Bone-Conduction-Based Brain Computer Interface Paradigm -- EEG Signal Processing, Feature Extraction and Classification
The paper presents a novel bone-conduction based brain-computer interface paradigm. Four sub-threshold acoustic frequency stimulus patterns are presented to the subjects in an oddball paradigm allowing for "aha-responses" generation to the attended targets. This allows for successful imple...
Saved in:
Published in | 2013 International Conference on Signal-Image Technology & Internet-Based Systems pp. 818 - 824 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.12.2013
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/SITIS.2013.133 |
Cover
Abstract | The paper presents a novel bone-conduction based brain-computer interface paradigm. Four sub-threshold acoustic frequency stimulus patterns are presented to the subjects in an oddball paradigm allowing for "aha-responses" generation to the attended targets. This allows for successful implementation of the bone-conduction based brain-computer interface (BCI) paradigm. The concept is confirmed with seven subjects in online bone-conducted auditory Morse-code patterns spelling BCI paradigm. We report also brain electrophysiological signal processing and classification steps taken to achieve the successful BCI paradigm. We also present a finding of the response latency variability in a function of stimulus difficulty. |
---|---|
AbstractList | The paper presents a novel bone-conduction based brain-computer interface paradigm. Four sub-threshold acoustic frequency stimulus patterns are presented to the subjects in an oddball paradigm allowing for "aha-responses" generation to the attended targets. This allows for successful implementation of the bone-conduction based brain-computer interface (BCI) paradigm. The concept is confirmed with seven subjects in online bone-conducted auditory Morse-code patterns spelling BCI paradigm. We report also brain electrophysiological signal processing and classification steps taken to achieve the successful BCI paradigm. We also present a finding of the response latency variability in a function of stimulus difficulty. |
Author | Makino, Shoji Matsui, Toshie Rutkowski, Tomasz M. Aminaka, Daiki Mori, Koichi |
Author_xml | – sequence: 1 givenname: Daiki surname: Aminaka fullname: Aminaka, Daiki organization: Life Sci. Center of TARA, Univ. of Tsukuba, Tsukuba, Japan – sequence: 2 givenname: Koichi surname: Mori fullname: Mori, Koichi organization: Res. Inst. of Nat. Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan – sequence: 3 givenname: Toshie surname: Matsui fullname: Matsui, Toshie organization: Life Sci. Center of TARA, Univ. of Tsukuba, Tsukuba, Japan – sequence: 4 givenname: Shoji surname: Makino fullname: Makino, Shoji email: tomek@tara.tsukuba.ac.jp organization: Life Sci. Center of TARA, Univ. of Tsukuba, Tsukuba, Japan – sequence: 5 givenname: Tomasz M. surname: Rutkowski fullname: Rutkowski, Tomasz M. organization: Life Sci. Center of TARA, Univ. of Tsukuba, Tsukuba, Japan |
BookMark | eNotjF1LwzAYhSMo6OZuvfEmP8DM5E3WNpeudLMwcNB5Pd4maQls6Uhb1H9v_bg5Bw7PeWbkOnTBEfIg-FIIrp-r8lBWS-BCLoWUV2QmVKq1BCGSW7Loe19zSNJEgVzdkY_1dGZ5F-xoBt8FtsbeWbqO6APNu_NlHFykZZiyQePoHiNa354pY7QotrTybcAT3cfOuEkd2ie6cTiM0dHic4j4K6UYLM1POAGNN_gz3ZObBk-9W_z3nLxvikP-ynZv2zJ_2TEvuRyYWikQkGnBm0ZrLrQBaZOkVik3KOvaGtTKau60ylSSglYcDYBBozMwgHJOHv-83jl3vER_xvh1nMgUMim_AcguW4w |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SITIS.2013.133 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1479932116 9781479932115 |
EndPage | 824 |
ExternalDocumentID | 6727283 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i303t-4542128910ff99019c23d66b470ca3bbdca94d90e9484672940ac22cac982c2a3 |
IEDL.DBID | RIE |
IngestDate | Wed Dec 20 05:18:47 EST 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i303t-4542128910ff99019c23d66b470ca3bbdca94d90e9484672940ac22cac982c2a3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_6727283 |
PublicationCentury | 2000 |
PublicationDate | 20131201 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2013 International Conference on Signal-Image Technology & Internet-Based Systems |
PublicationTitleAbbrev | sitis |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764235 |
Score | 1.5289345 |
Snippet | The paper presents a novel bone-conduction based brain-computer interface paradigm. Four sub-threshold acoustic frequency stimulus patterns are presented to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 818 |
SubjectTerms | Accuracy Auditory BCI Auditory system Bones brain signal processing EEG Electrodes Electroencephalography P300 Transducers Visualization |
Title | Bone-Conduction-Based Brain Computer Interface Paradigm -- EEG Signal Processing, Feature Extraction and Classification |
URI | https://ieeexplore.ieee.org/document/6727283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXhcuq5J0-Y66dyEibANdhtpko4hdlJaFP96X9JuinjwVkp5bfMe-V6S970PoTvuZxICg5EMlsuEhdQncWiGRMpIp5D_R1Fk2cizJz5ZssdVuGqh_oELY4xxxWfGs5fuLF_vVGW3ygbu1DCmbdSGMKu5WvvYCXgEmTQNm76MQ18M5tPFdG6Lt6g3tLq4P9RTHHiMj9Fs_9q6ZuTFq8rUU5-_OjL-97tOUO-bpoefDwB0ilom76L30S43BJ7QdV9YMgKc0nhkpSDwXsMBu43ATFoDspB6u3nFhOAkecDz7QZiCzcEArDbxzZNrAqDk4-yqHkQWOYaOz1NW2nknNtDy3GyuJ-QRl2BbAG2StvsHGArhnQhy-zhmFAB1ZynLPKVpGmqlRRMC98IZnOUQDBfqiBQUok4UIGkZ6iTwx-dIyxoBtNGBiuZ0Gcp2Iwl11RGqQ65opxeoK4dtPVb3UBj3YzX5d-3r9CRdVpdM3KNOmVRmRtA_jK9dS7_AoPErgs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uCRwli7H71ihqBATICEG-najhDjMMsWjX-9r91AYzx4W5blbet76fvavu99CN35TiIgMBhJYLlMmEcdEnq6S4QIVAz4PwgCw0YeT_zBnD0uvEUNtXZcGK21LT7TbXNpz_LVRhZmq6xjTw1Duof2Ie8zr2RrbaPH9QPA0tSrOjN2Hd6ZDmfDqSnfou2uUcb9oZ9i00f_CI23Ly6rRl7aRR635eevnoz__bJj1Pwm6uHnXQo6QTWdNtB7b5NqAk-osjMs6UGmUrhnxCDwVsUB263ARBgDIhNqvXrFhOAoesDT9QqiC1cUArDbwgYoFpnG0UeelUwILFKFraKmqTWy7m2ieT-a3Q9Ipa9A1pC4ctPuHBJXCIAhSczxGJcuVb4fs8CRgsaxkoIzxR3NmUEpLmeOkK4rheShK11BT1E9hT86Q5jTBCaOBNYynsNisBkKX1ERxMrzJfXpOWqYQVu-lS00ltV4Xfx9-xYdDGbj0XI0nDxdokPjwLKC5ArV86zQ14AD8vjGuv8LzmuxWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+International+Conference+on+Signal-Image+Technology+%26+Internet-Based+Systems&rft.atitle=Bone-Conduction-Based+Brain+Computer+Interface+Paradigm+--+EEG+Signal+Processing%2C+Feature+Extraction+and+Classification&rft.au=Aminaka%2C+Daiki&rft.au=Mori%2C+Koichi&rft.au=Matsui%2C+Toshie&rft.au=Makino%2C+Shoji&rft.date=2013-12-01&rft.pub=IEEE&rft.spage=818&rft.epage=824&rft_id=info:doi/10.1109%2FSITIS.2013.133&rft.externalDocID=6727283 |