High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network

Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps. In this paper, we focus on speeding-up the high-resolution photorealistic I2IT tasks b...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 9387 - 9395
Main Authors Liang, Jie, Zeng, Hui, Zhang, Lei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps. In this paper, we focus on speeding-up the high-resolution photorealistic I2IT tasks based on closed-form Laplacian pyramid decomposition and reconstruction. Specifically, we reveal that the attribute transformations, such as illumination and color manipulation, relate more to the low-frequency component, while the content details can be adaptively refined on high-frequency components. We consequently propose a Laplacian Pyramid Translation Network (LPTN) to simultaneously perform these two tasks, where we design a lightweight network for translating the low-frequency component with reduced resolution and a progressive masking strategy to efficiently refine the high-frequency ones. Our model avoids most of the heavy computation consumed by processing high-resolution feature maps and faithfully preserves the image details. Extensive experimental results on various tasks demonstrate that the proposed method can translate 4K images in real-time using one normal GPU while achieving comparable transformation performance against existing methods. Datasets and codes are available: https://github.com/csjliang/LPTN.
AbstractList Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps. In this paper, we focus on speeding-up the high-resolution photorealistic I2IT tasks based on closed-form Laplacian pyramid decomposition and reconstruction. Specifically, we reveal that the attribute transformations, such as illumination and color manipulation, relate more to the low-frequency component, while the content details can be adaptively refined on high-frequency components. We consequently propose a Laplacian Pyramid Translation Network (LPTN) to simultaneously perform these two tasks, where we design a lightweight network for translating the low-frequency component with reduced resolution and a progressive masking strategy to efficiently refine the high-frequency ones. Our model avoids most of the heavy computation consumed by processing high-resolution feature maps and faithfully preserves the image details. Extensive experimental results on various tasks demonstrate that the proposed method can translate 4K images in real-time using one normal GPU while achieving comparable transformation performance against existing methods. Datasets and codes are available: https://github.com/csjliang/LPTN.
Author Liang, Jie
Zhang, Lei
Zeng, Hui
Author_xml – sequence: 1
  givenname: Jie
  surname: Liang
  fullname: Liang, Jie
  email: csjliang@comp.polyu.edu.hk
  organization: The HongKong Polytechnic University
– sequence: 2
  givenname: Hui
  surname: Zeng
  fullname: Zeng, Hui
  email: cshzeng@comp.polyu.edu.hk
  organization: The HongKong Polytechnic University
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: cslzhang@comp.polyu.edu.hk
  organization: The HongKong Polytechnic University
BookMark eNpVjM1OwkAUhUejiYA8gS76AsW5M9PbjjtCVEiIkgbdktvpLYz2h7Q1hre3UTeuTr6c75yxuKibmoW4BTkDkPZu8bZJDRodz5RUMJPSqvhMjAExMiYa6FyMQKIO0YK9EtOue5dSagWANhmJYun3hzDlrik_e9_UwebQ9E3LVPqu9y5YVbTnYNtS3ZX0I_g6SIc63PqK74N5sKZjSc7TMD21VPn8n_3M_VfTflyLy4LKjqd_ORGvjw_bxTJcvzytFvN16DVEfVjkOkbNJktUBtaRNi5HzMAUFrUDq8AYrVTOObLLibAwGGUGsmRwnSn0RNz8_npm3h1bX1F72tkoTqSO9TevP1pJ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR46437.2021.00927
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665445092
9781665445092
EISSN 1063-6919
EndPage 9395
ExternalDocumentID 9578037
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i315t-fd3763e4b82b19ca34cd66b14f963c192144322ded6ecdaa6f465b41b8ca3c4f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:28:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i315t-fd3763e4b82b19ca34cd66b14f963c192144322ded6ecdaa6f465b41b8ca3c4f3
OpenAccessLink http://ira.lib.polyu.edu.hk/bitstream/10397/105456/1/Liang_High-Resolution_Photorealistic_Image.pdf
PageCount 9
ParticipantIDs ieee_primary_9578037
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5266612
Snippet Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational...
SourceID ieee
SourceType Publisher
StartPage 9387
SubjectTerms Graphics processing units
Image color analysis
Image resolution
Laplace equations
Lighting
Real-time systems
Visualization
Title High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network
URI https://ieeexplore.ieee.org/document/9578037
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4w4jWPHTdhQRVUQVFFFUbfKT1GhpqikA_x6zkkoKmJgi5KTHJ3vfK_vzghdahrbBISH-KITgXgjJIo5CFy5pM5YKZ0r0RYjMZzw-2k8baCrTS-MtbYEn9nAP5a1fLPUa58q66YgXiHr7aAdCNyqXq1NPoVBJCPSpO6Oo2Ha7T9nY-7rUhAFRjTw04W271ApTcighR6_F6-QI6_BulCB_vw1l_G_f7eHOj_NejjbmKF91LD5AWrV3iWudfe9jZyHdBCfrq-EDWcvSwi4rZ-ACNKD7xZwtODSdlX4ODzP8Rg-E98mco1v8IP0CC6QJ5x9rORibraoRxWgvIMmg9un_pDUtyyQOaNxQZzxZ4zlKokUTbVkXBshFOUOdFP7cWmcg9Yba4TVRkrhuIgVpyoBWs0dO0TNfJnbI4QZ8DgMZRQbyzgQJsxS1XOcucgx8DOPUduzbfZWDdKY1Rw7-fv1Kdr1G1flO85Qs1it7Tl4AIW6KLf-C-b_sdY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0Y127sXkzRAIKZCFguJF2bSMxDIPjoH-9r9vEYDx4W7aXbOl-r-_r914Rukmor0MAD7FFJwLxhkskMxC4ckGN0kIYk7MthkF3wh-n_rSCbje9MFrrnHymHXuZ1_LVMlnbVFkzAni5rLWDdsHu-17RrbXJqDCIZYIoLPvjqBs128_xiNvKFMSBHnXsfKHtU1RyI9KpocH36wvuyKuzzqSTfP6azPjf7ztAjZ92PRxvDNEhquj0CNVK_xKX2vteR8aSOohN2Bdww_HLEkJubWcgAn5wbwGbC86tV8GQw_MUj-AxsY0id_ge94XlcAGicPyxEou52pIeFpTyBpp0HsbtLinPWSBzRv2MGGV3Gc1l6EkaJYLxRAWBpNyAdiZ2YBrnoPdKq0AnSojA8MCXnMoQZBNu2DGqpstUnyDMYI1dV3i-0oyDYMg0lS3DmfEMA0_zFNXtss3eilEas3LFzv6-fY32uuNBf9bvDZ_O0b79iUX24wJVs9VaX4I_kMmrHAZfXXC1IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=High-Resolution+Photorealistic+Image+Translation+in+Real-Time%3A+A+Laplacian+Pyramid+Translation+Network&rft.au=Liang%2C+Jie&rft.au=Zeng%2C+Hui&rft.au=Zhang%2C+Lei&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=9387&rft.epage=9395&rft_id=info:doi/10.1109%2FCVPR46437.2021.00927&rft.externalDocID=9578037