Discriminative Deep Metric Learning for Face Verification in the Wild
This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1875 - 1882 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class variations, simultaneously, the proposed DDML trains a deep neural network which learns a set of hierarchical nonlinear transformations to project face pairs into the same feature subspace, under which the distance of each positive face pair is less than a smaller threshold and that of each negative pair is higher than a larger threshold, respectively, so that discriminative information can be exploited in the deep network. Our method achieves very competitive face verification performance on the widely used LFW and YouTube Faces (YTF) datasets. |
---|---|
AbstractList | This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class variations, simultaneously, the proposed DDML trains a deep neural network which learns a set of hierarchical nonlinear transformations to project face pairs into the same feature subspace, under which the distance of each positive face pair is less than a smaller threshold and that of each negative pair is higher than a larger threshold, respectively, so that discriminative information can be exploited in the deep network. Our method achieves very competitive face verification performance on the widely used LFW and YouTube Faces (YTF) datasets. |
Author | Yap-Peng Tan Junlin Hu Jiwen Lu |
Author_xml | – sequence: 1 givenname: Junlin surname: Hu fullname: Hu, Junlin – sequence: 2 givenname: Jiwen surname: Lu fullname: Lu, Jiwen – sequence: 3 givenname: Yap-Peng surname: Tan fullname: Tan, Yap-Peng |
BookMark | eNpNjztPwzAUhQ0qEqV0ZGLxyJLim-v4MaI-AKkIhKCMkZNcg6XUKUlaiX9PpDIwnTN8OvrOBRvFJhJjVyBmAMLezjcvr7NUgJylMj1hU6sNSG1tBmCyUzYGoTBRFuzoXz9n064LhUiVVjJDNWbLRejKNmxDdH04EF8Q7fgT9W0o-ZpcG0P85L5p-cqVxDfUBh_KAW0iD5H3X8Q_Ql1dsjPv6o6mfzlh76vl2_whWT_fP87v1klAwD7xovTWKwQHqa_ISBTSFlBgIZCUleh0ockMYpUvlDJVJrU0rshUih4t4ITdHHd3bfO9p67Pt4M-1bWL1Oy7HJTWVojU4IBeH9FARPluuOjan1xZYRUa_AWwulvJ |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.242 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 2575-7075 |
EndPage | 1882 |
ExternalDocumentID | 6909638 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i313t-f0cf9f631a12fde843049b1b3b03e6943a7b7e8536dfb668d54748ab5623f3913 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Fri Jul 11 11:17:07 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i313t-f0cf9f631a12fde843049b1b3b03e6943a7b7e8536dfb668d54748ab5623f3913 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
OpenAccessLink | https://dr.ntu.edu.sg/bitstream/10356/100336/1/Discriminative%20deep%20metric%20learning%20for%20face%20verification%20in%20the%20wild.pdf |
PQID | 1677900283 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6909638 proquest_miscellaneous_1677900283 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.4964132 |
Snippet | This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1875 |
SubjectTerms | Computer vision Conferences Deep Learning Face Face Verification Feature extraction Learning Learning systems Measurement Metric Learning Networks Neural networks Pattern recognition Thresholds Training Trains Transformations Vectors Videos |
Title | Discriminative Deep Metric Learning for Face Verification in the Wild |
URI | https://ieeexplore.ieee.org/document/6909638 https://www.proquest.com/docview/1677900283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8IwFA_qaSe36Zj7IoMdl2qaNG3OOpGBQ8YUb6VpkiGDKrO97K9fXj8Uth12K4HSNnl97_c-fwg9JEoFo5RSIg21hDuET5ydp8T3U6qlBZcCQgPzFzFb8ud1sG6hx0MvjDGmLD4zHlyWuXy9TQsIlQ2dJwfy0kZt57hVvVqN7PgiFDyouLtLLcycZyPkIaPgAxtLmfkUjAhJ5XHe5nC8WrxCkRf3fGBsL1lWfqnm0t5Mu2jevGlVZvLhFbny0q8fQxz_-ymnqH_s7MOLg806Qy2TnaNuDUVx_aPv3VLD9tCs9dDTZAMqBkpnQEXiiTE7PAdCrhTXU1rfsYPAeJq4h6ycZNs6Hog3GXY4EzsNpPtoOX16G89ITcJANoyynNhRaqUVjCbUt9pEHPJyiiqmRswIyVkSqtA4oy-0VUJEOuAhjxIFuMoySdkF6mTbzFwizHgURKlDfJRZzoORipRWPFDSSYjQlA5QDzYq3lVzNuJ6jwbovjmK2Mk-JDSSzGyLfUwFTEsEhHT1963X6ATOtSrtukGd_LMwtw5E5OqulJ5vvSDADA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECkZ8rolHi2x3u3TPPIIKhBgg3Jpuu2uISSECF3-9O31Aoh68NZs0bXenM988P4CHUCmvGVHqSE2Nwy3Cd6ydp47rRjSWBl0KDA0MR6I_5S9zb16Cx10vjNY6LT7TDbxMc_nxMtpiqOzJenIoLwdwaO2-R7NurUJ6XNES3MvYu1M9zKxvI-Qup-AiH0ua-xTMEZLK_cTNp_Zs_IZlXrzhImd7yrPySzmnFqdXgWHxrlmhyUdju1GN6OvHGMf_fswJ1Pa9fWS8s1qnUNLJGVRyMEryX31tlwq-h2KtCt3OApUMFs-gkiQdrVdkiJRcEcnntL4TC4JJL7QPmVnZNnlEkCwSYpEmsToorsG01520-05Ow-AsGGUbxzQjI41gNKSuibXPMTOnqGKqybSQnIUt1dLW7IvYKCH82OMt7ocKkZVhkrJzKCfLRF8AYdz3_MhiPsoM515T-SpW3FPSyoiIKa1DFTcqWGWTNoJ8j-pwXxxFYKUfUxphopfbdUAFzktEjHT59613cNSfDAfB4Hn0egXHeMZZodc1lDefW31jIcVG3aaS9A3ziMNV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Discriminative+Deep+Metric+Learning+for+Face+Verification+in+the+Wild&rft.au=Junlin+Hu&rft.au=Jiwen+Lu&rft.au=Yap-Peng+Tan&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1875&rft.epage=1882&rft_id=info:doi/10.1109%2FCVPR.2014.242&rft.externalDocID=6909638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |