Generalization Error of a Regression Model for Non-Invasive Blood Pressure Monitoring using a Single Photoplethysmography (PPG) Signal
Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used...
Saved in:
Published in | 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Vol. 2023; pp. i - iv |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2694-0604 |
DOI | 10.1109/EMBC40787.2023.10340929 |
Cover
Loading…
Abstract | Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used to detect hypertension, estimate beat-by-beat ABP values, and even reconstruct the shape of the ABP. Overall, models presented in literature have shown good performance, but there is a gap between research and potential real-world use cases. Usually, models are trained and tested on data from the same dataset and same subjects, which may lead to overestimating their accuracy. In this paper: we compare cross-validation, where the test data are from the same dataset as training data, and external validation, where the model is tested on samples from a new dataset, on a regression model which predicts diastolic blood pressure from PPG features. The results show that, in the cross-validation, the predicted and the real values are linearly dependent, while in the external validation, the predicted values are not related to the real ones, but probably just through an average value. |
---|---|
AbstractList | Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used to detect hypertension, estimate beat-by-beat ABP values, and even reconstruct the shape of the ABP. Overall, models presented in literature have shown good performance, but there is a gap between research and potential real-world use cases. Usually, models are trained and tested on data from the same dataset and same subjects, which may lead to overestimating their accuracy. In this paper: we compare cross-validation, where the test data are from the same dataset as training data, and external validation, where the model is tested on samples from a new dataset, on a regression model which predicts diastolic blood pressure from PPG features. The results show that, in the cross-validation, the predicted and the real values are linearly dependent, while in the external validation, the predicted values are not related to the real ones, but probably just through an average value. |
Author | Mandic, Danilo Zylinski, Marek Occhipinti, Edoardo |
Author_xml | – sequence: 1 givenname: Marek surname: Zylinski fullname: Zylinski, Marek email: m.zylinski@imperial.ac.uk organization: Imperial College London,Electrical and Electronic Engineering Department,United Kingdom – sequence: 2 givenname: Edoardo surname: Occhipinti fullname: Occhipinti, Edoardo email: edoardo.occhipinti16@imperial.ac.uk organization: Imperial College London,UKRI Centre for Doctoral Training in AI for Healthcare,United Kingdom – sequence: 3 givenname: Danilo surname: Mandic fullname: Mandic, Danilo email: d.mandic@imperial.ac.uk organization: Imperial College London,Electrical and Electronic Engineering Department,United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38083115$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kMtOwzAQRQ0CUR79AwRewiLFzyZeQlVKpQIRjzUak0lqKbUjJ0UqH8B3EwRlM1eae2YW54js-eCRkHPORpwzczW9v5kolmbpSDAhR5xJxYwwO2RoUpNJzaRQKuW75FCMjUrYmKkBGbats0xLrbQR8oAMZMYyybk-JF8z9Bihdp_QueDpNMYQaSgp0CesIvaX_fY-FFjTsm8egk_m_gNa94H0pg6hoPkPtY7YU951ITpf0XX7M4E-91EjzZehC02N3XLTrkIVoVlu6EWezy57ovJQn5D9EuoWh395TF5vpy-Tu2TxOJtPrheJk8x0CSglWGa50mBMKjIUFsuyF2GV1SUfK2XRYgFcArDUWG65Zu-FBsiktSnIY3L2-7dZ2xUWb010K4ibt62QHjj9BRwi_tdbzfIbPo9zDQ |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK ESBDL RIE RIO CGR CUY CVF ECM EIF NPM |
DOI | 10.1109/EMBC40787.2023.10340929 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Open Access Journals IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350324471 |
EISSN | 2694-0604 |
EndPage | iv |
ExternalDocumentID | 38083115 10340929 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Health funderid: 10.13039/100018696 |
GroupedDBID | 6IE 6IH 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO ESBDL IEGSK IJVOP OCL RIE RIL RIO CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-i309t-a44208b145a99728e2beff023b4b5f1644bebeda13aa079b1b150cd5aa83bb7a3 |
IEDL.DBID | RIE |
IngestDate | Thu Apr 03 07:02:38 EDT 2025 Wed Jun 26 19:38:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i309t-a44208b145a99728e2beff023b4b5f1644bebeda13aa079b1b150cd5aa83bb7a3 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10340929 |
PMID | 38083115 |
ParticipantIDs | ieee_primary_10340929 pubmed_primary_38083115 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) |
PublicationTitleAbbrev | EMBC |
PublicationTitleAlternate | Annu Int Conf IEEE Eng Med Biol Soc |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib053545923 ssib042469959 |
Score | 1.8206074 |
Snippet | Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless,... |
SourceID | pubmed ieee |
SourceType | Index Database Publisher |
StartPage | i |
SubjectTerms | Arterial Pressure Biological system modeling Blood Pressure Blood Pressure Determination - methods Data models Feature extraction Humans Machine Learning Photoplethysmography Photoplethysmography - methods Predictive models Wearable computers |
Title | Generalization Error of a Regression Model for Non-Invasive Blood Pressure Monitoring using a Single Photoplethysmography (PPG) Signal |
URI | https://ieeexplore.ieee.org/document/10340929 https://www.ncbi.nlm.nih.gov/pubmed/38083115 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN7YHkxPaqxaH80ePOgBLOxS4NqmtZq0adQmvTWzsFRjBUOoB3-Av9sZHtU0MfEECcsAO8PuzO73zTB2aXUhhEhEhg0yMDDeCA1PammAFUYdLxAgch73eNIdzeT93JmXZPWcC6O1zsFn2qTTfC8_TII1LZXhHy4wHLH9Gqth5FaQtSrjkTYGer8SpTgCfQP0XkpMl9XxbwbjXp-2rVyTaoablbQG2xUeFdyi0rh5iZUtFzOfaoZ7bFK9ZIEweTXXmTKDz638jf_-in3W_GH18elmvjpgOzo-ZF9l3umSjskHaZqkPIk48Ae9LECyMaeKaSuO_i2fJLFxF38Aod55j1DvvGAYppoX4wMtFHKC0y9RxiMeVvjY5yQjpDpZxVuZJJtfTae319hiibbcZLPh4Kk_MsraDMaL6PiZAZL25ZUlHSDqradtpaMIu1VJ5UQYg0mF5hGCJQA6rq8shZ5nEDoAnlDKBXHE6nES6xPGsRnGhBIC1w6kI1ECiECG4EY-DhCu3WJN6sTFe5F-Y1H1X4sdF1raXKnUePrHHWesQZovVlDOWT1L1_oCfYpMtVltMh23c4v6BqkEynQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oTbQnNdb3Yw8e9AAWdilwbVOt2pLGR-KtmYWlGhUMoR78Af5uZ3ioaWLiCRKWAXaH3ZnZ75th7NjqQASxiA0bZGigvxEZntTSACuK214oQBQ87lHQGdzLqwfnoSKrF1wYrXUBPtMmnRZ7-VEazihUhn-4QHfE9hfZkkNs3JKuVauPtNHV-5UqxRHYCO2XCtVltf2z_qjbo40r16Sq4WYtr8mWhUclt6g4blFkZc7ILBab81UW1K9ZYkyezVmuzPBjLoPjv79jjbV-eH18_L1irbMFnWywzyrzdEXI5P0sSzOexhz4jZ6WMNmEU820F44WLg_SxLhM3oFw77xLuHdecgwzzcsZgkKFnAD1U5Rxi4cXfOxjmhNWnfTitUqTzU_G44tTbDFFbW6x-_P-XW9gVNUZjCfR9nMDJO3MK0s6QORbT9tKxzF2q5LKidELkwoVJAJLALRdX1kKbc8wcgA8oZQLYpM1kjTR24xjM_QKJYSuHUpHogQQoYzAjX2cIlx7h7WoEydvZQKOSd1_O2yrHKXvK_Uw7v5xxxFbGdyNhpPhZXC9x5qkBWU8ZZ818mymD9DCyNVhoVdfmWbMsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+45th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Generalization+Error+of+a+Regression+Model+for+Non-Invasive+Blood+Pressure+Monitoring+using+a+Single+Photoplethysmography+%28PPG%29+Signal&rft.au=Zylinski%2C+Marek&rft.au=Occhipinti%2C+Edoardo&rft.au=Mandic%2C+Danilo&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=i&rft.epage=iv&rft_id=info:doi/10.1109%2FEMBC40787.2023.10340929&rft_id=info%3Apmid%2F38083115&rft.externalDocID=10340929 |