Shadow-based Hand Gesture Recognition in one Packet
The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally connected environment. Currently, low processing capabilities and high energy costs for communication limit the use of energy-constrained device...
Saved in:
Published in | 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS) pp. 27 - 34 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally connected environment. Currently, low processing capabilities and high energy costs for communication limit the use of energy-constrained devices for this purpose. In this paper, we address this challenge by exploring the new possibilities highly capable deep neural network classifiers present. To reduce the energy consumption for transferring continuously sampled data, we propose to compress the sensed data and perform classification at the edge. We evaluate several compression methods in the context of a shadow-based hand gesture detection application, where the classification is performed using a convolutional neural network. We show that simple data reduction methods allow us to compress the sensed data into a single IEEE 802.15.4 packet while maintaining a classification accuracy of 93%. We further show the generality of our compression methods in an audio-based interaction scenario. |
---|---|
AbstractList | The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally connected environment. Currently, low processing capabilities and high energy costs for communication limit the use of energy-constrained devices for this purpose. In this paper, we address this challenge by exploring the new possibilities highly capable deep neural network classifiers present. To reduce the energy consumption for transferring continuously sampled data, we propose to compress the sensed data and perform classification at the edge. We evaluate several compression methods in the context of a shadow-based hand gesture detection application, where the classification is performed using a convolutional neural network. We show that simple data reduction methods allow us to compress the sensed data into a single IEEE 802.15.4 packet while maintaining a classification accuracy of 93%. We further show the generality of our compression methods in an audio-based interaction scenario. |
Author | Hazra, Saptarshi Brachmann, Martina Voigt, Thiemo |
Author_xml | – sequence: 1 givenname: Saptarshi surname: Hazra fullname: Hazra, Saptarshi organization: RISE Research Institutes of Sweden,Stockholm,Sweden – sequence: 2 givenname: Martina surname: Brachmann fullname: Brachmann, Martina organization: RISE Research Institutes of Sweden,Stockholm,Sweden – sequence: 3 givenname: Thiemo surname: Voigt fullname: Voigt, Thiemo organization: RISE Research Institutes of Sweden,Stockholm,Sweden |
BookMark | eNotzd9KwzAUgPEoCm6zTyBCXqA1J39PLqXqJgw2rF6PtDnVoKbSVsS3V9Cr7-73LdlJHjIxdgmiAhD-6qbeNY32zttKCikqIQTgESu8Q3ASQSsD-pgtpJKmlF7rM1ZMU2qFNKjQerdgqnkJcfgq2zBR5JuQI1_TNH-OxB-oG55zmtOQecr8d833oXul-Zyd9uFtouK_K_Z0d_tYb8rtbn1fX2_LpKSay2C7vuu11YasixY1YCtbJGujiV66VhhN3joSIIOK4LDXEUkoE210SGrFLv7cRESHjzG9h_H74AGVRq9-AL7UR4U |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/DCOSS49796.2020.00018 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728143514 1728143519 |
EISSN | 2325-2944 |
EndPage | 34 |
ExternalDocumentID | 9183489 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i323t-a6cfcf4645e67d68418b2b8e66d5d927b054e967e012a3d178f4d8e035d6d78e3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:26:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i323t-a6cfcf4645e67d68418b2b8e66d5d927b054e967e012a3d178f4d8e035d6d78e3 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-427589 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9183489 |
PublicationCentury | 2000 |
PublicationDate | 2020-May |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-May |
PublicationDecade | 2020 |
PublicationTitle | 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS) |
PublicationTitleAbbrev | DCOSS |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib025838697 ssib042476686 |
Score | 1.773397 |
Snippet | The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 27 |
SubjectTerms | Cloud computing Data Acquisition Deep Learning Gesture recognition IEEE 802.15 Standard Image edge detection Internet of Things (IoT) Machine learning Microsoft Windows Performance evaluation |
Title | Shadow-based Hand Gesture Recognition in one Packet |
URI | https://ieeexplore.ieee.org/document/9183489 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5tT55UWnEnB49OO5NkspyrtQhVsRZ6K1neYBFmpMxQ8NebzHQR8eAthIRsL3xJ3vflIXSTcKWsDBtJKhOxoAFWOrNRCgKc1oxkdTigyRMfz9jjPJ230O1OCwMANfkM-iFZ-_JdYavwVDZQ3v6YVG3UFko1Wq2t7ZDg_uN7jxgjTHAu-Ua0k8RqcDd8nk6ZEiowE0hgdMUh1MePoCo1powO0WTbm4ZK8tGvStO3X78-avxvd49Qb6_ewy87XDpGLci7iE7ftSvWUUAth8c6d_jBA0K1Avy65RAVOV7muMh9de03d9lDs9H923AcbQImREtKaBlpbjObBV8lcOG4ZIk0xEjg3KVOEWH8-QwUF-BRSVOXCJkxJyGmqeNOSKAnqJP7Vk4RNtofJPztKbExMOOL6yR2khjhlGU0k2eoGwa8-Gz-xFhsxnr-d_YFOghT3hAFL1GnXFVw5cG8NNf1Kn4DLeKcSg |
link.rule.ids | 310,311,783,787,792,793,799,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zPuiTyibe7YOPdmvTNJfn6ay6TXEb-DZyOcUhtDJaBH-9SbuLiA--hZCQO99JzvflIHQVUiE0dweJC-UTpwEWMtV-DAyMlASnVTig4YgmU_LwGr820PVaCwMAFfkMOi5Z-fJNrkv3VNYVdv8RLrbQtrWrOavVWqvdg50DkG58YgQTRimnS9lOGIjuTe9pPCaCCcdNwI7TFbhgHz_CqlSo0t9Dw1V_ajLJe6csVEd__fqq8b8d3kftjX7Pe14j0wFqQNZC0fhNmvzTd7hlvERmxruzkFAuwHtZsYjyzJtnXp7Z6tIe76KNpv3bSS_xlyET_HmEo8KXVKc6dd5KoMxQTkKusOJAqYmNwExZCw0EZWBxSUYmZDwlhkMQxYYaxiE6RM3MtnKEPCWtKWHvT6EOgChbXIaB4VgxIzSJUn6MWm7As4_6V4zZcqwnf2dfop1kMhzMBvejx1O066a_pg2eoWaxKOHcQnuhLqoV_QaRap-W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+16th+International+Conference+on+Distributed+Computing+in+Sensor+Systems+%28DCOSS%29&rft.atitle=Shadow-based+Hand+Gesture+Recognition+in+one+Packet&rft.au=Hazra%2C+Saptarshi&rft.au=Brachmann%2C+Martina&rft.au=Voigt%2C+Thiemo&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2325-2944&rft.spage=27&rft.epage=34&rft_id=info:doi/10.1109%2FDCOSS49796.2020.00018&rft.externalDocID=9183489 |