FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping
Graphene has attracted much attention since its first discovery in 2004. Various approaches have been proposed to control its physical and electronic properties. Here, it is reported that graphene‐based intercalation is an efficient method to modify the electronic properties of few‐layer graphene (F...
Saved in:
Published in | Advanced functional materials Vol. 20; no. 20; pp. 3504 - 3509 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
WILEY-VCH Verlag
22.10.2010
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene has attracted much attention since its first discovery in 2004. Various approaches have been proposed to control its physical and electronic properties. Here, it is reported that graphene‐based intercalation is an efficient method to modify the electronic properties of few‐layer graphene (FLG). FeCl3 intercalated FLGs are successfully prepared by the two‐zone vapor transport method. This is the first report on full intercalation for graphene samples. The features of the Raman G peak of such FLG intercalation compounds (FLGIC) are in good agreement with their full intercalation structures. The FLGICs present single Lorentzian 2D peaks, similar to that of single‐layer graphene, indicating the loss of electronic coupling between adjacent graphene layers. First principle calculations further reveal that the band structure of FLGIC is similar to single‐layer graphene but with a strong doping effect due to the charge transfer from graphene to FeCl3. The successful fabrication of FLGIC opens a new way to modify properties of FLG for fundamental studies and future applications.
Iron chloride intercalated few‐layer graphene are successfully prepared and systematically studied by Raman spectroscopy. Raman spectra of such few‐layer graphene intercalation compounds (FLGIC) clearly reveal the single‐layer graphene‐like electronic structure and strong charge transfer induced doping effect. Such properties are further confirmed by first principle calculations. The successful fabrication of FLGIC opens a new way to modify properties of graphene for future applications. |
---|---|
AbstractList | Graphene has attracted much attention since its first discovery in 2004. Various approaches have been proposed to control its physical and electronic properties. Here, it is reported that graphene‐based intercalation is an efficient method to modify the electronic properties of few‐layer graphene (FLG). FeCl3 intercalated FLGs are successfully prepared by the two‐zone vapor transport method. This is the first report on full intercalation for graphene samples. The features of the Raman G peak of such FLG intercalation compounds (FLGIC) are in good agreement with their full intercalation structures. The FLGICs present single Lorentzian 2D peaks, similar to that of single‐layer graphene, indicating the loss of electronic coupling between adjacent graphene layers. First principle calculations further reveal that the band structure of FLGIC is similar to single‐layer graphene but with a strong doping effect due to the charge transfer from graphene to FeCl3. The successful fabrication of FLGIC opens a new way to modify properties of FLG for fundamental studies and future applications.
Iron chloride intercalated few‐layer graphene are successfully prepared and systematically studied by Raman spectroscopy. Raman spectra of such few‐layer graphene intercalation compounds (FLGIC) clearly reveal the single‐layer graphene‐like electronic structure and strong charge transfer induced doping effect. Such properties are further confirmed by first principle calculations. The successful fabrication of FLGIC opens a new way to modify properties of graphene for future applications. |
Author | Wang, Yingying Sun, Li Lam, Yeng Ming Zhan, Da Huang, Wei Shen, Ze Xiang Fan, Xiao Feng Ni, Zhen Hua Liu, Lei Yu, Ting |
Author_xml | – sequence: 1 givenname: Da surname: Zhan fullname: Zhan, Da organization: Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore – sequence: 2 givenname: Li surname: Sun fullname: Sun, Li organization: Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore – sequence: 3 givenname: Zhen Hua surname: Ni fullname: Ni, Zhen Hua email: zhni@seu.edu.cn organization: Department of Physics, Southeast University, Nanjing 211189, PR China – sequence: 4 givenname: Lei surname: Liu fullname: Liu, Lei organization: Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore – sequence: 5 givenname: Xiao Feng surname: Fan fullname: Fan, Xiao Feng organization: Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore – sequence: 6 givenname: Yingying surname: Wang fullname: Wang, Yingying organization: Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore – sequence: 7 givenname: Ting surname: Yu fullname: Yu, Ting organization: Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore – sequence: 8 givenname: Yeng Ming surname: Lam fullname: Lam, Yeng Ming organization: School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore – sequence: 9 givenname: Wei surname: Huang fullname: Huang, Wei organization: Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, PR China – sequence: 10 givenname: Ze Xiang surname: Shen fullname: Shen, Ze Xiang email: zexiang@ntu.edu.sg organization: Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore |
BookMark | eNo9kMtOwzAURC0EEs8ta_9AwI88GnaQ0hQUiqry2lnGvi6G1InsVNB_4KNJRZXVnZHmzJXmGO27xgFC55RcUELYpdRmdcFIr0ka0z10RFOaRpyw0f6g6dshOg7hkxCaZTw-Qr8TKGoe3cgAGk_gO6rkBjwuvWw_wAG-cx14JWvZ2cbholm1zdrpcIUX1i1rwJV1ID0e29CCD9vMbQ2q842zCt9Ip_Gi82vVrT3gnWvcEhcf0i8BP3npgun_jZu27ztFB0bWAc529wQ9T26fimlUPZZ3xXUVWU5yGjFIuDFc6YTkRpGUZ0ANJUYzRt5prHKZvOs4ywC0Go0gN3GeccpSRrgGRhk_Qfl_77etYSNab1fSbwQlYjuk2A4phiHF9XjyMLiejf5ZGzr4GVjpv0Sa8SwRr7NSJPOX2bS8z8Wc_wEt2Hxb |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL |
DOI | 10.1002/adfm.201000641 |
DatabaseName | Istex |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 3509 |
ExternalDocumentID | ADFM201000641 ark_67375_WNG_5QVNHGJ9_Q |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT |
ID | FETCH-LOGICAL-i3091-2e53ff3cd509fc0637e1f10fd220b14c9a5bd477eedc88e9f4973126203de2123 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Aug 24 00:55:01 EDT 2024 Wed Oct 30 09:56:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3091-2e53ff3cd509fc0637e1f10fd220b14c9a5bd477eedc88e9f4973126203de2123 |
Notes | istex:F2D5CE19F4865922F89AC313E31D1EEACB03E501 ark:/67375/WNG-5QVNHGJ9-Q ArticleID:ADFM201000641 |
PageCount | 6 |
ParticipantIDs | wiley_primary_10_1002_adfm_201000641_ADFM201000641 istex_primary_ark_67375_WNG_5QVNHGJ9_Q |
PublicationCentury | 2000 |
PublicationDate | October 22, 2010 |
PublicationDateYYYYMMDD | 2010-10-22 |
PublicationDate_xml | – month: 10 year: 2010 text: October 22, 2010 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | N. Emery, C. Herold, M. d'Astuto, V. Garcia, C. Bellin, J. F. Mareche, P. Lagrange, G. Loupias, Phys. Rev. Lett. 2005, 95, 087003. C. Underhill, S. Y. Leung, G. Dresselhaus, M. S. Dresselhaus, Solid State Commun. 1979, 29, 769. L. Liu, S. M. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, G. W. Flynn, Nano Lett. 2008, 8, 1965. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nat. Nanotechnol. 2008, 3, 210. Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, Y. H. Wu, Appl. Phys. Lett. 2008, 92, 043121. C. T. Chan, W. A. Kamitakahara, K. M. Ho, P. C. Eklund, Phys. Rev. Lett. 1987, 58, 1528. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282. M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498. S. R. Su, D. W. Oblas, Carbon 1987, 25, 391. X. Wang, L. J. Zhi, K. Mullen, Nano Lett. 2008, 8, 323. I. I. Mazin, A. V. Balatsky, arXiv:0803.3765v1. N. Caswell, S. A. Solin, Solid State Commun. 1978, 27, 961. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15. P. C. Eklund, D. S. Smith, V. R. K. Murthy, S. Y. Leung, Synth. Met. 1980, 2, 99. R. Schlogl, W. Jones, H. P. Boehm, Synth. Met. 1983, 7, 133. H. Schmidt, T. Ludtke, P. Barthold, E. McCann, V. I. Fal'ko, R. J. Haug, Appl. Phys. Lett. 2008, 93, 172108. C. T. Chan, K. M. Ho, W. A. Kamitakahara, Phys. Rev. B: Condens. Matter Mater. Phys. 1987 36 3499 A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 2009, 9, 30. J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206. Z. H. Ni, Y. Y. Wang, T. Yu, Y. M. You, Z. X. Shen, Phys. Rev. B 2008, 77, 235403. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, J. Phys. Chem., B 2004, 108, 19912. J. M. Cowley, J. A. Ibers, Acta Crystallogr. 1956, 9, 421. T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, N. T. Skipper, Nat. Phys. 2005, 1, 39. Y. B. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201. M. Lazzeri, F. Mauri, Phys. Rev. Lett. 2006, 97, 266407. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Phys. Rev. Lett. 2008, 100, 016602. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902. Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen, A. T. S. Wee, J. Phys. Chem. C 2008, 112, 10637. Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, Z. X. Shen, J. Raman Spectrosc. 2010, 41, 479. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51. T. Sasa, Takahash. Y, T. Mukaibo, Carbon 1971, 9, 407. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, Z. X. Shen, Nano Lett. 2007, 7, 2758. M. S. Dresselhaus, G. Dresselhaus, Adv. Phys. 2002, 51, 1. I. Calizo, W. Z. Bao, F. Miao, C. N. Lau, A. A. Balandin, Appl. Phys. Lett. 2007, 91, 201904. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197. T. Abe, M. Inaba, Z. Ogumi, Y. Yokota, Y. Mizutani, Phys. Rev. B: Condens. Matter Mater. Phys. 2000 61 11344 J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B: Condens. Matter Mater. Phys. 1996 54 16533 D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Appl. Phys. Lett. 2008, 92, 151911. N. Jung, N. Kim, S. Jockusch, N. J. Turro, P. Kim, L. Brus, Nano Lett. 2009, 9, 4133. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, F. Mauri, Nat. Mater. 2007, 6, 198. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401. L. Liu, Z. X. Shen, Appl. Phys. Lett. 2009, 95, 252104. 1987; 36 1987; 58 2006; 97 2002; 51 1983; 7 2009; 473 2005; 438 2007; 91 2008; 8 2008; 77 2008; 3 2004; 306 2004; 108 2008; 100 2008; 92 2008; 93 2010; 41 1996; 54 2009; 458 1971; 9 1987; 25 1979; 29 2009; 95 1980; 2 2005; 95 2000; 61 2009; 9 1956; 9 2007; 6 2007; 7 2005; 1 1978; 27 2008; 112 2006; 442 1996; 6 |
References_xml | – volume: 51 start-page: 1 year: 2002 publication-title: Adv. Phys. – volume: 9 start-page: 407 year: 1971 publication-title: Carbon – volume: 27 start-page: 961 year: 1978 publication-title: Solid State Commun. – volume: 97 start-page: 187401 year: 2006 publication-title: Phys. Rev. Lett. – volume: 92 start-page: 151911 year: 2008 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 421 year: 1956 publication-title: Acta Crystallogr. – volume: 112 start-page: 10637 year: 2008 publication-title: J. Phys. Chem. C – volume: 7 start-page: 133 year: 1983 publication-title: Synth. Met. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 438 start-page: 201 year: 2005 publication-title: Nature – volume: 473 start-page: 51 year: 2009 publication-title: Phys. Rep. – volume: 95 start-page: 252104 year: 2009 publication-title: Appl. Phys. Lett. – volume: 442 start-page: 282 year: 2006 publication-title: Nature – volume: 95 start-page: 087003 year: 2005 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 323 year: 2008 publication-title: Nano Lett. – volume: 54 start-page: 16533 year: 1996 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 8 start-page: 902 year: 2008 publication-title: Nano Lett. – volume: 8 start-page: 3498 year: 2008 publication-title: Nano Lett. – volume: 9 start-page: 4133 year: 2009 publication-title: Nano Lett. – volume: 108 start-page: 19912 year: 2004 publication-title: J. Phys. Chem., B – volume: 438 start-page: 197 year: 2005 publication-title: Nature – volume: 3 start-page: 210 year: 2008 publication-title: Nat. Nanotechnol. – volume: 458 start-page: 872 year: 2009 publication-title: Nature – volume: 8 start-page: 1965 year: 2008 publication-title: Nano Lett. – volume: 25 start-page: 391 year: 1987 publication-title: Carbon – volume: 3 start-page: 206 year: 2008 publication-title: Nat. Nanotechnol. – volume: 97 start-page: 266407 year: 2006 publication-title: Phys. Rev. Lett. – volume: 58 start-page: 1528 year: 1987 publication-title: Phys. Rev. Lett. – volume: 61 start-page: 11344 year: 2000 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 77 start-page: 235403 year: 2008 publication-title: Phys. Rev. B – volume: 1 start-page: 39 year: 2005 publication-title: Nat. Phys. – volume: 36 start-page: 3499 year: 1987 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 41 start-page: 479 year: 2010 publication-title: J. Raman Spectrosc. – volume: 9 start-page: 30 year: 2009 publication-title: Nano Lett. – volume: 100 start-page: 016602 year: 2008 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 198 year: 2007 publication-title: Nat. Mater. – volume: 91 start-page: 201904 year: 2007 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 99 year: 1980 publication-title: Synth. Met. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 29 start-page: 769 year: 1979 publication-title: Solid State Commun. – publication-title: arXiv:0803.3765v1 – volume: 93 start-page: 172108 year: 2008 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 043121 year: 2008 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 2758 year: 2007 publication-title: Nano Lett. |
SSID | ssj0017734 |
Score | 2.4682837 |
Snippet | Graphene has attracted much attention since its first discovery in 2004. Various approaches have been proposed to control its physical and electronic... |
SourceID | wiley istex |
SourceType | Publisher |
StartPage | 3504 |
SubjectTerms | charge transfer doping electronic band structure graphene intercalation Raman spectroscopy |
Title | FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping |
URI | https://api.istex.fr/ark:/67375/WNG-5QVNHGJ9-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201000641 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELUQJzgM2yB2-YC4BeIlnTQ3oEm3ELQEDNC3yLHLCAEBsWhGnPgEvpEvocppAswRpBxiyU4sl8v1XC6_Ymw1yYhlq2xHYGIfaWtElHntI-GTEtGyiGNH_o6Dfqt3ovcGyeDTLf6aH6JxuJFmhPWaFNyU9xsfpKHG-esQmkVWlfY_QqUU09U5avijRJrWx8otQQFeYvDO2hjLja_NEZrSqP77ClGDjcknmHnvXR1acrn--FCu26f_iBt_0v1J9msIQPlWPWOm2AhU02z8Ey3hDHvJYedKvT6_bKOJczyHv_i-bxCc8y7xW-PyyIMnEeUbBMtpVaH8TPeb_Bg_cQUc97ioQ7xzQUzk5JHju03CHb5tKsePA3Pt4x3wYemmOud0-n8OPFhQj__rhPtcv9lJvvtnpxcNMzdEFwoBSCQhUd4r6xCOeIsoKAXhReydlHEptG2bpHQ6TdFA2yyDtteUQYu48ZUDMqazbLS6qWCOcWkz5bVMBVijhYkzBwqgJSC2xioN82wtSK64rdk5CnN3ScFqaVKc9btFcnja73X32sXhPJNBHk3FmrBZFiSJopFEsdXJD5rSwncaLbKxEGOAj5RLbBSHE5YRujyUK2F6vgHvdemt |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHGgPfdBWpQ_qA-otED-yyXIDluwWdleiQMvNcuwxQtCAeKhVT_0J_Mb-Emac3fA4tlIOsRTn4fHMfJ6Mv2FsOSuIZavqJmDTkGhnRVIEHRIRsgrRskhTT_GO0bgzONDbh9k0m5D2wjT8EG3AjTQj2mtScApIr96xhloffsTcLHKruACaQ51XVL2h97VlkBJ53vxY7ghK8RKHU97GVK4-7I_glMb110OQGr1M-ZxV0_drkktOVq6vqhX3-xF14399wAv2bIJB-XozaV6yGagX2NN7zISv2E0Jm6fq75-bDfRynpfwE8-HFvE57xPFNVpIHoOJKOIoW06GhUo0Xa7xPbzFKXBc5qIa8d4xkZFTUI5vtTV3-IatPd-L5LXXF8AnrbP6iFMCwBHw6EQDPq8Xt3S9Zgfl1v7mIJkUb0iOFWKQREKmQlDOIyIJDoFQDiKINHgp00po17VZ5XWeo492RQHdoKmIFtHjKw_kT9-w2fqshreMS1eooGUuwFktbFp4UAAdAamzTmlYZJ-j6Mx5Q9Bh7MUJ5avlmfk-7pts99t40N_umt1FJqNA2gsbzmZpSBKmlYRZ75WjtvXuXzp9YvOD_dHQDL-Md96zJzHlAA8pP7BZHFr4iEjmqlqKc_UWgsvtxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqKqFyaAttVfoDPiBugdhxNlluwJJd_lallHZvlmOPV4htFlEQFScegWfkSZhxlhR6BCmHWLITy-PxfB6Pv2FsKc2JZatsR2BiHylrRJR75SPh0xLRsohjR_6O_X6rd6R2BungwS3-mh-icbiRZoT1mhT81PnVf6ShxvnfITSLrCruf16qFsJfgkXfGwIpkWX1uXJLUISXGNzTNsZy9XF7xKY0rH8fY9RgZIo3zNx3r44tOVm5OC9X7NV_zI3P6f9b9nqCQPl6PWVm2Quo5tjMA17Cd-ymgM1Rcnt9s4E2zvECLvF9zyA6510iuMb1kQdXIgo4SJbTskIJmv6s8UP8xAg4bnJRiXjnmKjIySXHt5qMO3zDVI4fBuraizPgk9K4GnI6_h8CDybU4_864ULXe3ZUbP3Y7EWT1A3RcYIIJJKQJt4n1iEe8RZhUAbCi9g7KeNSKNs2aelUlqGFtnkOba8ohRaR4ycOyJp-YFPVuIKPjEubJ17JTIA1Spg4d5AAtATE1thEwTxbDpLTpzU9hzZnJxStlqX6V7-r04Of_V53p60P5pkM8mgq1ozNUpMkdCMJvd4p9pvSp6c0WmTT3zqF3tvu735mr0K8AT5SfmFTOLLwFWHMebkQZuodzcfsdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FeCl3-Based+Few-Layer+Graphene+Intercalation+Compounds%3A+Single+Linear+Dispersion+Electronic+Band+Structure+and+Strong+Charge+Transfer+Doping&rft.jtitle=Advanced+functional+materials&rft.au=Zhan%2C+Da&rft.au=Sun%2C+Li&rft.au=Ni%2C+Zhen+Hua&rft.au=Liu%2C+Lei&rft.date=2010-10-22&rft.pub=WILEY-VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=20&rft.issue=20&rft.spage=3504&rft.epage=3509&rft_id=info:doi/10.1002%2Fadfm.201000641&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_5QVNHGJ9_Q |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |