Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks
Separation of speech embedded in non-stationary interference is a challenging problem that has recently seen dramatic improvements using deep network-based methods. Previous work has shown that estimating a masking function to be applied to the noisy spectrum is a viable approach that can be improve...
Saved in:
Published in | 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 708 - 712 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Separation of speech embedded in non-stationary interference is a challenging problem that has recently seen dramatic improvements using deep network-based methods. Previous work has shown that estimating a masking function to be applied to the noisy spectrum is a viable approach that can be improved by using a signal-approximation based objective function. Better modeling of dynamics through deep recurrent networks has also been shown to improve performance. Here we pursue both of these directions. We develop a phase-sensitive objective function based on the signal-to-noise ratio (SNR) of the reconstructed signal, and show that in experiments it yields uniformly better results in terms of signal-to-distortion ratio (SDR). We also investigate improvements to the modeling of dynamics, using bidirectional recurrent networks, as well as by incorporating speech recognition outputs in the form of alignment vectors concatenated with the spectral input features. Both methods yield further improvements, pointing to tighter integration of recognition with separation as a promising future direction. |
---|---|
AbstractList | Separation of speech embedded in non-stationary interference is a challenging problem that has recently seen dramatic improvements using deep network-based methods. Previous work has shown that estimating a masking function to be applied to the noisy spectrum is a viable approach that can be improved by using a signal-approximation based objective function. Better modeling of dynamics through deep recurrent networks has also been shown to improve performance. Here we pursue both of these directions. We develop a phase-sensitive objective function based on the signal-to-noise ratio (SNR) of the reconstructed signal, and show that in experiments it yields uniformly better results in terms of signal-to-distortion ratio (SDR). We also investigate improvements to the modeling of dynamics, using bidirectional recurrent networks, as well as by incorporating speech recognition outputs in the form of alignment vectors concatenated with the spectral input features. Both methods yield further improvements, pointing to tighter integration of recognition with separation as a promising future direction. |
Author | Hershey, John R. Erdogan, Hakan Le Roux, Jonathan Watanabe, Shinji |
Author_xml | – sequence: 1 givenname: Hakan surname: Erdogan fullname: Erdogan, Hakan email: haerdogan@sabanciuniv.edu organization: Mitsubishi Electr. Res. Labs. (MERL), Cambridge, MA, USA – sequence: 2 givenname: John R. surname: Hershey fullname: Hershey, John R. email: hershey@merl.com organization: Mitsubishi Electr. Res. Labs. (MERL), Cambridge, MA, USA – sequence: 3 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji email: watanabe@merl.com organization: Mitsubishi Electr. Res. Labs. (MERL), Cambridge, MA, USA – sequence: 4 givenname: Jonathan surname: Le Roux fullname: Le Roux, Jonathan email: leroux@merl.com organization: Mitsubishi Electr. Res. Labs. (MERL), Cambridge, MA, USA |
BookMark | eNotkNtKw0AYhFeoYFv7BL3ZF9j6b7KnXErxUChYqN5aNtk_bbTuht1E8e1NsFfDMMzwMTMy8cEjIUsOK86huNus7_f73SoDLleaawOKX5EZF0rnqii0npAplxkwxUVxQxYpfQAA10oLLabkfXeyCVlCn5qu-UZqvaMRq3D0gw-elSGkDh1NLWJ1oglbG-2Y0D41_kgdYjsW-hjRd9RjH-15kO4nxM90S65re064uOicvD0-vK6f2fblaQDfsiYH3bF8JHRGOymtyWuUNapSKQ0cBFbcmLKslausqW0pwQgUpRYqc85lQpoC8jlZ_u82iHhoY_Nl4-_hckf-B2T1WFA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP.2015.7178061 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1467369977 9781467369978 |
EndPage | 712 |
ExternalDocumentID | 7178061 |
Genre | orig-research |
GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i307t-31520d87d55a83fe5fe6b6670104ec188bbf6dca8fab5084e4b7462ddd2458903 |
IEDL.DBID | RIE |
ISSN | 1520-6149 |
IngestDate | Wed Aug 27 02:20:01 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i307t-31520d87d55a83fe5fe6b6670104ec188bbf6dca8fab5084e4b7462ddd2458903 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7178061 |
PublicationCentury | 2000 |
PublicationDate | 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 20150401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001767474 ssj0008748 |
Score | 2.5010414 |
Snippet | Separation of speech embedded in non-stationary interference is a challenging problem that has recently seen dramatic improvements using deep network-based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 708 |
SubjectTerms | ASR deep networks Linear programming LSTM Noise measurement Signal to noise ratio Speech Speech enhancement Speech recognition speech separation Training |
Title | Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks |
URI | https://ieeexplore.ieee.org/document/7178061 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rx0Ypv9uDRpI8km81RiqUKSqEWerLsY9aKkhSTXvz1ziSxVfHgKSGQZdlsZuab_eYbxi77Ok5ASOeFiDUIoICnbdL3AmUiF8fCaFWqfT6I0TS8m0WzBrta18IAQEk-A59uy7N8m5kVpco6CD1kl7DOFgK3qlZrk08hVRoKZWorLOOycxa6J4JHYVIrDvW6Sed2cD2ZjInWFfn1kD96q5SuZbjL7r8mVTFKXv1VoX3z8Uuv8b-z3mPtTREfH6_d0z5rQHrAdr7pD7bY03iBTszLicROZo-r1PI1pShLPQzBKR3K8yWAWfAcKqXwLOXEl3_mFmBJL1QiT5zEMdUbXkpqed5m0-HN42Dk1Q0XvBf81Qu0x7haVsY2ipQMHEQOhBYiJswGpiel1k5Yo6RTGgO7EEIdh6Jvre2HkUy6wSFrplkKR4wb6bTFjQCBQTOhncaRgMITEWuFGOuYtWil5stKU2NeL9LJ349P2TZ9rYoxc8aaxfsKzjEYKPRFuQs-Aau4s8g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIALu9jxAY4pJY0d58CJRYUCqgRInCixPaEIlFakFYJv4Vf4N2aS0ALiisQpUaQs9oxm5jlvngG2fBNGqHTiBYQ1GKCgZ1zke7XYyiQMlTVxrvZ5rupXwcm1vB6Bt0EvDCLm5DOs8Gn-L991bJ-XynYIemjKPyWFsoEvzwTQsr3jA7Lmtu8fHV7u171yDwHvnry3RyFG-lWnQydlrGsJygSVUSpkGIJ2V2tjEuVsrJPYUK0SYGDCQPnOOT-QOqrW6LmjME51hvSL7rDhCg7r4HDxVMZ9HeZ7dfELCZAFUalxtFuNduiDLi6aTCSTlXIQ33ZzyZPZ0TS8f05DwWF5qPR7pmJffyhE_td5moGFYZuiaA4S8CyMYDoHU18UFufhptmmNO1lTNPnwC7i1IkBaaqTegQyeMFXZF1E2xYZFlronVRwR8CdcIhdvqGQsRIs_xk_0iEnz2cLcPUnw1yEsbST4hIIqxPjyNWxZikQmsTQk5ALMBWamFDkMsyzZVrdQjWkVRpl5ffLmzBRvzw7bZ0enzdWYZI9peAHrcFY76mP61T69MxG7oECbv_alB9QrREj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Phase-sensitive+and+recognition-boosted+speech+separation+using+deep+recurrent+neural+networks&rft.au=Erdogan%2C+Hakan&rft.au=Hershey%2C+John+R.&rft.au=Watanabe%2C+Shinji&rft.au=Le+Roux%2C+Jonathan&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1520-6149&rft.spage=708&rft.epage=712&rft_id=info:doi/10.1109%2FICASSP.2015.7178061&rft.externalDocID=7178061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |