Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements

High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on rela...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 59; no. 2; pp. 396 - 409
Main Authors Metzger, Gregory J., Snyder, Carl, Akgun, Can, Vaughan, Tommy, Ugurbil, Kamil, Van de Moortele, Pierre-Francois
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on relative B1+ phase maps rapidly obtained in vivo for each channel of an eight‐element stripline coil. The relative transmit phases needed to maximize B1+ coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject‐dependent. A set of transmit phases determined by B1+ shimming provided a gain in transmit efficiency of 4.2 ± 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B1+ shimming decreased B1+ nonuniformity within the prostate from (24 ± 9%) to (5 ± 4%). This study demonstrates the tremendous impact of fast local B1+ phase shimming on ultrahigh magnetic field body imaging. Magn Reson Med 59:396–409, 2008. © 2008 Wiley‐Liss, Inc.
AbstractList High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on relative B1+ phase maps rapidly obtained in vivo for each channel of an eight‐element stripline coil. The relative transmit phases needed to maximize B1+ coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject‐dependent. A set of transmit phases determined by B1+ shimming provided a gain in transmit efficiency of 4.2 ± 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B1+ shimming decreased B1+ nonuniformity within the prostate from (24 ± 9%) to (5 ± 4%). This study demonstrates the tremendous impact of fast local B1+ phase shimming on ultrahigh magnetic field body imaging. Magn Reson Med 59:396–409, 2008. © 2008 Wiley‐Liss, Inc.
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize B(1) (+) losses resulting from destructive interferences. B(1) (+) shimming was performed by altering the input phase of individual RF channels based on relative B(1) (+) phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B(1) (+) coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B(1) (+) shimming provided a gain in transmit efficiency of 4.2 +/- 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B(1) (+) shimming decreased B(1) (+) nonuniformity within the prostate from (24 +/- 9%) to (5 +/- 4%). This study demonstrates the tremendous impact of fast local B(1) (+) phase shimming on ultrahigh magnetic field body imaging.High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize B(1) (+) losses resulting from destructive interferences. B(1) (+) shimming was performed by altering the input phase of individual RF channels based on relative B(1) (+) phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B(1) (+) coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B(1) (+) shimming provided a gain in transmit efficiency of 4.2 +/- 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B(1) (+) shimming decreased B(1) (+) nonuniformity within the prostate from (24 +/- 9%) to (5 +/- 4%). This study demonstrates the tremendous impact of fast local B(1) (+) phase shimming on ultrahigh magnetic field body imaging.
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B1 (B1+) shimming to minimize B1+ losses resulting from destructive interferences. B1+ shimming was performed by altering the input phase of individual RF channels based on relative B1+ phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B1+ coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B1+ shimming provided a gain in transmit efficiency of 4.2 - 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B1+ shimming decreased B1+ nonuniformity within the prostate from (24 - 9%) to (5 - 4%). This study demonstrates the tremendous impact of fast local B1+ phase shimming on ultrahigh magnetic field body imaging. Magn Reson Med 59:396-409, 2008.
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize B(1) (+) losses resulting from destructive interferences. B(1) (+) shimming was performed by altering the input phase of individual RF channels based on relative B(1) (+) phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B(1) (+) coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B(1) (+) shimming provided a gain in transmit efficiency of 4.2 +/- 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B(1) (+) shimming decreased B(1) (+) nonuniformity within the prostate from (24 +/- 9%) to (5 +/- 4%). This study demonstrates the tremendous impact of fast local B(1) (+) phase shimming on ultrahigh magnetic field body imaging.
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B 1 ( B 1 + ) shimming to minimize B 1 + losses resulting from destructive interferences. B 1 + shimming was performed by altering the input phase of individual RF channels based on relative B 1 + phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B 1 + coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B 1 + shimming provided a gain in transmit efficiency of 4.2 ± 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B 1 + shimming decreased B 1 + nonuniformity within the prostate from (24 ± 9%) to (5 ± 4%). This study demonstrates the tremendous impact of fast local B 1 + phase shimming on ultrahigh magnetic field body imaging.
Author Vaughan, Tommy
Van de Moortele, Pierre-Francois
Snyder, Carl
Akgun, Can
Ugurbil, Kamil
Metzger, Gregory J.
AuthorAffiliation 2 Max Plank Institut für Biologische Kybernetic, Hochfeld-Magnetresonanz-Zentrum, Tübingen, Germany
1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
AuthorAffiliation_xml – name: 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
– name: 2 Max Plank Institut für Biologische Kybernetic, Hochfeld-Magnetresonanz-Zentrum, Tübingen, Germany
Author_xml – sequence: 1
  givenname: Gregory J.
  surname: Metzger
  fullname: Metzger, Gregory J.
  email: gmetzger@umn.edu
  organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
– sequence: 2
  givenname: Carl
  surname: Snyder
  fullname: Snyder, Carl
  organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
– sequence: 3
  givenname: Can
  surname: Akgun
  fullname: Akgun, Can
  organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
– sequence: 4
  givenname: Tommy
  surname: Vaughan
  fullname: Vaughan, Tommy
  organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
– sequence: 5
  givenname: Kamil
  surname: Ugurbil
  fullname: Ugurbil, Kamil
  organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
– sequence: 6
  givenname: Pierre-Francois
  surname: Van de Moortele
  fullname: Van de Moortele, Pierre-Francois
  organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18228604$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtP3DAQtiqqskAP_QOVT71UgfEjTnKp1KLCVlqKhEBIvVjeZLJrGiep7UBX6o-vYSltT8iSbfl7eGa-PbLTDz0S8obBIQPgR867Q85koV6QGcs5z3heyR0yg0JCJlgld8leCDcAUFWFfEV2Wcl5qUDOyK_FUJuOfmLvaVhb52y_ou3g6eiHEE1Eap1Z3T_e2bim0Zs-1Ghv0VPjvdkEaiItLunSBGzo0NMwLW-wjlmDI_YN9nGrcTbScZ1I1KEJk0eXoHBAXramC_j68dwnVyefL4_n2eL89Mvxx0VmBRcqE01bt1AqU3BWiVY1tVQ1QiHSkm1bs6poBShEo1JjUqVdcAUJaOuybAqxTz5sfcdp6bCp09_edHr0qTm_0YOx-n-kt2u9Gm61lKBEzpPBu0cDP_yYMETtbJpD15kehynoAriSIOSzRA5lXooKEvHtvyU91fInmUQ42hLubIebvzjo-8h1ilw_RK7PLs4eLkmRbRU2RPz5pDD-u1ZpUrm-_nqqy_n820mVX-sL8RswN7Fr
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
(c) 2008 Wiley-Liss, Inc.
2008 Wiley-Liss, Inc. 2008
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: (c) 2008 Wiley-Liss, Inc.
– notice: 2008 Wiley-Liss, Inc. 2008
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
DOI 10.1002/mrm.21476
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 409
ExternalDocumentID PMC4406352
18228604
MRM21476
ark_67375_WNG_8HHZF95W_R
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation (NSF)
  funderid: 9907842
– fundername: National Institutes of Health (NIH)
  funderid: P41 RR08079; R01 EB000895‐04; S10 RR1395
– fundername: Keck Foundation
– fundername: NIBIB NIH HHS
  grantid: R01 EB000454
– fundername: NCRR NIH HHS
  grantid: P41 RR008079
– fundername: NIBIB NIH HHS
  grantid: R01 EB 000895-04
– fundername: NIBIB NIH HHS
  grantid: R01 EB000895
– fundername: NCRR NIH HHS
  grantid: S10 RR 1395
– fundername: NCRR NIH HHS
  grantid: P41 RR 08079
– fundername: NCRR NIH HHS
  grantid: P41 RR001395
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-i3236-3dfcf086a72193f6dc46ce0737374ffc197f306eea6182466183260fc1fc88d73
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Thu Aug 21 17:45:05 EDT 2025
Fri Jul 11 07:23:39 EDT 2025
Fri Jul 11 08:00:37 EDT 2025
Wed Feb 19 01:49:00 EST 2025
Wed Jan 22 16:58:48 EST 2025
Wed Oct 30 09:52:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License (c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3236-3dfcf086a72193f6dc46ce0737374ffc197f306eea6182466183260fc1fc88d73
Notes National Science Foundation (NSF) - No. 9907842
ark:/67375/WNG-8HHZF95W-R
Keck Foundation
National Institutes of Health (NIH) - No. P41 RR08079; No. R01 EB000895-04; No. S10 RR1395
ArticleID:MRM21476
istex:E74D0A6D862F97C4245044D9A7DAB0358FE7D197
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://doi.org/10.1002/mrm.21476
PMID 18228604
PQID 20858390
PQPubID 23462
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4406352
proquest_miscellaneous_70264034
proquest_miscellaneous_20858390
pubmed_primary_18228604
wiley_primary_10_1002_mrm_21476_MRM21476
istex_primary_ark_67375_WNG_8HHZF95W_R
PublicationCentury 2000
PublicationDate February 2008
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: February 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Vaughan JT, DelaBarre L, Snyder C, Tian J, Bolan P, Garwood M, Adriany G, Strupp JP, Andersen P, Van de Moortele PF, Ugurbil K. Highest field human MR imaging. IEEE Trans EMC 2006: 213.
