Discriminative Deep Metric Learning for Face Verification in the Wild

This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1875 - 1882
Main Authors Hu, Junlin, Lu, Jiwen, Tan, Yap-Peng
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class variations, simultaneously, the proposed DDML trains a deep neural network which learns a set of hierarchical nonlinear transformations to project face pairs into the same feature subspace, under which the distance of each positive face pair is less than a smaller threshold and that of each negative pair is higher than a larger threshold, respectively, so that discriminative information can be exploited in the deep network. Our method achieves very competitive face verification performance on the widely used LFW and YouTube Faces (YTF) datasets.
AbstractList This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based face verification methods which aim to learn a Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class variations, simultaneously, the proposed DDML trains a deep neural network which learns a set of hierarchical nonlinear transformations to project face pairs into the same feature subspace, under which the distance of each positive face pair is less than a smaller threshold and that of each negative pair is higher than a larger threshold, respectively, so that discriminative information can be exploited in the deep network. Our method achieves very competitive face verification performance on the widely used LFW and YouTube Faces (YTF) datasets.
Author Yap-Peng Tan
Junlin Hu
Jiwen Lu
Author_xml – sequence: 1
  givenname: Junlin
  surname: Hu
  fullname: Hu, Junlin
– sequence: 2
  givenname: Jiwen
  surname: Lu
  fullname: Lu, Jiwen
– sequence: 3
  givenname: Yap-Peng
  surname: Tan
  fullname: Tan, Yap-Peng
BookMark eNpNjztPwzAUhQ0qEqV0ZGLxyJLim-v4MaI-AKkIhKCMkZNcg6XUKUlaiX9PpDIwnTN8OvrOBRvFJhJjVyBmAMLezjcvr7NUgJylMj1hU6sNSG1tBmCyUzYGoTBRFuzoXz9n064LhUiVVjJDNWbLRejKNmxDdH04EF8Q7fgT9W0o-ZpcG0P85L5p-cqVxDfUBh_KAW0iD5H3X8Q_Ql1dsjPv6o6mfzlh76vl2_whWT_fP87v1klAwD7xovTWKwQHqa_ISBTSFlBgIZCUleh0ockMYpUvlDJVJrU0rshUih4t4ITdHHd3bfO9p67Pt4M-1bWL1Oy7HJTWVojU4IBeH9FARPluuOjan1xZYRUa_AWwulvJ
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.242
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
2575-7075
EndPage 1882
ExternalDocumentID 6909638
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i313t-f0cf9f631a12fde843049b1b3b03e6943a7b7e8536dfb668d54748ab5623f3913
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Jul 11 11:17:07 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i313t-f0cf9f631a12fde843049b1b3b03e6943a7b7e8536dfb668d54748ab5623f3913
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/100336/1/Discriminative%20deep%20metric%20learning%20for%20face%20verification%20in%20the%20wild.pdf
PQID 1677900283
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909638
proquest_miscellaneous_1677900283
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.4964132
Snippet This paper presents a new discriminative deep metric learning (DDML) method for face verification in the wild. Different from existing metric learning-based...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1875
SubjectTerms Computer vision
Conferences
Deep Learning
Face
Face Verification
Feature extraction
Learning
Learning systems
Measurement
Metric Learning
Networks
Neural networks
Pattern recognition
Thresholds
Training
Trains
Transformations
Vectors
Videos
Title Discriminative Deep Metric Learning for Face Verification in the Wild
URI https://ieeexplore.ieee.org/document/6909638
https://www.proquest.com/docview/1677900283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8IwFA_qaSe36Zj7IoMdl2qaNG3OOpGBQ8YUb6VpkiGDKrO97K9fXj8Uth12K4HSNnl97_c-fwg9JEoFo5RSIg21hDuET5ydp8T3U6qlBZcCQgPzFzFb8ud1sG6hx0MvjDGmLD4zHlyWuXy9TQsIlQ2dJwfy0kZt57hVvVqN7PgiFDyouLtLLcycZyPkIaPgAxtLmfkUjAhJ5XHe5nC8WrxCkRf3fGBsL1lWfqnm0t5Mu2jevGlVZvLhFbny0q8fQxz_-ymnqH_s7MOLg806Qy2TnaNuDUVx_aPv3VLD9tCs9dDTZAMqBkpnQEXiiTE7PAdCrhTXU1rfsYPAeJq4h6ycZNs6Hog3GXY4EzsNpPtoOX16G89ITcJANoyynNhRaqUVjCbUt9pEHPJyiiqmRswIyVkSqtA4oy-0VUJEOuAhjxIFuMoySdkF6mTbzFwizHgURKlDfJRZzoORipRWPFDSSYjQlA5QDzYq3lVzNuJ6jwbovjmK2Mk-JDSSzGyLfUwFTEsEhHT1963X6ATOtSrtukGd_LMwtw5E5OqulJ5vvSDADA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECkZ8rolHi2x3u3TPPIIKhBgg3Jpuu2uISSECF3-9O31Aoh68NZs0bXenM988P4CHUCmvGVHqSE2Nwy3Cd6ydp47rRjSWBl0KDA0MR6I_5S9zb16Cx10vjNY6LT7TDbxMc_nxMtpiqOzJenIoLwdwaO2-R7NurUJ6XNES3MvYu1M9zKxvI-Qup-AiH0ua-xTMEZLK_cTNp_Zs_IZlXrzhImd7yrPySzmnFqdXgWHxrlmhyUdju1GN6OvHGMf_fswJ1Pa9fWS8s1qnUNLJGVRyMEryX31tlwq-h2KtCt3OApUMFs-gkiQdrVdkiJRcEcnntL4TC4JJL7QPmVnZNnlEkCwSYpEmsToorsG01520-05Ow-AsGGUbxzQjI41gNKSuibXPMTOnqGKqybSQnIUt1dLW7IvYKCH82OMt7ocKkZVhkrJzKCfLRF8AYdz3_MhiPsoM515T-SpW3FPSyoiIKa1DFTcqWGWTNoJ8j-pwXxxFYKUfUxphopfbdUAFzktEjHT59613cNSfDAfB4Hn0egXHeMZZodc1lDefW31jIcVG3aaS9A3ziMNV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Discriminative+Deep+Metric+Learning+for+Face+Verification+in+the+Wild&rft.au=Junlin+Hu&rft.au=Jiwen+Lu&rft.au=Yap-Peng+Tan&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1875&rft.epage=1882&rft_id=info:doi/10.1109%2FCVPR.2014.242&rft.externalDocID=6909638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon