variables; and a moment‐based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid‐mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension‐reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as first‐ and second‐order Taylor expansion methods, statistically equivalent solutions, quasi‐Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension‐reduction method is comparable to that of the fourth‐order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter. Copyright © 2004 John Wiley & Sons, Ltd. A new, generalized, multivariate dimension-reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N-dimensional response function into at most S-dimensional functions, where SN; an approximation of response moments by moments of input random variables; and a moment-based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid-mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension-reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as first- and second-order Taylor expansion methods, statistically equivalent solutions, quasi-Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension-reduction method is comparable to that of the fourth-order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter. |
Author | Xu, H. Rahman, S. |
Author_xml | – sequence: 1 givenname: H. surname: Xu fullname: Xu, H. organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A – sequence: 2 givenname: S. surname: Rahman fullname: Rahman, S. email: rahman@engineering.uiowa.edu organization: Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A |
BookMark | eNpFkE1PAjEQhhuDiYgm_oQ9eVvsx3a3PRKCYET0QOKxKe0sVHe7uC1R_PUuYvD0vpl5Zg7PJer5xgNCNwQPCcb0ztcwJITxM9QnWBYpprjooX63kimXglygyxDeMCaEY9ZHepSswUOrK_cNNrGuBh9c49MW7M7EriU1xE1jk7Jpk3pXRXdidJU4H2Hd6l_O-STExmx0iM50V13zzoQrdF7qKsD1Xw7Q8n6yHM_S-fP0YTyap45RwVNBjYR8pXHGKLeZhJXFJRgroDSUMJJlmsuSUCPKIqNU5t3EcmlyoelKSDZAt8e327b52EGIqnbBQFVpD80uKCppIbIs78D0CH66CvZq27pat3tFsDr4U50_dfCnFk-TQ_7zLkT4OvG6fVd5wQquXhdT9YJnY8ryR0XZD9Tdd2o |
ContentType | Journal Article |
Copyright | Copyright © 2004 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2004 John Wiley & Sons, Ltd. |
DBID | BSCLL 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.1135 |
DatabaseName | Istex Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 2019 |
ExternalDocumentID | NME1135 ark_67375_WNG_P0HC236K_2 |
Genre | article |
GrantInformation_xml | – fundername: U.S. National Science Foundation funderid: CMS‐9733058; CMS‐9900196; DMI‐0355487 – fundername: U.S. Army sponsored Automotive Research Centre |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWS RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-i3285-82c9e6ba04325d49ebd0fecd8efc213144a59f12c8f742296144d59c68a2b893 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri Jul 11 16:27:01 EDT 2025 Wed Aug 20 07:24:08 EDT 2025 Wed Oct 30 09:48:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3285-82c9e6ba04325d49ebd0fecd8efc213144a59f12c8f742296144d59c68a2b893 |
Notes | istex:282104A3489051F8DDBB3845A71CD03E092BCA50 ark:/67375/WNG-P0HC236K-2 U.S. National Science Foundation - No. CMS-9733058; No. CMS-9900196; No. DMI-0355487 ArticleID:NME1135 U.S. Army sponsored Automotive Research Centre ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29278446 |
PQPubID | 23500 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_29278446 wiley_primary_10_1002_nme_1135_NME1135 istex_primary_ark_67375_WNG_P0HC236K_2 |
PublicationCentury | 2000 |
PublicationDate | 28 November 2004 |
PublicationDateYYYYMMDD | 2004-11-28 |
PublicationDate_xml | – month: 11 year: 2004 text: 28 November 2004 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | International journal for numerical methods in engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
PublicationYear | 2004 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Davenport WB, Root WL. An Introduction to the Theory of Random Signals and Noise. McGraw-Hill: New York, 1958. Madsen HO, Krenk S, Lind NC. Methods of Structural Safety. Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1986. Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 2004, in press. Spanos PD, Ghanem RG. Stochastic finite element expansion for random media. Journal of Engineering Mechanics (ASCE) 1989; 115:1035-1053. Adomian G. Applied Stochastic Processes. Academic Press: New York, NY, 1980. Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability. Structural Safety 1993; 12:255-276. Genz AC, Monahan J. A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight. Journal of Computational and Applied Mathematics 1999; 112:71-81. Rosenblueth E. Two-point estimates in probabilities. Applied Mathematical Modelling 1981; 5:329-335. IASSAR Subcommittee on Computational stochastic Structural Mechanics. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics 1997; 12(4):197-321. Grigoriu M. Statistically equivalent solutions of stochastic mechanics problems. Journal of Engineering Mechanics (ASCE) 1991; 117:1906-1918. Grigoriu M. Stochastic Calculus-Applications in Science and Engineering. Birkhäuser, Springer: New York, NY, 2002. Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics (ASCE) 1988; 114:1285-1302. McKay MD, Conover WJ, Beckman RJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979; 21:239-245. Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall: London, 1996. Yamazaki F, Shinozuka M. Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics (ASCE) 1988; 114:1335-1354. Adomian G. Stochastic Systems. Academic Press: New York, NY, 1980. Melchers RE. Importance sampling in structural systems. Structural Safety 1989; 6:3-10. Liu WK, Belytschko T, Mani A. Random field finite elements. International Journal for Numerical Methods in Engineering 1986; 23:1831-1845. Shinozuka M, Astill J. Random eigenvalue problems in structural mechanics. AIAA Journal 1972; 10:456-462. Abramowitz M, Stegun IA. Handbook of Mathematical Functions (9th edn). Dover Publications, Inc.: New York, NY, 1972. Nie J, Ellingwood BR. Directional methods for structural reliability analysis. Structural Safety 2000; 22:233-249. Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. Springer: New York, NY, 1991. Adomian G, Malakian K. Inversion of stochastic partial differential operators-the linear case. Journal of Mathematical Analysis and Applications 1980; 77:505-512. Nelson BL. Decomposition of some well-known variance reduction techniques. Journal of Statistical Computation and Simulation 1986; 23:183-209. Genz AC, Malik AA. An imbedded family of fully symmetric numerical integration rules. SIAM Journal on Numerical Analysis 1983; 20:580-588. Kleiber M, Hien TD. The Stochastic Finite Element Method. Wiley: New York, NY, 1992. Rahman S, Xu H. A meshless method for computational stochastic mechanics. International Journal of Computational Engineering Science, 2004, in press. Genz AC, Keister BD. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics 1996; 71:299-309. Rahman S, Rao BN. A perturbation method for stochastic meshless analysis in elastostatics. International Journal for Numerical Methods in Engineering 2001; 50:1969-1991. Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics 1952; 23:470-472. Niederreiter H, Spanier J. Monte Carlo and Quasi-Monte Carlo Methods. Springer: Berlin, 2000. Rubinstein RY. Simulation and the Monte Carlo Method. Wiley: New York, 1981. Stein M. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987; 29:143-150. Entacher K. Quasi-Monte Carlo methods for numerical integration of multivariate Haar Series. BIT 1997; 4(37):845-860. Sobol IM. On Quasi-Monte Carlo integrations. Mathematics and Computers in Simulation 1998; 47:103-112. 2001; 50 1989; 115 1989; 6 2000; 22 1981; 5 1996; 71 1996 1972 2004 1992 2002 1991 1991; 117 1997; 4 1958 1998; 47 1952; 23 1993; 12 2000 1986; 23 1980; 77 1997; 12 1983; 20 1988; 114 1986 1972; 10 1981 1999; 112 1980 1979; 21 1987; 29 |
References_xml | – reference: Adomian G, Malakian K. Inversion of stochastic partial differential operators-the linear case. Journal of Mathematical Analysis and Applications 1980; 77:505-512. – reference: Rahman S, Rao BN. A perturbation method for stochastic meshless analysis in elastostatics. International Journal for Numerical Methods in Engineering 2001; 50:1969-1991. – reference: Rahman S, Xu H. A meshless method for computational stochastic mechanics. International Journal of Computational Engineering Science, 2004, in press. – reference: Genz AC, Malik AA. An imbedded family of fully symmetric numerical integration rules. SIAM Journal on Numerical Analysis 1983; 20:580-588. – reference: Adomian G. Stochastic Systems. Academic Press: New York, NY, 1980. – reference: Spanos PD, Ghanem RG. Stochastic finite element expansion for random media. Journal of Engineering Mechanics (ASCE) 1989; 115:1035-1053. – reference: Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 2004, in press. – reference: Melchers RE. Importance sampling in structural systems. Structural Safety 1989; 6:3-10. – reference: Grigoriu M. Stochastic Calculus-Applications in Science and Engineering. Birkhäuser, Springer: New York, NY, 2002. – reference: Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics 1952; 23:470-472. – reference: Niederreiter H, Spanier J. Monte Carlo and Quasi-Monte Carlo Methods. Springer: Berlin, 2000. – reference: Nie J, Ellingwood BR. Directional methods for structural reliability analysis. Structural Safety 2000; 22:233-249. – reference: Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. Springer: New York, NY, 1991. – reference: Stein M. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987; 29:143-150. – reference: Grigoriu M. Statistically equivalent solutions of stochastic mechanics problems. Journal of Engineering Mechanics (ASCE) 1991; 117:1906-1918. – reference: Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall: London, 1996. – reference: Shinozuka M, Astill J. Random eigenvalue problems in structural mechanics. AIAA Journal 1972; 10:456-462. – reference: Abramowitz M, Stegun IA. Handbook of Mathematical Functions (9th edn). Dover Publications, Inc.: New York, NY, 1972. – reference: Liu WK, Belytschko T, Mani A. Random field finite elements. International Journal for Numerical Methods in Engineering 1986; 23:1831-1845. – reference: Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics (ASCE) 1988; 114:1285-1302. – reference: Genz AC, Keister BD. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics 1996; 71:299-309. – reference: McKay MD, Conover WJ, Beckman RJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979; 21:239-245. – reference: Nelson BL. Decomposition of some well-known variance reduction techniques. Journal of Statistical Computation and Simulation 1986; 23:183-209. – reference: Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability. Structural Safety 1993; 12:255-276. – reference: Genz AC, Monahan J. A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight. Journal of Computational and Applied Mathematics 1999; 112:71-81. – reference: Yamazaki F, Shinozuka M. Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics (ASCE) 1988; 114:1335-1354. – reference: Rosenblueth E. Two-point estimates in probabilities. Applied Mathematical Modelling 1981; 5:329-335. – reference: Adomian G. Applied Stochastic Processes. Academic Press: New York, NY, 1980. – reference: Davenport WB, Root WL. An Introduction to the Theory of Random Signals and Noise. McGraw-Hill: New York, 1958. – reference: Rubinstein RY. Simulation and the Monte Carlo Method. Wiley: New York, 1981. – reference: Sobol IM. On Quasi-Monte Carlo integrations. Mathematics and Computers in Simulation 1998; 47:103-112. – reference: Madsen HO, Krenk S, Lind NC. Methods of Structural Safety. Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1986. – reference: Kleiber M, Hien TD. The Stochastic Finite Element Method. Wiley: New York, NY, 1992. – reference: Entacher K. Quasi-Monte Carlo methods for numerical integration of multivariate Haar Series. BIT 1997; 4(37):845-860. – reference: IASSAR Subcommittee on Computational stochastic Structural Mechanics. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics 1997; 12(4):197-321. – volume: 23 start-page: 1831 year: 1986 end-page: 1845 article-title: Random field finite elements publication-title: International Journal for Numerical Methods in Engineering – volume: 77 start-page: 505 year: 1980 end-page: 512 article-title: Inversion of stochastic partial differential operators—the linear case publication-title: Journal of Mathematical Analysis and Applications – volume: 4 start-page: 845 issue: 37 year: 1997 end-page: 860 article-title: Quasi‐Monte Carlo methods for numerical integration of multivariate Haar Series publication-title: BIT – year: 1958 – year: 2004 article-title: A univariate dimension‐reduction method for multi‐dimensional integration in stochastic mechanics publication-title: Probabilistic Engineering Mechanics – year: 1981 – volume: 12 start-page: 255 year: 1993 end-page: 276 article-title: A benchmark study on importance sampling techniques in structural reliability publication-title: Structural Safety – volume: 47 start-page: 103 year: 1998 end-page: 112 article-title: On Quasi‐Monte Carlo integrations publication-title: Mathematics and Computers in Simulation – volume: 23 start-page: 470 year: 1952 end-page: 472 article-title: Remarks on a multivariate transformation publication-title: Annals of Mathematical Statistics – volume: 5 start-page: 329 year: 1981 end-page: 335 article-title: Two‐point estimates in probabilities publication-title: Applied Mathematical Modelling – year: 2000 – year: 1996 – volume: 114 start-page: 1335 year: 1988 end-page: 1354 article-title: Neumann expansion for stochastic finite element analysis publication-title: Journal of Engineering Mechanics – volume: 10 start-page: 456 year: 1972 end-page: 462 article-title: Random eigenvalue problems in structural mechanics publication-title: AIAA Journal – volume: 112 start-page: 71 year: 1999 end-page: 81 article-title: A stochastic algorithm for high‐dimensional integrals over unbounded regions with Gaussian weight publication-title: Journal of Computational and Applied Mathematics – year: 1992 – volume: 50 start-page: 1969 year: 2001 end-page: 1991 article-title: A perturbation method for stochastic meshless analysis in elastostatics publication-title: International Journal for Numerical Methods in Engineering – volume: 6 start-page: 3 year: 1989 end-page: 10 article-title: Importance sampling in structural systems publication-title: Structural Safety – year: 1986 – year: 2004 article-title: A meshless method for computational stochastic mechanics publication-title: International Journal of Computational Engineering Science – year: 1980 – volume: 21 start-page: 239 year: 1979 end-page: 245 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – year: 2002 – year: 1972 – volume: 20 start-page: 580 year: 1983 end-page: 588 article-title: An imbedded family of fully symmetric numerical integration rules publication-title: SIAM Journal on Numerical Analysis – volume: 29 start-page: 143 year: 1987 end-page: 150 article-title: Large sample properties of simulations using latin hypercube sampling publication-title: Technometrics – volume: 22 start-page: 233 year: 2000 end-page: 249 article-title: Directional methods for structural reliability analysis publication-title: Structural Safety – year: 1991 – volume: 115 start-page: 1035 year: 1989 end-page: 1053 article-title: Stochastic finite element expansion for random media publication-title: Journal of Engineering Mechanics – volume: 117 start-page: 1906 year: 1991 end-page: 1918 article-title: Statistically equivalent solutions of stochastic mechanics problems publication-title: Journal of Engineering Mechanics – volume: 23 start-page: 183 year: 1986 end-page: 209 article-title: Decomposition of some well‐known variance reduction techniques publication-title: Journal of Statistical Computation and Simulation – volume: 12 start-page: 197 issue: 4 year: 1997 end-page: 321 article-title: A state‐of‐the‐art report on computational stochastic mechanics publication-title: Probabilistic Engineering Mechanics – volume: 71 start-page: 299 year: 1996 end-page: 309 article-title: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight publication-title: Journal of Computational and Applied Mathematics – volume: 114 start-page: 1285 year: 1988 end-page: 1302 article-title: Probability integration by directional simulation publication-title: Journal of Engineering Mechanics |
SSID | ssj0011503 |
Score | 2.347345 |
Snippet | A new, generalized, multivariate dimension‐reduction method is presented for calculating statistical moments of the response of mechanical systems subject to... A new, generalized, multivariate dimension-reduction method is presented for calculating statistical moments of the response of mechanical systems subject to... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1992 |
SubjectTerms | dimension reduction moment-based quadrature multidimensional integration statistical moments stochastic finite element and meshless methods stochastic mechanics |
Title | A generalized dimension-reduction method for multidimensional integration in stochastic mechanics |
URI | https://api.istex.fr/ark:/67375/WNG-P0HC236K-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1135 https://www.proquest.com/docview/29278446 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG3Ekx5couLuHMTbJJme9KT7GEJiUBJEIgY8NL1FQ3AiWUBy8hP8Rr_EqtmInsTTMNAbU11Tr7qrXhFyCUappq2t-lzpyAd7i8nKLPQVOtoadoBNgse7vajzULsZsEEWVYm5MCk_RHHghpqR_K9RwZWeVVZIQ18dFiTB_HIM1UI8dF8wRyHOCfPoDiZ4kPPOVmkl7whwFL_k-w9suYpQExPT3iZP-eLSyJJxeTHXZbP8xdv4v9XvkK0MeXqNdKvskjUXl8h2hkK9TMdnJbK5QlEIb92C13W2R0zDe055qkdL6GSxNAAet319fE6RAxal7KVFqT1Aw14Srli0gtlzdgpsN4o9QJ7mRSFVNPTCHGSYZZ_0261-s-NnZRr8UUg5A9ka4SKtkNyP2Zpw2laHzljuhoYGIXhsiolhQA0fgh9OBbqglgkTcUU1wKUDsh5PYndIPGFN3SnuKDhtMI5RToWOa7CYwlkVsCNylUhMvqVMHFJNxxiYVmfysXct76qdJg2jW0mPyEUuUgnqgncgKnaTxUxSgTettQiGSsRTDJXSN1MJgpEoGNnrtvB5_NeGJ2QjJYEMfMpPyfp8unBnAFjm-jzZmt9Vrenq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb_FtD-Ktuk03NcGTiLo-dhFZ0YMQ8lpdxCr7APHkT_A3-kucabdl9SSeSiGThE6m800y-QZgG51S1ThXCYU2SYj-li4r8zjUFGgbXAEuSx6vN5LaTfX8jt-NwEFxFybnhyg33Mgysv81GThtSO8NsYY-e6pIwkdhnAp6Z_HUdckdRUgnLvI7uBRRwTxbYXuFJAJS-pZvP9DlMEbNnMzJDNwX08tzS552-z2za99_MTf-c_6zMD0An8FhvlrmYMSn8zAzAKLBwMy78zA1xFKIb_WS2rW7APYweMipqtvvKOSoOgDtuH19fHaIBpYUHeR1qQMExEGWsVi2wtELggpq104DBJ_2URNbNErRNWQcZRGaJ8fNo1o4qNQQtmMmOKrXSp8YTfx-3FWlN67S8tYJ37IsijFo01y2ImZFC0NxJikKdVzaRGhmEDEtwVj6kvplCKSz-14LzzBuw36s9jr2wqDTlN7piK_ATqYy9ZqTcSjdeaLctH2ubhun6qpSO2JxcqHYCmwVOlVoMXQMolP_0u8qJumwtZpgV5l-yq5yBmemUDGKFKMa9WN6rv614RZM1Jr1S3V51rhYg8mcEzIKmViHsV6n7zcQv_TMZrZOvwHmu-4F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTtxAEC2xSBE5hF0hJOADys1gt92m-4iAYVhmhBBRkDi0ejMZoRg0ixRxyifwjfmSVHnTwAlxsiz1JleV61V39SuAHXRKqXEuCoU2WYj-li4r8yTUFGgb1ABXJo_3-ln3R3p2w2_qrEq6C1PxQ7QbbmQZ5f-aDPzR5XtTpKG_PRUk4bMwn2aRII0-umqpowjoJE16B5cibohnI7bX9EQ8Sp_yzwtwOQ1RSx_TWYTbZnVVasn97mRsdu3TK-LG9y1_CT7V0DM4qHRlGWZ8sQKLNQwNaiMfrcDHKY5CfOu1xK6jVbAHwV1FVD14wk6OagPQftu_v89DIoElMQdVVeoA4XBQ5iu2rXD2hp6C2g2KAKGn_aWJKxp70SVknGUNrjvH14fdsK7TEA4SJjgK10qfGU3sftyl0hsX5d464XPL4gRDNs1lHjMrcgzEmaQY1HFpM6GZQby0DnPFQ-E_QyCd3fdaeIZRG45jtdeJFwZdpvROx3wDvpcSU48VFYfSw3vKTNvn6mf_RF1G3UOWZOeKbcB2I1KF9kKHILrwD5ORYpKOWtMMhyrF0w5V8TczhYJRJBjV7x3T88tbG27Dh8ujjro47Z9vwkJFCBmHTHyFufFw4r8heBmbrVJL_wNTSOy9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+dimension-reduction+method+for+multidimensional+integration+in+stochastic+mechanics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Xu%2C+H&rft.au=Rahman%2C+S&rft.date=2004-11-28&rft.issn=0029-5981&rft.volume=61&rft.issue=12&rft.spage=1992&rft.epage=2019&rft_id=info:doi/10.1002%2Fnme.1135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |