Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements
High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on rela...
Saved in:
Published in | Magnetic resonance in medicine Vol. 59; no. 2; pp. 396 - 409 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on relative B1+ phase maps rapidly obtained in vivo for each channel of an eight‐element stripline coil. The relative transmit phases needed to maximize B1+ coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject‐dependent. A set of transmit phases determined by B1+ shimming provided a gain in transmit efficiency of 4.2 ± 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B1+ shimming decreased B1+ nonuniformity within the prostate from (24 ± 9%) to (5 ± 4%). This study demonstrates the tremendous impact of fast local B1+ phase shimming on ultrahigh magnetic field body imaging. Magn Reson Med 59:396–409, 2008. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on relative B1+ phase maps rapidly obtained in vivo for each channel of an eight‐element stripline coil. The relative transmit phases needed to maximize B1+ coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject‐dependent. A set of transmit phases determined by B1+ shimming provided a gain in transmit efficiency of 4.2 ± 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B1+ shimming decreased B1+ nonuniformity within the prostate from (24 ± 9%) to (5 ± 4%). This study demonstrates the tremendous impact of fast local B1+ phase shimming on ultrahigh magnetic field body imaging. Magn Reson Med 59:396–409, 2008. © 2008 Wiley‐Liss, Inc. High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize B(1) (+) losses resulting from destructive interferences. B(1) (+) shimming was performed by altering the input phase of individual RF channels based on relative B(1) (+) phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B(1) (+) coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B(1) (+) shimming provided a gain in transmit efficiency of 4.2 +/- 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B(1) (+) shimming decreased B(1) (+) nonuniformity within the prostate from (24 +/- 9%) to (5 +/- 4%). This study demonstrates the tremendous impact of fast local B(1) (+) phase shimming on ultrahigh magnetic field body imaging.High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize B(1) (+) losses resulting from destructive interferences. B(1) (+) shimming was performed by altering the input phase of individual RF channels based on relative B(1) (+) phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B(1) (+) coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B(1) (+) shimming provided a gain in transmit efficiency of 4.2 +/- 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B(1) (+) shimming decreased B(1) (+) nonuniformity within the prostate from (24 +/- 9%) to (5 +/- 4%). This study demonstrates the tremendous impact of fast local B(1) (+) phase shimming on ultrahigh magnetic field body imaging. High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on relative B1+ phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B1+ coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B1+ shimming provided a gain in transmit efficiency of 4.2 - 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B1+ shimming decreased B1+ nonuniformity within the prostate from (24 - 9%) to (5 - 4%). This study demonstrates the tremendous impact of fast local B1+ phase shimming on ultrahigh magnetic field body imaging. Magn Reson Med 59:396-409, 2008. High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize B(1) (+) losses resulting from destructive interferences. B(1) (+) shimming was performed by altering the input phase of individual RF channels based on relative B(1) (+) phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B(1) (+) coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B(1) (+) shimming provided a gain in transmit efficiency of 4.2 +/- 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B(1) (+) shimming decreased B(1) (+) nonuniformity within the prostate from (24 +/- 9%) to (5 +/- 4%). This study demonstrates the tremendous impact of fast local B(1) (+) phase shimming on ultrahigh magnetic field body imaging. High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B 1 ( B 1 + ) shimming to minimize B 1 + losses resulting from destructive interferences. B 1 + shimming was performed by altering the input phase of individual RF channels based on relative B 1 + phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B 1 + coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B 1 + shimming provided a gain in transmit efficiency of 4.2 ± 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B 1 + shimming decreased B 1 + nonuniformity within the prostate from (24 ± 9%) to (5 ± 4%). This study demonstrates the tremendous impact of fast local B 1 + phase shimming on ultrahigh magnetic field body imaging. |
Author | Vaughan, Tommy Van de Moortele, Pierre-Francois Snyder, Carl Akgun, Can Ugurbil, Kamil Metzger, Gregory J. |
AuthorAffiliation | 2 Max Plank Institut für Biologische Kybernetic, Hochfeld-Magnetresonanz-Zentrum, Tübingen, Germany 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota |
AuthorAffiliation_xml | – name: 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota – name: 2 Max Plank Institut für Biologische Kybernetic, Hochfeld-Magnetresonanz-Zentrum, Tübingen, Germany |
Author_xml | – sequence: 1 givenname: Gregory J. surname: Metzger fullname: Metzger, Gregory J. email: gmetzger@umn.edu organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota – sequence: 2 givenname: Carl surname: Snyder fullname: Snyder, Carl organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota – sequence: 3 givenname: Can surname: Akgun fullname: Akgun, Can organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota – sequence: 4 givenname: Tommy surname: Vaughan fullname: Vaughan, Tommy organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota – sequence: 5 givenname: Kamil surname: Ugurbil fullname: Ugurbil, Kamil organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota – sequence: 6 givenname: Pierre-Francois surname: Van de Moortele fullname: Van de Moortele, Pierre-Francois organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18228604$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUtP3DAQtiqqskAP_QOVT71UgfEjTnKp1KLCVlqKhEBIvVjeZLJrGiep7UBX6o-vYSltT8iSbfl7eGa-PbLTDz0S8obBIQPgR867Q85koV6QGcs5z3heyR0yg0JCJlgld8leCDcAUFWFfEV2Wcl5qUDOyK_FUJuOfmLvaVhb52y_ou3g6eiHEE1Eap1Z3T_e2bim0Zs-1Ghv0VPjvdkEaiItLunSBGzo0NMwLW-wjlmDI_YN9nGrcTbScZ1I1KEJk0eXoHBAXramC_j68dwnVyefL4_n2eL89Mvxx0VmBRcqE01bt1AqU3BWiVY1tVQ1QiHSkm1bs6poBShEo1JjUqVdcAUJaOuybAqxTz5sfcdp6bCp09_edHr0qTm_0YOx-n-kt2u9Gm61lKBEzpPBu0cDP_yYMETtbJpD15kehynoAriSIOSzRA5lXooKEvHtvyU91fInmUQ42hLubIebvzjo-8h1ilw_RK7PLs4eLkmRbRU2RPz5pDD-u1ZpUrm-_nqqy_n820mVX-sL8RswN7Fr |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. (c) 2008 Wiley-Liss, Inc. 2008 Wiley-Liss, Inc. 2008 |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: (c) 2008 Wiley-Liss, Inc. – notice: 2008 Wiley-Liss, Inc. 2008 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM |
DOI | 10.1002/mrm.21476 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 409 |
ExternalDocumentID | PMC4406352 18228604 MRM21476 ark_67375_WNG_8HHZF95W_R |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation (NSF) funderid: 9907842 – fundername: National Institutes of Health (NIH) funderid: P41 RR08079; R01 EB000895‐04; S10 RR1395 – fundername: Keck Foundation – fundername: NIBIB NIH HHS grantid: R01 EB000454 – fundername: NCRR NIH HHS grantid: P41 RR008079 – fundername: NIBIB NIH HHS grantid: R01 EB 000895-04 – fundername: NIBIB NIH HHS grantid: R01 EB000895 – fundername: NCRR NIH HHS grantid: S10 RR 1395 – fundername: NCRR NIH HHS grantid: P41 RR 08079 – fundername: NCRR NIH HHS grantid: P41 RR001395 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-i3236-3dfcf086a72193f6dc46ce0737374ffc197f306eea6182466183260fc1fc88d73 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Thu Aug 21 17:45:05 EDT 2025 Fri Jul 11 07:23:39 EDT 2025 Fri Jul 11 08:00:37 EDT 2025 Wed Feb 19 01:49:00 EST 2025 Wed Jan 22 16:58:48 EST 2025 Wed Oct 30 09:52:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | (c) 2008 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3236-3dfcf086a72193f6dc46ce0737374ffc197f306eea6182466183260fc1fc88d73 |
Notes | National Science Foundation (NSF) - No. 9907842 ark:/67375/WNG-8HHZF95W-R Keck Foundation National Institutes of Health (NIH) - No. P41 RR08079; No. R01 EB000895-04; No. S10 RR1395 ArticleID:MRM21476 istex:E74D0A6D862F97C4245044D9A7DAB0358FE7D197 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://doi.org/10.1002/mrm.21476 |
PMID | 18228604 |
PQID | 20858390 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4406352 proquest_miscellaneous_70264034 proquest_miscellaneous_20858390 pubmed_primary_18228604 wiley_primary_10_1002_mrm_21476_MRM21476 istex_primary_ark_67375_WNG_8HHZF95W_R |
PublicationCentury | 2000 |
PublicationDate | February 2008 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: February 2008 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Vaughan JT, DelaBarre L, Snyder C, Tian J, Bolan P, Garwood M, Adriany G, Strupp JP, Andersen P, Van de Moortele PF, Ugurbil K. Highest field human MR imaging. IEEE Trans EMC 2006: 213. Collins CM, Swift BJ, Liu W, Vaughan JT, Ugurbil K, Smith MB. Optimal multiple-element ring configuration depends on head geometry, placement, and volume of interest. In: Proc Int Soc Magn Reson Med 2004; 12: 1566. Van den Berg CA, van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, Lagendijk JJ. Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 2007; 57: 577-586. Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 1999; 23: 821-831. Rouviere O, Hartman RP, Lyonnet D. Prostate MR imaging at high-field strength: evolution or revolution? Eur Radiol 2006; 16: 276-284. Hoult D. The principle of reciprocity in signal strength calculations - a mathematical guide. Concepts Magn Reson 2000; 12: 173-187. Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, Odonnell M, Barber WD. Comparison of linear and circular-polarization for magnetic-resonance imaging. J Magn Reson 1985; 64: 255-270. Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001; 46: 451-456. Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518. Li BK, Liu F, Crozier S. Focused, eight-element transceive phased array coil for parallel magnetic resonance imaging of the chest-theoretical considerations. Magn Reson Med 2005; 53: 1251-1257. Kim HW, Buckley DL, Peterson DM, Duensing GR, Caserta J, Fitzsimmons J, Blackband SJ. In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results. Invest Radiol 2003; 38: 443-451. Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 2005; 21: 192-196. Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, O'Donnel M, Barber WD. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 1985; 64: 255-270. Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 2004; 52: 851-859. Hoult DI, Phil D. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000; 12: 46-67. Hoult DI. Solution of the Bloch equations in the presence of a varying B1 field - approach to selective pulse analysis. J Magn Reson 1979; 35: 69-86. Singerman RW, Denison TJ, Wen H, Balaban RS. Simulation of B1 field distribution and intrinsic signal-to-noise in cardiac MRI as a function of static magnetic field. J Magn Reson 1997; 125: 72-83. Pinkerton RG, Near JP, Barberi EA, Menon RS, Bartha R. Transceive surface coil array for MRI of the human prostate at 4T. Magn Reson Med 2007; 57: 455-458. Collins CM, Smith MB. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of "90 degrees" RF pulse for the head in the birdcage coil. Magn Reson Med 2001; 45: 684-691. Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Parallel imaging performance as a function of field strength-an experimental investigation using electrodynamic scaling. Magn Reson Med 2004; 52: 953-964. Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005; 53: 434-445. Van de Moortele PF, Snyder C, DelaBarre L, Akgun C, Wu X, Vaughan JT, Ugurbil K. Fast mapping of relative B1+ phase in the human head at 9.4 Tesla with a 14 channel transceive coil array. Int Symp Biomed Magn Reson Imaging Spectrosc Very High Fields. Wurzburg, Germany; 2006. Hussain SM, Wielopolski PA, Martin DR. Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? Top Magn Reson Imaging 2005; 16: 325-335. Insko E, Bolinger L. Mapping of the radiofrequency field. J Magn Reson Ser A 1993; 103: 82-85. Vaughan T, Delabarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, van de Moortele PF, Garwood M, Ugurbil K. 9.4T human MRI: preliminary results. Magn Reson Med 2006; 56: 1274-1282. Yang QX, Mao W, Wang J, Smith MB, Lei H, Zhang X, Ugurbil K, Chen W. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. J Magn Reson Imaging 2006; 24: 197-202. Bottomley PA, Andrew ER. RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 1978; 23: 630-643. Keltner JR, Carlson JW, Roos MS, Wong STS, Wong TL, Budinger TF. Electromagnetic fields of surface coil in vivo NMR at high frequencies. Magn Reson Med 1991; 22: 467-480. Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH, Vaughan JT, Ugurbil K, Chen W. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989. Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 1994; 32: 206-218. Wen H, Denison TJ, Singerman RW, Balaban RS. The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 1997; 125: 65-71. Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003; 49: 144-150. von Falkenhausen MM, Lutterbey G, Morakkabati-Spitz N, Walter O, Gieseke J, Blomer R, Willinek WA, Schild HH, Kuhl CK. High-field-strength MR imaging of the liver at 3.0 T: intraindividual comparative study with MR imaging at 1.5 T. Radiology 2006; 241: 156-166. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001; 46: 24-30. 1979; 35 2006; 56 2006; 16 1998 1999; 23 2007 1996 2006 2005; 21 2003; 38 2005 2002 1993; 103 2001; 45 2001; 46 1985; 64 2007; 57 1997; 125 2004; 52 2002; 47 1978; 23 2006; 24 2000; 12 1991; 22 2004; 12 2006; 26 2005; 53 2005; 54 2003; 49 2006; 241 2005; 16 1994; 32 11550235 - Magn Reson Med. 2001 Sep;46(3):451-6 12821859 - Invest Radiol. 2003 Jul;38(7):443-51 1812380 - Magn Reson Med. 1991 Dec;22(2):467-80 12509830 - Magn Reson Med. 2003 Jan;49(1):144-50 17326185 - Magn Reson Med. 2007 Mar;57(3):577-86 9245362 - J Magn Reson. 1997 Mar;125(1):72-83 15678527 - Magn Reson Med. 2005 Feb;53(2):434-45 16755543 - J Magn Reson Imaging. 2006 Jul;24(1):197-202 16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18 10931564 - J Magn Reson Imaging. 2000 Jul;12(1):46-67 15508167 - Magn Reson Med. 2004 Nov;52(5):953-64 9245361 - J Magn Reson. 1997 Mar;125(1):65-71 17075852 - Magn Reson Med. 2006 Dec;56(6):1274-82 15906277 - Magn Reson Med. 2005 Jun;53(6):1251-7 15389967 - Magn Reson Med. 2004 Oct;52(4):851-9 704667 - Phys Med Biol. 1978 Jul;23(4):630-43 15666397 - J Magn Reson Imaging. 2005 Feb;21(2):192-6 16785848 - Top Magn Reson Imaging. 2005 Jul;16(4):325-35 11979578 - Magn Reson Med. 2002 May;47(5):982-9 10589554 - J Comput Assist Tomogr. 1999 Nov-Dec;23(6):821-31 17260367 - Magn Reson Med. 2007 Feb;57(2):455-8 16908683 - Radiology. 2006 Oct;241(1):156-66 7968443 - Magn Reson Med. 1994 Aug;32(2):206-18 16155721 - Eur Radiol. 2006 Feb;16(2):276-84 11283997 - Magn Reson Med. 2001 Apr;45(4):684-91 11443707 - Magn Reson Med. 2001 Jul;46(1):24-30 |
References_xml | – reference: Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 2005; 21: 192-196. – reference: Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 1994; 32: 206-218. – reference: Hussain SM, Wielopolski PA, Martin DR. Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? Top Magn Reson Imaging 2005; 16: 325-335. – reference: Van den Berg CA, van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, Lagendijk JJ. Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 2007; 57: 577-586. – reference: Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 1999; 23: 821-831. – reference: Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Parallel imaging performance as a function of field strength-an experimental investigation using electrodynamic scaling. Magn Reson Med 2004; 52: 953-964. – reference: Van de Moortele PF, Snyder C, DelaBarre L, Akgun C, Wu X, Vaughan JT, Ugurbil K. Fast mapping of relative B1+ phase in the human head at 9.4 Tesla with a 14 channel transceive coil array. Int Symp Biomed Magn Reson Imaging Spectrosc Very High Fields. Wurzburg, Germany; 2006. – reference: Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001; 46: 24-30. – reference: Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, O'Donnel M, Barber WD. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 1985; 64: 255-270. – reference: Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH, Vaughan JT, Ugurbil K, Chen W. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989. – reference: Singerman RW, Denison TJ, Wen H, Balaban RS. Simulation of B1 field distribution and intrinsic signal-to-noise in cardiac MRI as a function of static magnetic field. J Magn Reson 1997; 125: 72-83. – reference: Rouviere O, Hartman RP, Lyonnet D. Prostate MR imaging at high-field strength: evolution or revolution? Eur Radiol 2006; 16: 276-284. – reference: Hoult DI. Solution of the Bloch equations in the presence of a varying B1 field - approach to selective pulse analysis. J Magn Reson 1979; 35: 69-86. – reference: Vaughan JT, DelaBarre L, Snyder C, Tian J, Bolan P, Garwood M, Adriany G, Strupp JP, Andersen P, Van de Moortele PF, Ugurbil K. Highest field human MR imaging. IEEE Trans EMC 2006: 213. – reference: Hoult DI, Phil D. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000; 12: 46-67. – reference: Wen H, Denison TJ, Singerman RW, Balaban RS. The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 1997; 125: 65-71. – reference: Collins CM, Smith MB. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of "90 degrees" RF pulse for the head in the birdcage coil. Magn Reson Med 2001; 45: 684-691. – reference: Pinkerton RG, Near JP, Barberi EA, Menon RS, Bartha R. Transceive surface coil array for MRI of the human prostate at 4T. Magn Reson Med 2007; 57: 455-458. – reference: Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 2004; 52: 851-859. – reference: Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005; 53: 434-445. – reference: Yang QX, Mao W, Wang J, Smith MB, Lei H, Zhang X, Ugurbil K, Chen W. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. J Magn Reson Imaging 2006; 24: 197-202. – reference: Bottomley PA, Andrew ER. RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 1978; 23: 630-643. – reference: Li BK, Liu F, Crozier S. Focused, eight-element transceive phased array coil for parallel magnetic resonance imaging of the chest-theoretical considerations. Magn Reson Med 2005; 53: 1251-1257. – reference: Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001; 46: 451-456. – reference: Kim HW, Buckley DL, Peterson DM, Duensing GR, Caserta J, Fitzsimmons J, Blackband SJ. In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results. Invest Radiol 2003; 38: 443-451. – reference: Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, Odonnell M, Barber WD. Comparison of linear and circular-polarization for magnetic-resonance imaging. J Magn Reson 1985; 64: 255-270. – reference: Vaughan T, Delabarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, van de Moortele PF, Garwood M, Ugurbil K. 9.4T human MRI: preliminary results. Magn Reson Med 2006; 56: 1274-1282. – reference: Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518. – reference: Hoult D. The principle of reciprocity in signal strength calculations - a mathematical guide. Concepts Magn Reson 2000; 12: 173-187. – reference: von Falkenhausen MM, Lutterbey G, Morakkabati-Spitz N, Walter O, Gieseke J, Blomer R, Willinek WA, Schild HH, Kuhl CK. High-field-strength MR imaging of the liver at 3.0 T: intraindividual comparative study with MR imaging at 1.5 T. Radiology 2006; 241: 156-166. – reference: Keltner JR, Carlson JW, Roos MS, Wong STS, Wong TL, Budinger TF. Electromagnetic fields of surface coil in vivo NMR at high frequencies. Magn Reson Med 1991; 22: 467-480. – reference: Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003; 49: 144-150. – reference: Insko E, Bolinger L. Mapping of the radiofrequency field. J Magn Reson Ser A 1993; 103: 82-85. – reference: Collins CM, Swift BJ, Liu W, Vaughan JT, Ugurbil K, Smith MB. Optimal multiple-element ring configuration depends on head geometry, placement, and volume of interest. In: Proc Int Soc Magn Reson Med 2004; 12: 1566. – volume: 64 start-page: 255 year: 1985 end-page: 270 article-title: Comparison of linear and circular polarization for magnetic resonance imaging publication-title: J Magn Reson – volume: 125 start-page: 72 year: 1997 end-page: 83 article-title: Simulation of B1 field distribution and intrinsic signal‐to‐noise in cardiac MRI as a function of static magnetic field publication-title: J Magn Reson – start-page: 164 year: 2007 – start-page: 1676 year: 2007 – volume: 23 start-page: 630 year: 1978 end-page: 643 article-title: RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging publication-title: Phys Med Biol – volume: 32 start-page: 206 year: 1994 end-page: 218 article-title: High frequency volume coils for clinical NMR imaging and spectroscopy publication-title: Magn Reson Med – volume: 16 start-page: 276 year: 2006 end-page: 284 article-title: Prostate MR imaging at high‐field strength: evolution or revolution? publication-title: Eur Radiol – start-page: 441 year: 1998 – start-page: 3535 year: 2006 – start-page: 213 year: 2006 article-title: Highest field human MR imaging publication-title: IEEE Trans EMC – start-page: 903 year: 2002 – volume: 56 start-page: 1274 year: 2006 end-page: 1282 article-title: 9.4T human MRI: preliminary results publication-title: Magn Reson Med – volume: 52 start-page: 953 year: 2004 end-page: 964 article-title: Parallel imaging performance as a function of field strength—an experimental investigation using electrodynamic scaling publication-title: Magn Reson Med – volume: 54 start-page: 1503 year: 2005 end-page: 1518 article-title: B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil publication-title: Magn Reson Med – volume: 12 start-page: 46 year: 2000 end-page: 67 article-title: Sensitivity and power deposition in a high‐field imaging experiment publication-title: J Magn Reson Imaging – start-page: 799 year: 2007 – volume: 52 start-page: 851 year: 2004 end-page: 859 article-title: Efficient high‐frequency body coil for high‐field MRI publication-title: Magn Reson Med – volume: 12 start-page: 173 year: 2000 end-page: 187 article-title: The principle of reciprocity in signal strength calculations — a mathematical guide publication-title: Concepts Magn Reson – start-page: 1434 year: 1996 – volume: 103 start-page: 82 year: 1993 end-page: 85 article-title: Mapping of the radiofrequency field publication-title: J Magn Reson Ser A – volume: 46 start-page: 24 year: 2001 end-page: 30 article-title: 7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images publication-title: Magn Reson Med – volume: 12 start-page: 1566 year: 2004 article-title: Optimal multiple‐element ring configuration depends on head geometry, placement, and volume of interest publication-title: Proc Int Soc Magn Reson Med – volume: 21 start-page: 192 year: 2005 end-page: 196 article-title: Central brightening due to constructive interference with, without, and despite dielectric resonance publication-title: J Magn Reson Imaging – volume: 64 start-page: 255 year: 1985 end-page: 270 article-title: Comparison of linear and circular‐polarization for magnetic‐resonance imaging publication-title: J Magn Reson – volume: 16 start-page: 325 year: 2005 end-page: 335 article-title: Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? publication-title: Top Magn Reson Imaging – volume: 53 start-page: 1251 year: 2005 end-page: 1257 article-title: Focused, eight‐element transceive phased array coil for parallel magnetic resonance imaging of the chest—theoretical considerations publication-title: Magn Reson Med – volume: 46 start-page: 451 year: 2001 end-page: 456 article-title: In vivo 1H NMR spectroscopy of the human brain at 7 T publication-title: Magn Reson Med – volume: 24 start-page: 197 year: 2006 end-page: 202 article-title: Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials publication-title: J Magn Reson Imaging – volume: 53 start-page: 434 year: 2005 end-page: 445 article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging publication-title: Magn Reson Med – year: 2006 – start-page: 21 year: 2005 – volume: 125 start-page: 65 year: 1997 end-page: 71 article-title: The intrinsic signal‐to‐noise ratio in human cardiac imaging at 1.5, 3, and 4 T publication-title: J Magn Reson – volume: 23 start-page: 821 year: 1999 end-page: 831 article-title: Dielectric resonance phenomena in ultra high field MRI publication-title: J Comput Assist Tomogr – volume: 38 start-page: 443 year: 2003 end-page: 451 article-title: In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results publication-title: Invest Radiol – start-page: 3867 year: 2007 – volume: 241 start-page: 156 year: 2006 end-page: 166 article-title: High‐field‐strength MR imaging of the liver at 3.0 T: intraindividual comparative study with MR imaging at 1.5 T publication-title: Radiology – volume: 35 start-page: 69 year: 1979 end-page: 86 article-title: Solution of the Bloch equations in the presence of a varying B1 field — approach to selective pulse analysis publication-title: J Magn Reson – volume: 26 start-page: 127 year: 2006 end-page: 161 – volume: 57 start-page: 455 year: 2007 end-page: 458 article-title: Transceive surface coil array for MRI of the human prostate at 4T publication-title: Magn Reson Med – volume: 22 start-page: 467 year: 1991 end-page: 480 article-title: Electromagnetic fields of surface coil in vivo NMR at high frequencies publication-title: Magn Reson Med – start-page: 213 year: 2006 – volume: 57 start-page: 577 year: 2007 end-page: 586 article-title: Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil publication-title: Magn Reson Med – volume: 49 start-page: 144 year: 2003 end-page: 150 article-title: Transmit SENSE publication-title: Magn Reson Med – volume: 45 start-page: 684 year: 2001 end-page: 691 article-title: Signal‐to‐noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90 degrees” RF pulse for the head in the birdcage coil publication-title: Magn Reson Med – volume: 47 start-page: 982 year: 2002 end-page: 989 article-title: Analysis of wave behavior in lossy dielectric samples at high field publication-title: Magn Reson Med – reference: 12509830 - Magn Reson Med. 2003 Jan;49(1):144-50 – reference: 704667 - Phys Med Biol. 1978 Jul;23(4):630-43 – reference: 11283997 - Magn Reson Med. 2001 Apr;45(4):684-91 – reference: 7968443 - Magn Reson Med. 1994 Aug;32(2):206-18 – reference: 15678527 - Magn Reson Med. 2005 Feb;53(2):434-45 – reference: 16908683 - Radiology. 2006 Oct;241(1):156-66 – reference: 9245362 - J Magn Reson. 1997 Mar;125(1):72-83 – reference: 15906277 - Magn Reson Med. 2005 Jun;53(6):1251-7 – reference: 11443707 - Magn Reson Med. 2001 Jul;46(1):24-30 – reference: 12821859 - Invest Radiol. 2003 Jul;38(7):443-51 – reference: 10931564 - J Magn Reson Imaging. 2000 Jul;12(1):46-67 – reference: 16755543 - J Magn Reson Imaging. 2006 Jul;24(1):197-202 – reference: 16155721 - Eur Radiol. 2006 Feb;16(2):276-84 – reference: 9245361 - J Magn Reson. 1997 Mar;125(1):65-71 – reference: 1812380 - Magn Reson Med. 1991 Dec;22(2):467-80 – reference: 17260367 - Magn Reson Med. 2007 Feb;57(2):455-8 – reference: 16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18 – reference: 15389967 - Magn Reson Med. 2004 Oct;52(4):851-9 – reference: 10589554 - J Comput Assist Tomogr. 1999 Nov-Dec;23(6):821-31 – reference: 16785848 - Top Magn Reson Imaging. 2005 Jul;16(4):325-35 – reference: 17326185 - Magn Reson Med. 2007 Mar;57(3):577-86 – reference: 11979578 - Magn Reson Med. 2002 May;47(5):982-9 – reference: 17075852 - Magn Reson Med. 2006 Dec;56(6):1274-82 – reference: 15508167 - Magn Reson Med. 2004 Nov;52(5):953-64 – reference: 11550235 - Magn Reson Med. 2001 Sep;46(3):451-6 – reference: 15666397 - J Magn Reson Imaging. 2005 Feb;21(2):192-6 |
SSID | ssj0009974 |
Score | 2.4004734 |
Snippet | High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+... High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize... High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B1 (B1+) shimming to minimize B1+... High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B 1 ( B 1 + ) shimming to minimize B... |
SourceID | pubmedcentral proquest pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 396 |
SubjectTerms | Adult B1+ shimming Equipment Design FDTD model Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Male prostate Prostate - anatomy & histology SAR stripline array transceive array transmit array |
Title | Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements |
URI | https://api.istex.fr/ark:/67375/WNG-8HHZF95W-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21476 https://www.ncbi.nlm.nih.gov/pubmed/18228604 https://www.proquest.com/docview/20858390 https://www.proquest.com/docview/70264034 https://pubmed.ncbi.nlm.nih.gov/PMC4406352 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh0NJLH-kj26cOpRSKN44tSxY9JaHbpXRzWBISSkHIssSaYO9ie6HtofQn9Df2l2RGXu82fUApvhgk2bI10nwzGn1DyHPJRCadi8A2cS5AjRVoxnXgQpkyqZNIa_RDTo75-JS9O0_Ot8jr_ixMxw-xdrjhzPDrNU5wnTV7G9LQsi6HmGQH6bYxVgsB0XRDHSVlx8AsGK4zkvWsQmG0t24JgBT_5ac_ocvfgyR_Bq9e-4xukY99v7ugk4vhss2G5ssvlI7_-WG3yc0VKqUHnRjdIVu22iHXJ6t99x1yzQeKmuYu-foelR893H9Fm1lRlqD5KOBeusDTI4BbaVH6vEcUHby0RU1oLMZ-UF3X-nNDdUvFCUXlmdN5RZtlhp6gH9--9-l4265VWbR0MYNqtNy4MZt75HT05uRoHKxyOARFHMU8iHNnHJhNGixNGTueG8aNhXUFLuac2ZfCgdVireZg6TBAC7DE8BAKnEnTXMT3yXY1r-wuoYkTPHcuNzLOWCZMJkRiNctzeGIYGjEgL_xoqkXH06F0fYFhayJRZ8dvVToefxjJ5ExNB-RZP9wKJhPukOjKzpeNwoSlgBjDv9cQYLOyMGYD8qATj_XboPtRykMoEVcEZ10BibyvllTFzBN6M0BVAIQH5KWXi80jPaV0pEAilJcINZlO_M3Df6_6iNzoYlwwBOcx2W7rpX0CQKrNnvoZcwnl6x3c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRTwuPBbYLa_1ASEklG42ceJY4sKrFGh6qLra1UrIcpxYjVZJqySVgAPiJ_Ab-SXMOE3L8pAQyiWS7cSJx55vxuNvCHkkGE-EMR7YJsY4qLEcxULlGFdETKjAUwr9kPE4HB6xdyfByRZ51p2Fafkh1g43nBl2vcYJjg7pgw1raFEVfcyyE14gFzGjNzLnv5psyKOEaDmYOcOVRrCOV8j1DtZNAZLi3_z4J3z5e5jkz_DV6p_BdfKh63kbdnLWXzZJX3_-hdTxfz_tBrm2Aqb0eStJN8lWVu6Qy_Fq632HXLKxorq-Rb6MUP_RF4dPaT3LiwKUHwXoSxd4gASgK80Lm_qIoo-XNqgMdYbhH1RVlfpUU9VQPqWoP1M6L2m9TNAZ9P3rty4jb9O2KvKGLmZQjRYbT2Z9mxwNXk9fDp1VGgcn9z0_dPzUaAOWkwJjU_gmTDULdQZLC1zMGH0ouAHDJctUCMYOA8AAq0zoQoHRUZRy_w7ZLudltkdoYHiYGpNq4Scs4TrhPMgUS1N4outq3iOP7XDKRUvVIVV1hpFrPJDH4zcyGg5PByI4lpMe2e_GW8J8wk0SVWbzZS0xZymARvfvNTiYrcz1WY_stvKxfht034tCF0r4OclZV0Au7_MlZT6znN4MgBVg4R55YgVj80jLKu1JkAhpJULGk9je3P33qvvkynAaj-To7fj9PXK1DXnBiJz7ZLupltkDwFVN8tBOnx-b4iH4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7riosvXtbbeNs8iAjS2W6bJg0-qes46s4gwy67LEJI04YpSztD2wH1QfwJ_kZ_ieek0xnXC4j0pZCkTZuTnO-cnHyHkEeSiURaG4BtYq2HGsvTjGvP-jJmUkeB1uiHHI358Ii9PYlONsiz7ixMyw-xcrjhzHDrNU7weWp316ShRVX0MckOv0AuMu5LzNuwP1lzR0nZUjALhguNZB2tkB_srpoCIsWf-fFP8PL3KMmf0atTP4Or5EPX8Tbq5Ky_aJK--fwLp-N_ftk1cmUJS-nzVo6uk42s3CZbo-XG-za55CJFTX2DfDlA7Udf7D2l9TQvClB9FIAvnePxEQCuNC9c4iOKHl7aoCo0GQZ_UF1V-lNNdUPFIUXtmdJZSetFgq6g71-_dfl4m7ZVkTd0PoVqtFj7Meub5Gjw6vDl0FsmcfDyMAi5F6bWWLCbNJiaMrQ8NYybDBYWuJi1Zk8KC2ZLlmkOpg4DuABrDPehwJo4TkV4i2yWszK7Q2hkBU-tTY0ME5YIkwgRZZqlKTzR943okcduNNW8JepQujrDuDURqePxaxUPh6cDGR2rSY_sdMOtYDbhFokus9miVpixFCCj__caAoxW5oesR2634rF6G3Q_iLkPJeKc4KwqIJP3-ZIynzpGbwawCpBwjzxxcrF-pOOUDhRIhHISoUaTkbu5--9Vd8jW-_2BOngzfnePXG7jXTAc5z7ZbKpF9gBAVZM8dJPnBy3MIKc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+B1%2B+shimming+for+prostate+imaging+with+transceiver+arrays+at+7T+based+on+subject-dependent+transmit+phase+measurements&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Metzger%2C+Gregory+J&rft.au=Snyder%2C+Carl&rft.au=Akgun%2C+Can&rft.au=Vaughan%2C+Tommy&rft.date=2008-02-01&rft.issn=0740-3194&rft.volume=59&rft.issue=2&rft.spage=396&rft.epage=409&rft_id=info:doi/10.1002%2Fmrm.21476&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |