ECG-based biometric authentication using mulscale descriptors: ECG-based biometric authentication
ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are liveliness and the robustness against falsification. However, ECG features vary due to muscle flexure, baseline wander, and other sources of noise. Th...
Saved in:
Published in | 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) pp. 1 - 4 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are liveliness and the robustness against falsification. However, ECG features vary due to muscle flexure, baseline wander, and other sources of noise. This paper presents a new method which extracts multiscale geometric features from ECG signals and apply them for human identification. A non-linear filter is applied for preprocessing the ECG signal. The refined ECG signal is then divided into multiple segments and feature matrix is computed by multiscale pattern extraction technique. Feature matrix is finally applied to a simple minimum distance to mean classifier adopting leave-one-out procedure. An experiment with 60 ECG signals from 60 subjects shows promising performance of the proposed method compared to the conventional ECG features. |
---|---|
AbstractList | ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are liveliness and the robustness against falsification. However, ECG features vary due to muscle flexure, baseline wander, and other sources of noise. This paper presents a new method which extracts multiscale geometric features from ECG signals and apply them for human identification. A non-linear filter is applied for preprocessing the ECG signal. The refined ECG signal is then divided into multiple segments and feature matrix is computed by multiscale pattern extraction technique. Feature matrix is finally applied to a simple minimum distance to mean classifier adopting leave-one-out procedure. An experiment with 60 ECG signals from 60 subjects shows promising performance of the proposed method compared to the conventional ECG features. |
Author | Yoshida, Hiroaki Bashar, Md Khayrul Ohta, Yuji |
Author_xml | – sequence: 1 givenname: Md Khayrul surname: Bashar fullname: Bashar, Md Khayrul email: Bashar.md.khayrul@ocha.ac.jp organization: Leading Grad. Sch. Promotion Center, Ochanomizu Univ., Tokyo, Japan – sequence: 2 givenname: Yuji surname: Ohta fullname: Ohta, Yuji email: ohta.yuji@ocha.ac.jp organization: Fac. of Human Life & Environ. Sci., Ochanomizu Univ., Tokyo, Japan – sequence: 3 givenname: Hiroaki surname: Yoshida fullname: Yoshida, Hiroaki email: yoshida@is.ocha.ac.jp organization: Dept. of Inf. Sci., Ochanomizu Univ., Tokyo, Japan |
BookMark | eNqFkLFOwzAURY0EErT0C2DwDyTYsWPnsUHUlkhFDMBcvdgvYClNqtgZ-Hsq0Z3pXh3pnuEu2OUwDsTYvRS5lAIemrppnl_f80LIMrdagTblBVtIbQGq0hT2mq1iDK1QQpyIVDcM1_U2azGS520YD5Sm4DjO6ZuGFBymMA58jmH44oe5jw574p6im8IxjVN85P_Pb9lVh32k1TmX7HOz_qhfst3btqmfdllQQqXMWi-khRKIvBWgrZbCQCVOxXpToFRQoPdV67yunNSdqZR2BqFQIEvs1JLd_XkDEe2PUzjg9LM_v6B-Ac-aVig |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICIIBMS.2015.7439465 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1479985627 9781479985623 |
EndPage | 4 |
ExternalDocumentID | 7439465 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i303t-77d017959eed7094741069804747d62a1392add8bcd48c14f6834c6a923915af3 |
IEDL.DBID | RIE |
IngestDate | Wed Dec 20 05:18:33 EST 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i303t-77d017959eed7094741069804747d62a1392add8bcd48c14f6834c6a923915af3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7439465 |
PublicationCentury | 2000 |
PublicationDate | 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 20151101 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) |
PublicationTitleAbbrev | ICIIBMS |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib030099813 |
Score | 1.6647178 |
Snippet | ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Authentication Binary patterns Electrocardiography Feature extraction Heart beat Histograms human identification multiscale pattern distribution Signal processing supervised classification |
Title | ECG-based biometric authentication using mulscale descriptors: ECG-based biometric authentication |
URI | https://ieeexplore.ieee.org/document/7439465 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdv2RpqlHx-YmTAQd7Dba5EVE7WRrL_71vrTdRBH0FgKPhry8fF_S770AXPhRioaQzCFslQ43FHNZzLkTGC_R6CEaU6kt7sR4xm_n0bwFl9tcGESsxGfo2mb1L18vVWmvyvqWPHMRtaFNB7c6V2uzdkJLdaQfNtlxvpf0J4PJ5Hr6YOVbkduYfntDpYKQ0S5MNx-vlSMvbllkrvr4UZfxv6Pbg95Xsh6738LQPrQw70I6HNw4FqE0qxLsbR1-llo1e140t3TMSt6f2Fv5uiY_IdNY7yDL1fqK_W3eg9lo-DgYO81rCs4zwVRBNFrb6IsSGk5MhzqiEp5IpEeNWIsgJSoY0GYnM6W5VD43QoZciZQYYEIeNeEBdPJljofApEpkrLiwJhTzxGF0gDoi6kPdJpRH0LXTs3ivC2Ysmpk5_r37BHasi-oEv1PoFKsSzwjpi-y8cvEn3Hyo_Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3M-aBPKpv4bR58tLUfSZv66NhcdRuCG-xttPkQUTvZ2hd_vTdtN1EEfQuB0JDbm3OannMDcOGyRGlEMguxlVtUY86lIaWWp51IKkcprUu1xSjoT-jdlE0bcLn2wiilSvGZsk2z_Jcv56IwR2VXhjzTgG3AJuI-cyu31urt8Q3Z4a5f--NcJ7qKO3F8M3w0Ai5m14O_3aJSgkhvB4arx1fakRe7yFNbfPyozPjf-e1C-8uuRx7WQLQHDZW1IOl2bi2DUZKUFntTiZ8kRs-e5fU5HTGi9yfyVrwuMVKKSFXtIfPF8pr8PbwNk1533Olb9X0K1jMCVY5EWpr8YxFOJ8TPOiQTThBxBxuhDLwEyaCH2x1PhaRcuFQH3KciSJADRhhT7e9DM5tn6gAIFxEPBQ3MEMx6ZDHSU5Ih-cFu7fNDaJnlmb1XJTNm9coc_d59Dlv98XAwG8Sj-2PYNuGq7H4n0MwXhTpF3M_TszLcn92qrEY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Intelligent+Informatics+and+Biomedical+Sciences+%28ICIIBMS%29&rft.atitle=ECG-based+biometric+authentication+using+mulscale+descriptors%3A+ECG-based+biometric+authentication&rft.au=Bashar%2C+Md+Khayrul&rft.au=Ohta%2C+Yuji&rft.au=Yoshida%2C+Hiroaki&rft.date=2015-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICIIBMS.2015.7439465&rft.externalDocID=7439465 |