Maximizing information transfer rates in an SSVEP-based BCI using individualized Bayesian probability measures
Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR) is used to measure the performance of a BCI. We propose a multi-step process to speed up detection and classification of the user's...
Saved in:
Published in | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2014; pp. 654 - 657 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1094-687X 1557-170X |
DOI | 10.1109/EMBC.2014.6943676 |
Cover
Abstract | Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR) is used to measure the performance of a BCI. We propose a multi-step process to speed up detection and classification of the user's intent and maximize ITR. Users randomly looked at 4 frequency options on the interface in two sessions, one without and one with performance feedback. Analysis was performed off-line. A ratio of the canonical correlation analysis (CCA) coefficients was used to construct a Bayesian probability model and a thresholding method for the ratio of the posterior probability of the target frequency over maximal posterior probability of non-target frequencies was used as classification criteria. Moreover, the probability thresholds were optimized for each frequency, subject to maximizing the ITR. We achieved a maximum ITR of 39.82 bit/min. Although the performance feedback did not improve the overall ITR, it did improve the accuracy measure. Possible applications in the medical industry are discussed. |
---|---|
AbstractList | Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR) is used to measure the performance of a BCI. We propose a multi-step process to speed up detection and classification of the user's intent and maximize ITR. Users randomly looked at 4 frequency options on the interface in two sessions, one without and one with performance feedback. Analysis was performed off-line. A ratio of the canonical correlation analysis (CCA) coefficients was used to construct a Bayesian probability model and a thresholding method for the ratio of the posterior probability of the target frequency over maximal posterior probability of non-target frequencies was used as classification criteria. Moreover, the probability thresholds were optimized for each frequency, subject to maximizing the ITR. We achieved a maximum ITR of 39.82 bit/min. Although the performance feedback did not improve the overall ITR, it did improve the accuracy measure. Possible applications in the medical industry are discussed. |
Author | Jafari, Roozbeh Chengzhi Zong Reagor, Mary K. |
Author_xml | – sequence: 1 givenname: Mary K. surname: Reagor fullname: Reagor, Mary K. email: mary.reagor@utdallas.edu organization: Electr. Eng. Dept., Univ. of Texas at Dallas, Richardson, TX, USA – sequence: 2 surname: Chengzhi Zong fullname: Chengzhi Zong email: cxz121430@utdallas.edu organization: Electr. Eng. Dept., Univ. of Texas at Dallas, Richardson, TX, USA – sequence: 3 givenname: Roozbeh surname: Jafari fullname: Jafari, Roozbeh email: rjafari@utdallas.edu organization: Electr. Eng. Dept., Univ. of Texas at Dallas, Richardson, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25570044$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kNtKAzEURSNU7MV-gAiSH5iaezqPtlQttChUxbdy0kkk0smUZEZsv96RVp_Ow1p7wz591AlVsAhdUTKilOS3s-VkOmKEipHKBVdanaE-FUwInbOcdFCvlUSmxvq9i4YpfRJCqFaKcXmBukxKTYgQPRSW8O1Lf_DhA_vgqlhC7auA6wghORtxhNqmFmEIeLV6mz1nBpIt8GQ6x006xgr_5YsGtv7wC2Bvk2_tXawMGL_19R6XFlITbbpE5w62yQ5Pd4Be72cv08ds8fQwn94tMs8JrTOrGZGSOwsFA6BSOMkYt44rKZ3hKt84JviGQcHJWIwNgNBWcwOUCZCm4AN0c-zdNaa0xXoXfQlxv_4b3grXR8Fba__x6ZX8B5LkaFo |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM |
DOI | 10.1109/EMBC.2014.6943676 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1424479290 9781424479290 |
EndPage | 657 |
ExternalDocumentID | 25570044 6943676 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM CGR CUY CVF ECM EIF IPLJI NPM |
ID | FETCH-LOGICAL-i301t-e720553fead2aa154f5223ef3655fb369cf243c2ad30848baa47e73ba124a5bd3 |
IEDL.DBID | RIE |
ISSN | 1094-687X 1557-170X |
IngestDate | Thu Jan 02 22:14:56 EST 2025 Wed Aug 27 04:35:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i301t-e720553fead2aa154f5223ef3655fb369cf243c2ad30848baa47e73ba124a5bd3 |
PMID | 25570044 |
PageCount | 4 |
ParticipantIDs | pubmed_primary_25570044 ieee_primary_6943676 |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
PublicationTitleAbbrev | EMBC |
PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001766235 ssj0020051 ssj0061641 |
Score | 2.0155866 |
Snippet | Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR)... |
SourceID | pubmed ieee |
SourceType | Index Database Publisher |
StartPage | 654 |
SubjectTerms | Accuracy Algorithms Bayes Theorem Brain-Computer Interfaces Calibration Correlation Electrodes Electroencephalography Electroencephalography - instrumentation Evoked Potentials, Visual - physiology Humans Steady-state Time-frequency analysis Visual Cortex - physiology Visualization |
Title | Maximizing information transfer rates in an SSVEP-based BCI using individualized Bayesian probability measures |
URI | https://ieeexplore.ieee.org/document/6943676 https://www.ncbi.nlm.nih.gov/pubmed/25570044 |
Volume | 2014 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF7UU3vpQ9vaF3vosYmafcRcFcUWUgRr8Sa7mwlIMRaNUP313UmiFumhl5Bl2ZDdGTJf5vENIU_WaGkjjf03AbAX1uZOYDzpSGWaWgVKtbKuJeGbHIz560RMSuR5XwsDAFnyGbh4m8Xyo4VZo6usIQOOBGNlUrZqltdqHfwpvrSW_MCzh9qWRToD7si2Pykimnbc6IWdLiZ1cbd4IDICi4zonRdNVo5AZmZs-mck3L1mnmPy6a5T7ZrtEYPjf_dxTmqHsj463BusC1KC5JKc_mIkrJIkVN-z-WxrB7TgVEXJ0TTDt7CkyCyxslNUJXQ0-ugNHbSDEe10Xyjm0OOyXYnXbIsTagNYqEmxdU1OCr6h89wzuaqRcb_33h04RUsGZ2a_BKkDvtcUgsVW_zwrR8Fji98YxEwKEWsmAxN7nBlPRQyJ-rVS3AefaWVhhBI6YlekkiwSuCG0BTqCtoaW1zRcN1vKAgUjdOBbwMp8j9VJFU9u-pWzbkyLQ6uT61wy-4md6G7_XnBHTlDWudvknlTS5RoeLJBI9WOmQT-5vMPM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qHtSLb63PPXg0tc0-0lwtlfqICD7orexuJlCkqbQpaH-9O0naSvHgJWQZNmR3lsyXeXwDcOmMlrHKun8TRHfhTeGF1lee0rZudKh1I-9aEj2pzpu478puBa7mtTCImCefYY1u81h-PLQTcpVdq1AQwdgKrDm7L2RRrbXwqATK2fIF0x6dtzzWGQpPNYNuGdN04-t2dNOitC5RKx9JnMAyp3oXZZuVJZiZm5vbLYhmL1pkmXzUJpmp2ekSh-N_V7IN-4vCPvY8N1k7UMF0FzZ_cRLuQRrpr_6gP3UDVrKqku5YliNcHDHilhg7EdMpe3l5bz97ZAljdtO6Y5RFT9NmRV79KQn0N1KpJqPmNQUt-DcbFL7J8T683bZfWx2vbMrg9d23IPMw8OtS8sSdQN9pUorEITiOCVdSJoar0Ca-4NbXMSeqfqO1CDDgRjsgoaWJ-QGspsMUj4A10MTYNNjw61aYekM7qGClCQMHWXng8yrs0c71PgvejV65aVU4LDQzF8xUd_z3hAtY77xGj73Hu6eHE9ggvRdOlFNYzUYTPHOwIjPn-Wn6ASlExxk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+36th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Maximizing+information+transfer+rates+in+an+SSVEP-based+BCI+using+individualized+Bayesian+probability+measures&rft.au=Reagor%2C+Mary+K.&rft.au=Chengzhi+Zong&rft.au=Jafari%2C+Roozbeh&rft.date=2014-01-01&rft.pub=IEEE&rft.issn=1094-687X&rft.spage=654&rft.epage=657&rft_id=info:doi/10.1109%2FEMBC.2014.6943676&rft_id=info%3Apmid%2F25570044&rft.externalDocID=6943676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon |