Maximizing information transfer rates in an SSVEP-based BCI using individualized Bayesian probability measures

Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR) is used to measure the performance of a BCI. We propose a multi-step process to speed up detection and classification of the user's...

Full description

Saved in:
Bibliographic Details
Published in2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2014; pp. 654 - 657
Main Authors Reagor, Mary K., Chengzhi Zong, Jafari, Roozbeh
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2014
Subjects
Online AccessGet full text
ISSN1094-687X
1557-170X
DOI10.1109/EMBC.2014.6943676

Cover

Abstract Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR) is used to measure the performance of a BCI. We propose a multi-step process to speed up detection and classification of the user's intent and maximize ITR. Users randomly looked at 4 frequency options on the interface in two sessions, one without and one with performance feedback. Analysis was performed off-line. A ratio of the canonical correlation analysis (CCA) coefficients was used to construct a Bayesian probability model and a thresholding method for the ratio of the posterior probability of the target frequency over maximal posterior probability of non-target frequencies was used as classification criteria. Moreover, the probability thresholds were optimized for each frequency, subject to maximizing the ITR. We achieved a maximum ITR of 39.82 bit/min. Although the performance feedback did not improve the overall ITR, it did improve the accuracy measure. Possible applications in the medical industry are discussed.
AbstractList Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR) is used to measure the performance of a BCI. We propose a multi-step process to speed up detection and classification of the user's intent and maximize ITR. Users randomly looked at 4 frequency options on the interface in two sessions, one without and one with performance feedback. Analysis was performed off-line. A ratio of the canonical correlation analysis (CCA) coefficients was used to construct a Bayesian probability model and a thresholding method for the ratio of the posterior probability of the target frequency over maximal posterior probability of non-target frequencies was used as classification criteria. Moreover, the probability thresholds were optimized for each frequency, subject to maximizing the ITR. We achieved a maximum ITR of 39.82 bit/min. Although the performance feedback did not improve the overall ITR, it did improve the accuracy measure. Possible applications in the medical industry are discussed.
Author Jafari, Roozbeh
Chengzhi Zong
Reagor, Mary K.
Author_xml – sequence: 1
  givenname: Mary K.
  surname: Reagor
  fullname: Reagor, Mary K.
  email: mary.reagor@utdallas.edu
  organization: Electr. Eng. Dept., Univ. of Texas at Dallas, Richardson, TX, USA
– sequence: 2
  surname: Chengzhi Zong
  fullname: Chengzhi Zong
  email: cxz121430@utdallas.edu
  organization: Electr. Eng. Dept., Univ. of Texas at Dallas, Richardson, TX, USA
– sequence: 3
  givenname: Roozbeh
  surname: Jafari
  fullname: Jafari, Roozbeh
  email: rjafari@utdallas.edu
  organization: Electr. Eng. Dept., Univ. of Texas at Dallas, Richardson, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25570044$$D View this record in MEDLINE/PubMed
BookMark eNo9kNtKAzEURSNU7MV-gAiSH5iaezqPtlQttChUxbdy0kkk0smUZEZsv96RVp_Ow1p7wz591AlVsAhdUTKilOS3s-VkOmKEipHKBVdanaE-FUwInbOcdFCvlUSmxvq9i4YpfRJCqFaKcXmBukxKTYgQPRSW8O1Lf_DhA_vgqlhC7auA6wghORtxhNqmFmEIeLV6mz1nBpIt8GQ6x006xgr_5YsGtv7wC2Bvk2_tXawMGL_19R6XFlITbbpE5w62yQ5Pd4Be72cv08ds8fQwn94tMs8JrTOrGZGSOwsFA6BSOMkYt44rKZ3hKt84JviGQcHJWIwNgNBWcwOUCZCm4AN0c-zdNaa0xXoXfQlxv_4b3grXR8Fba__x6ZX8B5LkaFo
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC.2014.6943676
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424479290
9781424479290
EndPage 657
ExternalDocumentID 25570044
6943676
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i301t-e720553fead2aa154f5223ef3655fb369cf243c2ad30848baa47e73ba124a5bd3
IEDL.DBID RIE
ISSN 1094-687X
1557-170X
IngestDate Thu Jan 02 22:14:56 EST 2025
Wed Aug 27 04:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i301t-e720553fead2aa154f5223ef3655fb369cf243c2ad30848baa47e73ba124a5bd3
PMID 25570044
PageCount 4
ParticipantIDs pubmed_primary_25570044
ieee_primary_6943676
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766235
ssj0020051
ssj0061641
Score 2.0155866
Snippet Successful brain-computer interfaces (BCIs) swiftly and accurately communicate the user's intention to a computer. Typically, information transfer rate (ITR)...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 654
SubjectTerms Accuracy
Algorithms
Bayes Theorem
Brain-Computer Interfaces
Calibration
Correlation
Electrodes
Electroencephalography
Electroencephalography - instrumentation
Evoked Potentials, Visual - physiology
Humans
Steady-state
Time-frequency analysis
Visual Cortex - physiology
Visualization
Title Maximizing information transfer rates in an SSVEP-based BCI using individualized Bayesian probability measures
URI https://ieeexplore.ieee.org/document/6943676
https://www.ncbi.nlm.nih.gov/pubmed/25570044
Volume 2014
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF7UU3vpQ9vaF3vosYmafcRcFcUWUgRr8Sa7mwlIMRaNUP313UmiFumhl5Bl2ZDdGTJf5vENIU_WaGkjjf03AbAX1uZOYDzpSGWaWgVKtbKuJeGbHIz560RMSuR5XwsDAFnyGbh4m8Xyo4VZo6usIQOOBGNlUrZqltdqHfwpvrSW_MCzh9qWRToD7si2Pykimnbc6IWdLiZ1cbd4IDICi4zonRdNVo5AZmZs-mck3L1mnmPy6a5T7ZrtEYPjf_dxTmqHsj463BusC1KC5JKc_mIkrJIkVN-z-WxrB7TgVEXJ0TTDt7CkyCyxslNUJXQ0-ugNHbSDEe10Xyjm0OOyXYnXbIsTagNYqEmxdU1OCr6h89wzuaqRcb_33h04RUsGZ2a_BKkDvtcUgsVW_zwrR8Fji98YxEwKEWsmAxN7nBlPRQyJ-rVS3AefaWVhhBI6YlekkiwSuCG0BTqCtoaW1zRcN1vKAgUjdOBbwMp8j9VJFU9u-pWzbkyLQ6uT61wy-4md6G7_XnBHTlDWudvknlTS5RoeLJBI9WOmQT-5vMPM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qHtSLb63PPXg0tc0-0lwtlfqICD7orexuJlCkqbQpaH-9O0naSvHgJWQZNmR3lsyXeXwDcOmMlrHKun8TRHfhTeGF1lee0rZudKh1I-9aEj2pzpu478puBa7mtTCImCefYY1u81h-PLQTcpVdq1AQwdgKrDm7L2RRrbXwqATK2fIF0x6dtzzWGQpPNYNuGdN04-t2dNOitC5RKx9JnMAyp3oXZZuVJZiZm5vbLYhmL1pkmXzUJpmp2ekSh-N_V7IN-4vCPvY8N1k7UMF0FzZ_cRLuQRrpr_6gP3UDVrKqku5YliNcHDHilhg7EdMpe3l5bz97ZAljdtO6Y5RFT9NmRV79KQn0N1KpJqPmNQUt-DcbFL7J8T683bZfWx2vbMrg9d23IPMw8OtS8sSdQN9pUorEITiOCVdSJoar0Ca-4NbXMSeqfqO1CDDgRjsgoaWJ-QGspsMUj4A10MTYNNjw61aYekM7qGClCQMHWXng8yrs0c71PgvejV65aVU4LDQzF8xUd_z3hAtY77xGj73Hu6eHE9ggvRdOlFNYzUYTPHOwIjPn-Wn6ASlExxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+36th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Maximizing+information+transfer+rates+in+an+SSVEP-based+BCI+using+individualized+Bayesian+probability+measures&rft.au=Reagor%2C+Mary+K.&rft.au=Chengzhi+Zong&rft.au=Jafari%2C+Roozbeh&rft.date=2014-01-01&rft.pub=IEEE&rft.issn=1094-687X&rft.spage=654&rft.epage=657&rft_id=info:doi/10.1109%2FEMBC.2014.6943676&rft_id=info%3Apmid%2F25570044&rft.externalDocID=6943676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon