ECG-based biometric authentication using mulscale descriptors: ECG-based biometric authentication

ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are liveliness and the robustness against falsification. However, ECG features vary due to muscle flexure, baseline wander, and other sources of noise. Th...

Full description

Saved in:
Bibliographic Details
Published in2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) pp. 1 - 4
Main Authors Bashar, Md Khayrul, Ohta, Yuji, Yoshida, Hiroaki
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are liveliness and the robustness against falsification. However, ECG features vary due to muscle flexure, baseline wander, and other sources of noise. This paper presents a new method which extracts multiscale geometric features from ECG signals and apply them for human identification. A non-linear filter is applied for preprocessing the ECG signal. The refined ECG signal is then divided into multiple segments and feature matrix is computed by multiscale pattern extraction technique. Feature matrix is finally applied to a simple minimum distance to mean classifier adopting leave-one-out procedure. An experiment with 60 ECG signals from 60 subjects shows promising performance of the proposed method compared to the conventional ECG features.
AbstractList ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are liveliness and the robustness against falsification. However, ECG features vary due to muscle flexure, baseline wander, and other sources of noise. This paper presents a new method which extracts multiscale geometric features from ECG signals and apply them for human identification. A non-linear filter is applied for preprocessing the ECG signal. The refined ECG signal is then divided into multiple segments and feature matrix is computed by multiscale pattern extraction technique. Feature matrix is finally applied to a simple minimum distance to mean classifier adopting leave-one-out procedure. An experiment with 60 ECG signals from 60 subjects shows promising performance of the proposed method compared to the conventional ECG features.
Author Yoshida, Hiroaki
Bashar, Md Khayrul
Ohta, Yuji
Author_xml – sequence: 1
  givenname: Md Khayrul
  surname: Bashar
  fullname: Bashar, Md Khayrul
  email: Bashar.md.khayrul@ocha.ac.jp
  organization: Leading Grad. Sch. Promotion Center, Ochanomizu Univ., Tokyo, Japan
– sequence: 2
  givenname: Yuji
  surname: Ohta
  fullname: Ohta, Yuji
  email: ohta.yuji@ocha.ac.jp
  organization: Fac. of Human Life & Environ. Sci., Ochanomizu Univ., Tokyo, Japan
– sequence: 3
  givenname: Hiroaki
  surname: Yoshida
  fullname: Yoshida, Hiroaki
  email: yoshida@is.ocha.ac.jp
  organization: Dept. of Inf. Sci., Ochanomizu Univ., Tokyo, Japan
BookMark eNqFkLFOwzAURY0EErT0C2DwDyTYsWPnsUHUlkhFDMBcvdgvYClNqtgZ-Hsq0Z3pXh3pnuEu2OUwDsTYvRS5lAIemrppnl_f80LIMrdagTblBVtIbQGq0hT2mq1iDK1QQpyIVDcM1_U2azGS520YD5Sm4DjO6ZuGFBymMA58jmH44oe5jw574p6im8IxjVN85P_Pb9lVh32k1TmX7HOz_qhfst3btqmfdllQQqXMWi-khRKIvBWgrZbCQCVOxXpToFRQoPdV67yunNSdqZR2BqFQIEvs1JLd_XkDEe2PUzjg9LM_v6B-Ac-aVig
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIIBMS.2015.7439465
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479985627
9781479985623
EndPage 4
ExternalDocumentID 7439465
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i303t-77d017959eed7094741069804747d62a1392add8bcd48c14f6834c6a923915af3
IEDL.DBID RIE
IngestDate Wed Dec 20 05:18:33 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i303t-77d017959eed7094741069804747d62a1392add8bcd48c14f6834c6a923915af3
PageCount 4
ParticipantIDs ieee_primary_7439465
PublicationCentury 2000
PublicationDate 20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 20151101
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)
PublicationTitleAbbrev ICIIBMS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030099813
Score 1.6647178
Snippet ECG-based based human recognition is increasingly becoming a popular modality for biometric authentication. Two important features of ECG signals are...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Authentication
Binary patterns
Electrocardiography
Feature extraction
Heart beat
Histograms
human identification
multiscale pattern distribution
Signal processing
supervised classification
Title ECG-based biometric authentication using mulscale descriptors: ECG-based biometric authentication
URI https://ieeexplore.ieee.org/document/7439465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdv2RpqlHx-YmTAQd7Dba5EVE7WRrL_71vrTdRBH0FgKPhry8fF_S770AXPhRioaQzCFslQ43FHNZzLkTGC_R6CEaU6kt7sR4xm_n0bwFl9tcGESsxGfo2mb1L18vVWmvyvqWPHMRtaFNB7c6V2uzdkJLdaQfNtlxvpf0J4PJ5Hr6YOVbkduYfntDpYKQ0S5MNx-vlSMvbllkrvr4UZfxv6Pbg95Xsh6738LQPrQw70I6HNw4FqE0qxLsbR1-llo1e140t3TMSt6f2Fv5uiY_IdNY7yDL1fqK_W3eg9lo-DgYO81rCs4zwVRBNFrb6IsSGk5MhzqiEp5IpEeNWIsgJSoY0GYnM6W5VD43QoZciZQYYEIeNeEBdPJljofApEpkrLiwJhTzxGF0gDoi6kPdJpRH0LXTs3ivC2Ysmpk5_r37BHasi-oEv1PoFKsSzwjpi-y8cvEn3Hyo_Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3M-aBPKpv4bR58tLUfSZv66NhcdRuCG-xttPkQUTvZ2hd_vTdtN1EEfQuB0JDbm3OannMDcOGyRGlEMguxlVtUY86lIaWWp51IKkcprUu1xSjoT-jdlE0bcLn2wiilSvGZsk2z_Jcv56IwR2VXhjzTgG3AJuI-cyu31urt8Q3Z4a5f--NcJ7qKO3F8M3w0Ai5m14O_3aJSgkhvB4arx1fakRe7yFNbfPyozPjf-e1C-8uuRx7WQLQHDZW1IOl2bi2DUZKUFntTiZ8kRs-e5fU5HTGi9yfyVrwuMVKKSFXtIfPF8pr8PbwNk1533Olb9X0K1jMCVY5EWpr8YxFOJ8TPOiQTThBxBxuhDLwEyaCH2x1PhaRcuFQH3KciSJADRhhT7e9DM5tn6gAIFxEPBQ3MEMx6ZDHSU5Ih-cFu7fNDaJnlmb1XJTNm9coc_d59Dlv98XAwG8Sj-2PYNuGq7H4n0MwXhTpF3M_TszLcn92qrEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Intelligent+Informatics+and+Biomedical+Sciences+%28ICIIBMS%29&rft.atitle=ECG-based+biometric+authentication+using+mulscale+descriptors%3A+ECG-based+biometric+authentication&rft.au=Bashar%2C+Md+Khayrul&rft.au=Ohta%2C+Yuji&rft.au=Yoshida%2C+Hiroaki&rft.date=2015-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICIIBMS.2015.7439465&rft.externalDocID=7439465