Shadow-based Hand Gesture Recognition in one Packet

The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally connected environment. Currently, low processing capabilities and high energy costs for communication limit the use of energy-constrained device...

Full description

Saved in:
Bibliographic Details
Published in2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS) pp. 27 - 34
Main Authors Hazra, Saptarshi, Brachmann, Martina, Voigt, Thiemo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally connected environment. Currently, low processing capabilities and high energy costs for communication limit the use of energy-constrained devices for this purpose. In this paper, we address this challenge by exploring the new possibilities highly capable deep neural network classifiers present. To reduce the energy consumption for transferring continuously sampled data, we propose to compress the sensed data and perform classification at the edge. We evaluate several compression methods in the context of a shadow-based hand gesture detection application, where the classification is performed using a convolutional neural network. We show that simple data reduction methods allow us to compress the sensed data into a single IEEE 802.15.4 packet while maintaining a classification accuracy of 93%. We further show the generality of our compression methods in an audio-based interaction scenario.
AbstractList The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally connected environment. Currently, low processing capabilities and high energy costs for communication limit the use of energy-constrained devices for this purpose. In this paper, we address this challenge by exploring the new possibilities highly capable deep neural network classifiers present. To reduce the energy consumption for transferring continuously sampled data, we propose to compress the sensed data and perform classification at the edge. We evaluate several compression methods in the context of a shadow-based hand gesture detection application, where the classification is performed using a convolutional neural network. We show that simple data reduction methods allow us to compress the sensed data into a single IEEE 802.15.4 packet while maintaining a classification accuracy of 93%. We further show the generality of our compression methods in an audio-based interaction scenario.
Author Hazra, Saptarshi
Brachmann, Martina
Voigt, Thiemo
Author_xml – sequence: 1
  givenname: Saptarshi
  surname: Hazra
  fullname: Hazra, Saptarshi
  organization: RISE Research Institutes of Sweden,Stockholm,Sweden
– sequence: 2
  givenname: Martina
  surname: Brachmann
  fullname: Brachmann, Martina
  organization: RISE Research Institutes of Sweden,Stockholm,Sweden
– sequence: 3
  givenname: Thiemo
  surname: Voigt
  fullname: Voigt, Thiemo
  organization: RISE Research Institutes of Sweden,Stockholm,Sweden
BookMark eNotzd9KwzAUgPEoCm6zTyBCXqA1J39PLqXqJgw2rF6PtDnVoKbSVsS3V9Cr7-73LdlJHjIxdgmiAhD-6qbeNY32zttKCikqIQTgESu8Q3ASQSsD-pgtpJKmlF7rM1ZMU2qFNKjQerdgqnkJcfgq2zBR5JuQI1_TNH-OxB-oG55zmtOQecr8d833oXul-Zyd9uFtouK_K_Z0d_tYb8rtbn1fX2_LpKSay2C7vuu11YasixY1YCtbJGujiV66VhhN3joSIIOK4LDXEUkoE210SGrFLv7cRESHjzG9h_H74AGVRq9-AL7UR4U
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DCOSS49796.2020.00018
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728143514
1728143519
EISSN 2325-2944
EndPage 34
ExternalDocumentID 9183489
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i323t-a6cfcf4645e67d68418b2b8e66d5d927b054e967e012a3d178f4d8e035d6d78e3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i323t-a6cfcf4645e67d68418b2b8e66d5d927b054e967e012a3d178f4d8e035d6d78e3
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-427589
PageCount 8
ParticipantIDs ieee_primary_9183489
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)
PublicationTitleAbbrev DCOSS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib025838697
ssib042476686
Score 1.773397
Snippet The ubiquity of wirelessly connected sensing devices in IoT applications provides the opportunity to enable various types of interaction with our digitally...
SourceID ieee
SourceType Publisher
StartPage 27
SubjectTerms Cloud computing
Data Acquisition
Deep Learning
Gesture recognition
IEEE 802.15 Standard
Image edge detection
Internet of Things (IoT)
Machine learning
Microsoft Windows
Performance evaluation
Title Shadow-based Hand Gesture Recognition in one Packet
URI https://ieeexplore.ieee.org/document/9183489
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5tT55UWnEnB49OO5NkspyrtQhVsRZ6K1neYBFmpMxQ8NebzHQR8eAthIRsL3xJ3vflIXSTcKWsDBtJKhOxoAFWOrNRCgKc1oxkdTigyRMfz9jjPJ230O1OCwMANfkM-iFZ-_JdYavwVDZQ3v6YVG3UFko1Wq2t7ZDg_uN7jxgjTHAu-Ua0k8RqcDd8nk6ZEiowE0hgdMUh1MePoCo1powO0WTbm4ZK8tGvStO3X78-avxvd49Qb6_ewy87XDpGLci7iE7ftSvWUUAth8c6d_jBA0K1Avy65RAVOV7muMh9de03d9lDs9H923AcbQImREtKaBlpbjObBV8lcOG4ZIk0xEjg3KVOEWH8-QwUF-BRSVOXCJkxJyGmqeNOSKAnqJP7Vk4RNtofJPztKbExMOOL6yR2khjhlGU0k2eoGwa8-Gz-xFhsxnr-d_YFOghT3hAFL1GnXFVw5cG8NNf1Kn4DLeKcSg
link.rule.ids 310,311,783,787,792,793,799,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zPuiTyibe7YOPdmvTNJfn6ay6TXEb-DZyOcUhtDJaBH-9SbuLiA--hZCQO99JzvflIHQVUiE0dweJC-UTpwEWMtV-DAyMlASnVTig4YgmU_LwGr820PVaCwMAFfkMOi5Z-fJNrkv3VNYVdv8RLrbQtrWrOavVWqvdg50DkG58YgQTRimnS9lOGIjuTe9pPCaCCcdNwI7TFbhgHz_CqlSo0t9Dw1V_ajLJe6csVEd__fqq8b8d3kftjX7Pe14j0wFqQNZC0fhNmvzTd7hlvERmxruzkFAuwHtZsYjyzJtnXp7Z6tIe76KNpv3bSS_xlyET_HmEo8KXVKc6dd5KoMxQTkKusOJAqYmNwExZCw0EZWBxSUYmZDwlhkMQxYYaxiE6RM3MtnKEPCWtKWHvT6EOgChbXIaB4VgxIzSJUn6MWm7As4_6V4zZcqwnf2dfop1kMhzMBvejx1O066a_pg2eoWaxKOHcQnuhLqoV_QaRap-W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+16th+International+Conference+on+Distributed+Computing+in+Sensor+Systems+%28DCOSS%29&rft.atitle=Shadow-based+Hand+Gesture+Recognition+in+one+Packet&rft.au=Hazra%2C+Saptarshi&rft.au=Brachmann%2C+Martina&rft.au=Voigt%2C+Thiemo&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2325-2944&rft.spage=27&rft.epage=34&rft_id=info:doi/10.1109%2FDCOSS49796.2020.00018&rft.externalDocID=9183489