Collins CM, Swift BJ, Liu W, Vaughan JT, Ugurbil K, Smith MB. Optimal multiple-element ring configuration depends on head geometry, placement, and volume of interest. In: Proc Int Soc Magn Reson Med 2004; 12: 1566.
Van den Berg CA, van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, Lagendijk JJ. Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 2007; 57: 577-586.
Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 1999; 23: 821-831.
Rouviere O, Hartman RP, Lyonnet D. Prostate MR imaging at high-field strength: evolution or revolution? Eur Radiol 2006; 16: 276-284.
Hoult D. The principle of reciprocity in signal strength calculations - a mathematical guide. Concepts Magn Reson 2000; 12: 173-187.
Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, Odonnell M, Barber WD. Comparison of linear and circular-polarization for magnetic-resonance imaging. J Magn Reson 1985; 64: 255-270.
Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001; 46: 451-456.
Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518.
Li BK, Liu F, Crozier S. Focused, eight-element transceive phased array coil for parallel magnetic resonance imaging of the chest-theoretical considerations. Magn Reson Med 2005; 53: 1251-1257.
Kim HW, Buckley DL, Peterson DM, Duensing GR, Caserta J, Fitzsimmons J, Blackband SJ. In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results. Invest Radiol 2003; 38: 443-451.
Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 2005; 21: 192-196.
Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, O'Donnel M, Barber WD. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 1985; 64: 255-270.
Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 2004; 52: 851-859.
Hoult DI, Phil D. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000; 12: 46-67.
Hoult DI. Solution of the Bloch equations in the presence of a varying B1 field - approach to selective pulse analysis. J Magn Reson 1979; 35: 69-86.
Singerman RW, Denison TJ, Wen H, Balaban RS. Simulation of B1 field distribution and intrinsic signal-to-noise in cardiac MRI as a function of static magnetic field. J Magn Reson 1997; 125: 72-83.
Pinkerton RG, Near JP, Barberi EA, Menon RS, Bartha R. Transceive surface coil array for MRI of the human prostate at 4T. Magn Reson Med 2007; 57: 455-458.
Collins CM, Smith MB. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of "90 degrees" RF pulse for the head in the birdcage coil. Magn Reson Med 2001; 45: 684-691.
Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Parallel imaging performance as a function of field strength-an experimental investigation using electrodynamic scaling. Magn Reson Med 2004; 52: 953-964.
Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005; 53: 434-445.
Van de Moortele PF, Snyder C, DelaBarre L, Akgun C, Wu X, Vaughan JT, Ugurbil K. Fast mapping of relative B1+ phase in the human head at 9.4 Tesla with a 14 channel transceive coil array. Int Symp Biomed Magn Reson Imaging Spectrosc Very High Fields. Wurzburg, Germany; 2006.
Hussain SM, Wielopolski PA, Martin DR. Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? Top Magn Reson Imaging 2005; 16: 325-335.
Insko E, Bolinger L. Mapping of the radiofrequency field. J Magn Reson Ser A 1993; 103: 82-85.
Vaughan T, Delabarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, van de Moortele PF, Garwood M, Ugurbil K. 9.4T human MRI: preliminary results. Magn Reson Med 2006; 56: 1274-1282.
Yang QX, Mao W, Wang J, Smith MB, Lei H, Zhang X, Ugurbil K, Chen W. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. J Magn Reson Imaging 2006; 24: 197-202.
Bottomley PA, Andrew ER. RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 1978; 23: 630-643.
Keltner JR, Carlson JW, Roos MS, Wong STS, Wong TL, Budinger TF. Electromagnetic fields of surface coil in vivo NMR at high frequencies. Magn Reson Med 1991; 22: 467-480.
Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH, Vaughan JT, Ugurbil K, Chen W. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989.
Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 1994; 32: 206-218.
Wen H, Denison TJ, Singerman RW, Balaban RS. The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 1997; 125: 65-71.
Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003; 49: 144-150.
von Falkenhausen MM, Lutterbey G, Morakkabati-Spitz N, Walter O, Gieseke J, Blomer R, Willinek WA, Schild HH, Kuhl CK. High-field-strength MR imaging of the liver at 3.0 T: intraindividual comparative study with MR imaging at 1.5 T. Radiology 2006; 241: 156-166.
Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001; 46: 24-30.
1979; 35
2006; 56
2006; 16
1998
1999; 23
2007
1996
2006
2005; 21
2003; 38
2005
2002
1993; 103
2001; 45
2001; 46
1985; 64
2007; 57
1997; 125
2004; 52
2002; 47
1978; 23
2006; 24
2000; 12
1991; 22
2004; 12
2006; 26
2005; 53
2005; 54
2003; 49
2006; 241
2005; 16
1994; 32
11550235 - Magn Reson Med. 2001 Sep;46(3):451-6
12821859 - Invest Radiol. 2003 Jul;38(7):443-51
1812380 - Magn Reson Med. 1991 Dec;22(2):467-80
12509830 - Magn Reson Med. 2003 Jan;49(1):144-50
17326185 - Magn Reson Med. 2007 Mar;57(3):577-86
9245362 - J Magn Reson. 1997 Mar;125(1):72-83
15678527 - Magn Reson Med. 2005 Feb;53(2):434-45
16755543 - J Magn Reson Imaging. 2006 Jul;24(1):197-202
16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18
10931564 - J Magn Reson Imaging. 2000 Jul;12(1):46-67
15508167 - Magn Reson Med. 2004 Nov;52(5):953-64
9245361 - J Magn Reson. 1997 Mar;125(1):65-71
17075852 - Magn Reson Med. 2006 Dec;56(6):1274-82
15906277 - Magn Reson Med. 2005 Jun;53(6):1251-7
15389967 - Magn Reson Med. 2004 Oct;52(4):851-9
704667 - Phys Med Biol. 1978 Jul;23(4):630-43
15666397 - J Magn Reson Imaging. 2005 Feb;21(2):192-6
16785848 - Top Magn Reson Imaging. 2005 Jul;16(4):325-35
11979578 - Magn Reson Med. 2002 May;47(5):982-9
10589554 - J Comput Assist Tomogr. 1999 Nov-Dec;23(6):821-31
17260367 - Magn Reson Med. 2007 Feb;57(2):455-8
16908683 - Radiology. 2006 Oct;241(1):156-66
7968443 - Magn Reson Med. 1994 Aug;32(2):206-18
16155721 - Eur Radiol. 2006 Feb;16(2):276-84
11283997 - Magn Reson Med. 2001 Apr;45(4):684-91
11443707 - Magn Reson Med. 2001 Jul;46(1):24-30
References_xml – reference: Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 2005; 21: 192-196.
– reference: Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 1994; 32: 206-218.
– reference: Hussain SM, Wielopolski PA, Martin DR. Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? Top Magn Reson Imaging 2005; 16: 325-335.
– reference: Van den Berg CA, van den Bergen B, Van de Kamer JB, Raaymakers BW, Kroeze H, Bartels LW, Lagendijk JJ. Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 2007; 57: 577-586.
– reference: Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 1999; 23: 821-831.
– reference: Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Parallel imaging performance as a function of field strength-an experimental investigation using electrodynamic scaling. Magn Reson Med 2004; 52: 953-964.
– reference: Van de Moortele PF, Snyder C, DelaBarre L, Akgun C, Wu X, Vaughan JT, Ugurbil K. Fast mapping of relative B1+ phase in the human head at 9.4 Tesla with a 14 channel transceive coil array. Int Symp Biomed Magn Reson Imaging Spectrosc Very High Fields. Wurzburg, Germany; 2006.
– reference: Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001; 46: 24-30.
– reference: Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, O'Donnel M, Barber WD. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 1985; 64: 255-270.
– reference: Yang QX, Wang J, Zhang X, Collins CM, Smith MB, Liu H, Zhu XH, Vaughan JT, Ugurbil K, Chen W. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989.
– reference: Singerman RW, Denison TJ, Wen H, Balaban RS. Simulation of B1 field distribution and intrinsic signal-to-noise in cardiac MRI as a function of static magnetic field. J Magn Reson 1997; 125: 72-83.
– reference: Rouviere O, Hartman RP, Lyonnet D. Prostate MR imaging at high-field strength: evolution or revolution? Eur Radiol 2006; 16: 276-284.
– reference: Hoult DI. Solution of the Bloch equations in the presence of a varying B1 field - approach to selective pulse analysis. J Magn Reson 1979; 35: 69-86.
– reference: Vaughan JT, DelaBarre L, Snyder C, Tian J, Bolan P, Garwood M, Adriany G, Strupp JP, Andersen P, Van de Moortele PF, Ugurbil K. Highest field human MR imaging. IEEE Trans EMC 2006: 213.
– reference: Hoult DI, Phil D. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000; 12: 46-67.
– reference: Wen H, Denison TJ, Singerman RW, Balaban RS. The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 1997; 125: 65-71.
– reference: Collins CM, Smith MB. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of "90 degrees" RF pulse for the head in the birdcage coil. Magn Reson Med 2001; 45: 684-691.
– reference: Pinkerton RG, Near JP, Barberi EA, Menon RS, Bartha R. Transceive surface coil array for MRI of the human prostate at 4T. Magn Reson Med 2007; 57: 455-458.
– reference: Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 2004; 52: 851-859.
– reference: Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005; 53: 434-445.
– reference: Yang QX, Mao W, Wang J, Smith MB, Lei H, Zhang X, Ugurbil K, Chen W. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. J Magn Reson Imaging 2006; 24: 197-202.
– reference: Bottomley PA, Andrew ER. RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 1978; 23: 630-643.
– reference: Li BK, Liu F, Crozier S. Focused, eight-element transceive phased array coil for parallel magnetic resonance imaging of the chest-theoretical considerations. Magn Reson Med 2005; 53: 1251-1257.
– reference: Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001; 46: 451-456.
– reference: Kim HW, Buckley DL, Peterson DM, Duensing GR, Caserta J, Fitzsimmons J, Blackband SJ. In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results. Invest Radiol 2003; 38: 443-451.
– reference: Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, Odonnell M, Barber WD. Comparison of linear and circular-polarization for magnetic-resonance imaging. J Magn Reson 1985; 64: 255-270.
– reference: Vaughan T, Delabarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, van de Moortele PF, Garwood M, Ugurbil K. 9.4T human MRI: preliminary results. Magn Reson Med 2006; 56: 1274-1282.
– reference: Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518.
– reference: Hoult D. The principle of reciprocity in signal strength calculations - a mathematical guide. Concepts Magn Reson 2000; 12: 173-187.
– reference: von Falkenhausen MM, Lutterbey G, Morakkabati-Spitz N, Walter O, Gieseke J, Blomer R, Willinek WA, Schild HH, Kuhl CK. High-field-strength MR imaging of the liver at 3.0 T: intraindividual comparative study with MR imaging at 1.5 T. Radiology 2006; 241: 156-166.
– reference: Keltner JR, Carlson JW, Roos MS, Wong STS, Wong TL, Budinger TF. Electromagnetic fields of surface coil in vivo NMR at high frequencies. Magn Reson Med 1991; 22: 467-480.
– reference: Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003; 49: 144-150.
– reference: Insko E, Bolinger L. Mapping of the radiofrequency field. J Magn Reson Ser A 1993; 103: 82-85.
– reference: Collins CM, Swift BJ, Liu W, Vaughan JT, Ugurbil K, Smith MB. Optimal multiple-element ring configuration depends on head geometry, placement, and volume of interest. In: Proc Int Soc Magn Reson Med 2004; 12: 1566.
– volume: 64
  start-page: 255
  year: 1985
  end-page: 270
  article-title: Comparison of linear and circular polarization for magnetic resonance imaging
  publication-title: J Magn Reson
– volume: 125
  start-page: 72
  year: 1997
  end-page: 83
  article-title: Simulation of B1 field distribution and intrinsic signal‐to‐noise in cardiac MRI as a function of static magnetic field
  publication-title: J Magn Reson
– start-page: 164
  year: 2007
– start-page: 1676
  year: 2007
– volume: 23
  start-page: 630
  year: 1978
  end-page: 643
  article-title: RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging
  publication-title: Phys Med Biol
– volume: 32
  start-page: 206
  year: 1994
  end-page: 218
  article-title: High frequency volume coils for clinical NMR imaging and spectroscopy
  publication-title: Magn Reson Med
– volume: 16
  start-page: 276
  year: 2006
  end-page: 284
  article-title: Prostate MR imaging at high‐field strength: evolution or revolution?
  publication-title: Eur Radiol
– start-page: 441
  year: 1998
– start-page: 3535
  year: 2006
– start-page: 213
  year: 2006
  article-title: Highest field human MR imaging
  publication-title: IEEE Trans EMC
– start-page: 903
  year: 2002
– volume: 56
  start-page: 1274
  year: 2006
  end-page: 1282
  article-title: 9.4T human MRI: preliminary results
  publication-title: Magn Reson Med
– volume: 52
  start-page: 953
  year: 2004
  end-page: 964
  article-title: Parallel imaging performance as a function of field strength—an experimental investigation using electrodynamic scaling
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1503
  year: 2005
  end-page: 1518
  article-title: B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil
  publication-title: Magn Reson Med
– volume: 12
  start-page: 46
  year: 2000
  end-page: 67
  article-title: Sensitivity and power deposition in a high‐field imaging experiment
  publication-title: J Magn Reson Imaging
– start-page: 799
  year: 2007
– volume: 52
  start-page: 851
  year: 2004
  end-page: 859
  article-title: Efficient high‐frequency body coil for high‐field MRI
  publication-title: Magn Reson Med
– volume: 12
  start-page: 173
  year: 2000
  end-page: 187
  article-title: The principle of reciprocity in signal strength calculations — a mathematical guide
  publication-title: Concepts Magn Reson
– start-page: 1434
  year: 1996
– volume: 103
  start-page: 82
  year: 1993
  end-page: 85
  article-title: Mapping of the radiofrequency field
  publication-title: J Magn Reson Ser A
– volume: 46
  start-page: 24
  year: 2001
  end-page: 30
  article-title: 7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images
  publication-title: Magn Reson Med
– volume: 12
  start-page: 1566
  year: 2004
  article-title: Optimal multiple‐element ring configuration depends on head geometry, placement, and volume of interest
  publication-title: Proc Int Soc Magn Reson Med
– volume: 21
  start-page: 192
  year: 2005
  end-page: 196
  article-title: Central brightening due to constructive interference with, without, and despite dielectric resonance
  publication-title: J Magn Reson Imaging
– volume: 64
  start-page: 255
  year: 1985
  end-page: 270
  article-title: Comparison of linear and circular‐polarization for magnetic‐resonance imaging
  publication-title: J Magn Reson
– volume: 16
  start-page: 325
  year: 2005
  end-page: 335
  article-title: Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future?
  publication-title: Top Magn Reson Imaging
– volume: 53
  start-page: 1251
  year: 2005
  end-page: 1257
  article-title: Focused, eight‐element transceive phased array coil for parallel magnetic resonance imaging of the chest—theoretical considerations
  publication-title: Magn Reson Med
– volume: 46
  start-page: 451
  year: 2001
  end-page: 456
  article-title: In vivo 1H NMR spectroscopy of the human brain at 7 T
  publication-title: Magn Reson Med
– volume: 24
  start-page: 197
  year: 2006
  end-page: 202
  article-title: Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 434
  year: 2005
  end-page: 445
  article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging
  publication-title: Magn Reson Med
– year: 2006
– start-page: 21
  year: 2005
– volume: 125
  start-page: 65
  year: 1997
  end-page: 71
  article-title: The intrinsic signal‐to‐noise ratio in human cardiac imaging at 1.5, 3, and 4 T
  publication-title: J Magn Reson
– volume: 23
  start-page: 821
  year: 1999
  end-page: 831
  article-title: Dielectric resonance phenomena in ultra high field MRI
  publication-title: J Comput Assist Tomogr
– volume: 38
  start-page: 443
  year: 2003
  end-page: 451
  article-title: In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results
  publication-title: Invest Radiol
– start-page: 3867
  year: 2007
– volume: 241
  start-page: 156
  year: 2006
  end-page: 166
  article-title: High‐field‐strength MR imaging of the liver at 3.0 T: intraindividual comparative study with MR imaging at 1.5 T
  publication-title: Radiology
– volume: 35
  start-page: 69
  year: 1979
  end-page: 86
  article-title: Solution of the Bloch equations in the presence of a varying B1 field — approach to selective pulse analysis
  publication-title: J Magn Reson
– volume: 26
  start-page: 127
  year: 2006
  end-page: 161
– volume: 57
  start-page: 455
  year: 2007
  end-page: 458
  article-title: Transceive surface coil array for MRI of the human prostate at 4T
  publication-title: Magn Reson Med
– volume: 22
  start-page: 467
  year: 1991
  end-page: 480
  article-title: Electromagnetic fields of surface coil in vivo NMR at high frequencies
  publication-title: Magn Reson Med
– start-page: 213
  year: 2006
– volume: 57
  start-page: 577
  year: 2007
  end-page: 586
  article-title: Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil
  publication-title: Magn Reson Med
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– volume: 45
  start-page: 684
  year: 2001
  end-page: 691
  article-title: Signal‐to‐noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90 degrees” RF pulse for the head in the birdcage coil
  publication-title: Magn Reson Med
– volume: 47
  start-page: 982
  year: 2002
  end-page: 989
  article-title: Analysis of wave behavior in lossy dielectric samples at high field
  publication-title: Magn Reson Med
– reference: 12509830 - Magn Reson Med. 2003 Jan;49(1):144-50
– reference: 704667 - Phys Med Biol. 1978 Jul;23(4):630-43
– reference: 11283997 - Magn Reson Med. 2001 Apr;45(4):684-91
– reference: 7968443 - Magn Reson Med. 1994 Aug;32(2):206-18
– reference: 15678527 - Magn Reson Med. 2005 Feb;53(2):434-45
– reference: 16908683 - Radiology. 2006 Oct;241(1):156-66
– reference: 9245362 - J Magn Reson. 1997 Mar;125(1):72-83
– reference: 15906277 - Magn Reson Med. 2005 Jun;53(6):1251-7
– reference: 11443707 - Magn Reson Med. 2001 Jul;46(1):24-30
– reference: 12821859 - Invest Radiol. 2003 Jul;38(7):443-51
– reference: 10931564 - J Magn Reson Imaging. 2000 Jul;12(1):46-67
– reference: 16755543 - J Magn Reson Imaging. 2006 Jul;24(1):197-202
– reference: 16155721 - Eur Radiol. 2006 Feb;16(2):276-84
– reference: 9245361 - J Magn Reson. 1997 Mar;125(1):65-71
– reference: 1812380 - Magn Reson Med. 1991 Dec;22(2):467-80
– reference: 17260367 - Magn Reson Med. 2007 Feb;57(2):455-8
– reference: 16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18
– reference: 15389967 - Magn Reson Med. 2004 Oct;52(4):851-9
– reference: 10589554 - J Comput Assist Tomogr. 1999 Nov-Dec;23(6):821-31
– reference: 16785848 - Top Magn Reson Imaging. 2005 Jul;16(4):325-35
– reference: 17326185 - Magn Reson Med. 2007 Mar;57(3):577-86
– reference: 11979578 - Magn Reson Med. 2002 May;47(5):982-9
– reference: 17075852 - Magn Reson Med. 2006 Dec;56(6):1274-82
– reference: 15508167 - Magn Reson Med. 2004 Nov;52(5):953-64
– reference: 11550235 - Magn Reson Med. 2001 Sep;46(3):451-6
– reference: 15666397 - J Magn Reson Imaging. 2005 Feb;21(2):192-6
SSID ssj0009974
Score 2.4004734
Snippet High‐quality prostate images were obtained with transceiver arrays at 7T after performing subject‐dependent local transmit B1 (B1+) shimming to minimize B1+...
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize...
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B1 (B1+) shimming to minimize B1+...
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B 1 ( B 1 + ) shimming to minimize B...
SourceID pubmedcentral
proquest
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 396
SubjectTerms Adult
B1+ shimming
Equipment Design
FDTD model
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Male
prostate
Prostate - anatomy & histology
SAR
stripline array
transceive array
transmit array
Title Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements
URI https://api.istex.fr/ark:/67375/WNG-8HHZF95W-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21476
https://www.ncbi.nlm.nih.gov/pubmed/18228604
https://www.proquest.com/docview/20858390
https://www.proquest.com/docview/70264034
https://pubmed.ncbi.nlm.nih.gov/PMC4406352
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh0NJLH-kj26cOpRSKN44tSxY9JaHbpXRzWBISSkHIssSaYO9ie6HtofQn9Df2l2RGXu82fUApvhgk2bI10nwzGn1DyHPJRCadi8A2cS5AjRVoxnXgQpkyqZNIa_RDTo75-JS9O0_Ot8jr_ixMxw-xdrjhzPDrNU5wnTV7G9LQsi6HmGQH6bYxVgsB0XRDHSVlx8AsGK4zkvWsQmG0t24JgBT_5ac_ocvfgyR_Bq9e-4xukY99v7ugk4vhss2G5ssvlI7_-WG3yc0VKqUHnRjdIVu22iHXJ6t99x1yzQeKmuYu-foelR893H9Fm1lRlqD5KOBeusDTI4BbaVH6vEcUHby0RU1oLMZ-UF3X-nNDdUvFCUXlmdN5RZtlhp6gH9--9-l4265VWbR0MYNqtNy4MZt75HT05uRoHKxyOARFHMU8iHNnHJhNGixNGTueG8aNhXUFLuac2ZfCgdVireZg6TBAC7DE8BAKnEnTXMT3yXY1r-wuoYkTPHcuNzLOWCZMJkRiNctzeGIYGjEgL_xoqkXH06F0fYFhayJRZ8dvVToefxjJ5ExNB-RZP9wKJhPukOjKzpeNwoSlgBjDv9cQYLOyMGYD8qATj_XboPtRykMoEVcEZ10BibyvllTFzBN6M0BVAIQH5KWXi80jPaV0pEAilJcINZlO_M3Df6_6iNzoYlwwBOcx2W7rpX0CQKrNnvoZcwnl6x3c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRTwuPBbYLa_1ASEklG42ceJY4sKrFGh6qLra1UrIcpxYjVZJqySVgAPiJ_Ab-SXMOE3L8pAQyiWS7cSJx55vxuNvCHkkGE-EMR7YJsY4qLEcxULlGFdETKjAUwr9kPE4HB6xdyfByRZ51p2Fafkh1g43nBl2vcYJjg7pgw1raFEVfcyyE14gFzGjNzLnv5psyKOEaDmYOcOVRrCOV8j1DtZNAZLi3_z4J3z5e5jkz_DV6p_BdfKh63kbdnLWXzZJX3_-hdTxfz_tBrm2Aqb0eStJN8lWVu6Qy_Fq632HXLKxorq-Rb6MUP_RF4dPaT3LiwKUHwXoSxd4gASgK80Lm_qIoo-XNqgMdYbhH1RVlfpUU9VQPqWoP1M6L2m9TNAZ9P3rty4jb9O2KvKGLmZQjRYbT2Z9mxwNXk9fDp1VGgcn9z0_dPzUaAOWkwJjU_gmTDULdQZLC1zMGH0ouAHDJctUCMYOA8AAq0zoQoHRUZRy_w7ZLudltkdoYHiYGpNq4Scs4TrhPMgUS1N4outq3iOP7XDKRUvVIVV1hpFrPJDH4zcyGg5PByI4lpMe2e_GW8J8wk0SVWbzZS0xZymARvfvNTiYrcz1WY_stvKxfht034tCF0r4OclZV0Au7_MlZT6znN4MgBVg4R55YgVj80jLKu1JkAhpJULGk9je3P33qvvkynAaj-To7fj9PXK1DXnBiJz7ZLupltkDwFVN8tBOnx-b4iH4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7riosvXtbbeNs8iAjS2W6bJg0-qes46s4gwy67LEJI04YpSztD2wH1QfwJ_kZ_ieek0xnXC4j0pZCkTZuTnO-cnHyHkEeSiURaG4BtYq2HGsvTjGvP-jJmUkeB1uiHHI358Ii9PYlONsiz7ixMyw-xcrjhzHDrNU7weWp316ShRVX0MckOv0AuMu5LzNuwP1lzR0nZUjALhguNZB2tkB_srpoCIsWf-fFP8PL3KMmf0atTP4Or5EPX8Tbq5Ky_aJK--fwLp-N_ftk1cmUJS-nzVo6uk42s3CZbo-XG-za55CJFTX2DfDlA7Udf7D2l9TQvClB9FIAvnePxEQCuNC9c4iOKHl7aoCo0GQZ_UF1V-lNNdUPFIUXtmdJZSetFgq6g71-_dfl4m7ZVkTd0PoVqtFj7Meub5Gjw6vDl0FsmcfDyMAi5F6bWWLCbNJiaMrQ8NYybDBYWuJi1Zk8KC2ZLlmkOpg4DuABrDPehwJo4TkV4i2yWszK7Q2hkBU-tTY0ME5YIkwgRZZqlKTzR943okcduNNW8JepQujrDuDURqePxaxUPh6cDGR2rSY_sdMOtYDbhFokus9miVpixFCCj__caAoxW5oesR2634rF6G3Q_iLkPJeKc4KwqIJP3-ZIynzpGbwawCpBwjzxxcrF-pOOUDhRIhHISoUaTkbu5--9Vd8jW-_2BOngzfnePXG7jXTAc5z7ZbKpF9gBAVZM8dJPnBy3MIKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+B1%2B+shimming+for+prostate+imaging+with+transceiver+arrays+at+7T+based+on+subject-dependent+transmit+phase+measurements&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Metzger%2C+Gregory+J&rft.au=Snyder%2C+Carl&rft.au=Akgun%2C+Can&rft.au=Vaughan%2C+Tommy&rft.date=2008-02-01&rft.issn=0740-3194&rft.volume=59&rft.issue=2&rft.spage=396&rft.epage=409&rft_id=info:doi/10.1002%2Fmrm.21476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon