Generalization Error of a Regression Model for Non-Invasive Blood Pressure Monitoring using a Single Photoplethysmography (PPG) Signal

Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used...

Full description

Saved in:
Bibliographic Details
Published in2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Vol. 2023; pp. i - iv
Main Authors Zylinski, Marek, Occhipinti, Edoardo, Mandic, Danilo
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
Subjects
Online AccessGet full text
ISSN2694-0604
DOI10.1109/EMBC40787.2023.10340929

Cover

Loading…
Abstract Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used to detect hypertension, estimate beat-by-beat ABP values, and even reconstruct the shape of the ABP. Overall, models presented in literature have shown good performance, but there is a gap between research and potential real-world use cases. Usually, models are trained and tested on data from the same dataset and same subjects, which may lead to overestimating their accuracy. In this paper: we compare cross-validation, where the test data are from the same dataset as training data, and external validation, where the model is tested on samples from a new dataset, on a regression model which predicts diastolic blood pressure from PPG features. The results show that, in the cross-validation, the predicted and the real values are linearly dependent, while in the external validation, the predicted values are not related to the real ones, but probably just through an average value.
AbstractList Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used to detect hypertension, estimate beat-by-beat ABP values, and even reconstruct the shape of the ABP. Overall, models presented in literature have shown good performance, but there is a gap between research and potential real-world use cases. Usually, models are trained and tested on data from the same dataset and same subjects, which may lead to overestimating their accuracy. In this paper: we compare cross-validation, where the test data are from the same dataset as training data, and external validation, where the model is tested on samples from a new dataset, on a regression model which predicts diastolic blood pressure from PPG features. The results show that, in the cross-validation, the predicted and the real values are linearly dependent, while in the external validation, the predicted values are not related to the real ones, but probably just through an average value.
Author Mandic, Danilo
Zylinski, Marek
Occhipinti, Edoardo
Author_xml – sequence: 1
  givenname: Marek
  surname: Zylinski
  fullname: Zylinski, Marek
  email: m.zylinski@imperial.ac.uk
  organization: Imperial College London,Electrical and Electronic Engineering Department,United Kingdom
– sequence: 2
  givenname: Edoardo
  surname: Occhipinti
  fullname: Occhipinti, Edoardo
  email: edoardo.occhipinti16@imperial.ac.uk
  organization: Imperial College London,UKRI Centre for Doctoral Training in AI for Healthcare,United Kingdom
– sequence: 3
  givenname: Danilo
  surname: Mandic
  fullname: Mandic, Danilo
  email: d.mandic@imperial.ac.uk
  organization: Imperial College London,Electrical and Electronic Engineering Department,United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38083115$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRQ0CUR79AwRewiLFzyZeQlVKpQIRjzUak0lqKbUjJ0UqH8B3EwRlM1eae2YW54js-eCRkHPORpwzczW9v5kolmbpSDAhR5xJxYwwO2RoUpNJzaRQKuW75FCMjUrYmKkBGbats0xLrbQR8oAMZMYyybk-JF8z9Bihdp_QueDpNMYQaSgp0CesIvaX_fY-FFjTsm8egk_m_gNa94H0pg6hoPkPtY7YU951ITpf0XX7M4E-91EjzZehC02N3XLTrkIVoVlu6EWezy57ovJQn5D9EuoWh395TF5vpy-Tu2TxOJtPrheJk8x0CSglWGa50mBMKjIUFsuyF2GV1SUfK2XRYgFcArDUWG65Zu-FBsiktSnIY3L2-7dZ2xUWb010K4ibt62QHjj9BRwi_tdbzfIbPo9zDQ
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
ESBDL
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC40787.2023.10340929
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350324471
EISSN 2694-0604
EndPage iv
ExternalDocumentID 38083115
10340929
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Health
  funderid: 10.13039/100018696
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
ESBDL
IEGSK
IJVOP
OCL
RIE
RIL
RIO
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-i309t-a44208b145a99728e2beff023b4b5f1644bebeda13aa079b1b150cd5aa83bb7a3
IEDL.DBID RIE
IngestDate Thu Apr 03 07:02:38 EDT 2025
Wed Jun 26 19:38:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i309t-a44208b145a99728e2beff023b4b5f1644bebeda13aa079b1b150cd5aa83bb7a3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10340929
PMID 38083115
ParticipantIDs ieee_primary_10340929
pubmed_primary_38083115
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
Score 1.8206074
Snippet Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless,...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage i
SubjectTerms Arterial Pressure
Biological system modeling
Blood Pressure
Blood Pressure Determination - methods
Data models
Feature extraction
Humans
Machine Learning
Photoplethysmography
Photoplethysmography - methods
Predictive models
Wearable computers
Title Generalization Error of a Regression Model for Non-Invasive Blood Pressure Monitoring using a Single Photoplethysmography (PPG) Signal
URI https://ieeexplore.ieee.org/document/10340929
https://www.ncbi.nlm.nih.gov/pubmed/38083115
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN7YHkxPaqxaH80ePOgBLOxS4NqmtZq0adQmvTWzsFRjBUOoB3-Av9sZHtU0MfEECcsAO8PuzO73zTB2aXUhhEhEhg0yMDDeCA1PammAFUYdLxAgch73eNIdzeT93JmXZPWcC6O1zsFn2qTTfC8_TII1LZXhHy4wHLH9Gqth5FaQtSrjkTYGer8SpTgCfQP0XkpMl9XxbwbjXp-2rVyTaoablbQG2xUeFdyi0rh5iZUtFzOfaoZ7bFK9ZIEweTXXmTKDz638jf_-in3W_GH18elmvjpgOzo-ZF9l3umSjskHaZqkPIk48Ae9LECyMaeKaSuO_i2fJLFxF38Aod55j1DvvGAYppoX4wMtFHKC0y9RxiMeVvjY5yQjpDpZxVuZJJtfTae319hiibbcZLPh4Kk_MsraDMaL6PiZAZL25ZUlHSDqradtpaMIu1VJ5UQYg0mF5hGCJQA6rq8shZ5nEDoAnlDKBXHE6nES6xPGsRnGhBIC1w6kI1ECiECG4EY-DhCu3WJN6sTFe5F-Y1H1X4sdF1raXKnUePrHHWesQZovVlDOWT1L1_oCfYpMtVltMh23c4v6BqkEynQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oTbQnNdb3Yw8e9AAWdilwbVOt2pLGR-KtmYWlGhUMoR78Af5uZ3ioaWLiCRKWAXaH3ZnZ75th7NjqQASxiA0bZGigvxEZntTSACuK214oQBQ87lHQGdzLqwfnoSKrF1wYrXUBPtMmnRZ7-VEazihUhn-4QHfE9hfZkkNs3JKuVauPtNHV-5UqxRHYCO2XCtVltf2z_qjbo40r16Sq4WYtr8mWhUclt6g4blFkZc7ILBab81UW1K9ZYkyezVmuzPBjLoPjv79jjbV-eH18_L1irbMFnWywzyrzdEXI5P0sSzOexhz4jZ6WMNmEU820F44WLg_SxLhM3oFw77xLuHdecgwzzcsZgkKFnAD1U5Rxi4cXfOxjmhNWnfTitUqTzU_G44tTbDFFbW6x-_P-XW9gVNUZjCfR9nMDJO3MK0s6QORbT9tKxzF2q5LKidELkwoVJAJLALRdX1kKbc8wcgA8oZQLYpM1kjTR24xjM_QKJYSuHUpHogQQoYzAjX2cIlx7h7WoEydvZQKOSd1_O2yrHKXvK_Uw7v5xxxFbGdyNhpPhZXC9x5qkBWU8ZZ818mymD9DCyNVhoVdfmWbMsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+45th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Generalization+Error+of+a+Regression+Model+for+Non-Invasive+Blood+Pressure+Monitoring+using+a+Single+Photoplethysmography+%28PPG%29+Signal&rft.au=Zylinski%2C+Marek&rft.au=Occhipinti%2C+Edoardo&rft.au=Mandic%2C+Danilo&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=i&rft.epage=iv&rft_id=info:doi/10.1109%2FEMBC40787.2023.10340929&rft_id=info%3Apmid%2F38083115&rft.externalDocID=10340929