Learning and recognizing human dynamics in video sequences

This paper describes a probabilistic decomposition of human dynamics at multiple abstractions, and shows how to propagate hypotheses across space, time, and abstraction levels. Recognition in this framework is the succession of very general low level grouping mechanisms to increased specific and lea...

Full description

Saved in:
Bibliographic Details
Published inPROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT pp. 568 - 574
Main Author Bregler, C.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 1997
Subjects
Online AccessGet full text
ISBN9780818678226
0818678224
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.1997.609382

Cover

Abstract This paper describes a probabilistic decomposition of human dynamics at multiple abstractions, and shows how to propagate hypotheses across space, time, and abstraction levels. Recognition in this framework is the succession of very general low level grouping mechanisms to increased specific and learned model based grouping techniques at higher levels. Hard decision thresholds are delayed and resolved by higher level statistical models and temporal context. Low-level primitives are areas of coherent motion found by EM clustering, mid-level categories are simple movements represented by dynamical systems, and high-level complex gestures are represented by Hidden Markov Models as successive phases of ample movements. We show how such a representation can be learned from training data, and apply It to the example of human gait recognition.
AbstractList This paper describes a probabilistic decomposition of human dynamics at multiple abstractions, and shows how to propagate hypotheses across space, time, and abstraction levels. Recognition in this framework is the succession of very general low level grouping mechanisms to increased specific and learned model based grouping techniques at higher levels. Hard decision thresholds are delayed and resolved by higher level statistical models and temporal context. Low-level primitives are areas of coherent motion found by EM clustering, mid-level categories are simple movements represented by dynamical systems, and high-level complex gestures are represented by Hidden Markov Models as successive phases of ample movements. We show how such a representation can be learned from training data, and apply It to the example of human gait recognition.
This paper describes a probabilistic decomposition of human dynamics at multiple abstractions, and shows how to propagate hypotheses across space, time, and abstraction levels. Recognition in this framework is the succession of very general low level grouping mechanisms to increased specific and learned model based grouping techniques at higher levels. Hard decision thresholds are delayed and resolved by higher level statistical models and temporal context. Low-level primitives are areas of coherent motion found by EM clustering, mid-level categories are simple movements represented by dynamical systems, and high-level complex gestures are represented by Hidden Markov Models as successive phases of simple movements. We show how such a representation can be learned from training data, and apply it to the example of human gait recognition.
Author Bregler, C.
Author_xml – sequence: 1
  givenname: C.
  surname: Bregler
  fullname: Bregler, C.
  organization: Div. of Comput. Sci., California Univ., Berkeley, CA, USA
BookMark eNqFkM1LAzEQxYNWsK29i6c9eds6Sdok402KX1BQRL0u2WS2RrrZuukK9a93pR68eXoM78cb3huxQWwiMXbKYco54MXi9fFpyhH1VAFKIw7YkIOSuUKOh2yC2oDhRmkjhBr88Y7ZKKV3ACG1gCG7XJJtY4irzEafteSaVQxfP_dbV9uY-V20dXApCzH7DJ6aLNFHR9FROmFHlV0nmvzqmL3cXD8v7vLlw-394mqZBwmwzdGIuXFSG29Iao22lPNKkiZXkimrigiMKksvHBjhvUdtSVmHCML01lyO2fk-d9M2_eu0LeqQHK3XNlLTpUIo1deZ4b8gV33cTOgePNuDgYiKTRtq2-6K_Y7yG5XAZlY
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.1997.609382
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Engineering Research Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 574
ExternalDocumentID 609382
Genre Conference
Book
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
6IL
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIL
RNS
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i300t-98258c378d8e3779ab35f3e7ecbe8bffee086bbd2c082ddd97ae6ac99028e0853
IEDL.DBID RIE
ISBN 9780818678226
0818678224
ISSN 1063-6919
IngestDate Fri Sep 05 00:19:49 EDT 2025
Fri Sep 05 07:21:48 EDT 2025
Tue Aug 26 18:24:05 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i300t-98258c378d8e3779ab35f3e7ecbe8bffee086bbd2c082ddd97ae6ac99028e0853
Notes SourceType-Books-1
ObjectType-Book-1
content type line 25
ObjectType-Conference-2
SourceType-Conference Papers & Proceedings-2
SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
PQID 16085427
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_26600249
ieee_primary_609382
proquest_miscellaneous_16085427
PublicationCentury 1900
PublicationDate 19970000
19970101
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – year: 1997
  text: 19970000
PublicationDecade 1990
PublicationTitle PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT
PublicationTitleAbbrev CVPR
PublicationYear 1997
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
ssj0000558124
Score 2.080546
Snippet This paper describes a probabilistic decomposition of human dynamics at multiple abstractions, and shows how to propagate hypotheses across space, time, and...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 568
SubjectTerms Context modeling
Delay
Hidden Markov models
Humans
Image segmentation
Leg
Motion detection
Speech recognition
Training data
Video sequences
Title Learning and recognizing human dynamics in video sequences
URI https://ieeexplore.ieee.org/document/609382
https://www.proquest.com/docview/16085427
https://www.proquest.com/docview/26600249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA-6k6fpnDifOXht1zZt2ngdjiEoQ5zsVpLmqwyhE9te9tebL30IPsBbk5aUhvR7_34fITdm2je-T-JAxKUTsthzZB7nDmIkBRgVJCWikR8e-WIV3q-jdcuzbbEwAGCLz8DFS5vL19usxlDZlBv3OzHydt-csgaq1YdTvChCVdWPmXFsuOgTCgE2Y7GJT84cLnxhqSCRzA2rKFsinm7cpzM9MZ29LJ8Q0Re7zcvbJiw_JLdVR_Nhg_MuLYshVqG8uXWl3Gz3jePxn196SMZfuD-67DXaEdmDYkSGraFKWzFQmqmuF0Q3d0xuW6LWVyoLTduypB2ObRdAqpvO9yXdFBShf1vaF3GPyWp-9zxbOG1fBmfDPK9yhPEqk4zFiU4A-QqlYlHOIIZMQaLyHMD4SUrpIDP2hdZaxBK4zAQSxZhbETshg2JbwCmheSh9geDfQMmQcZWoSGiQQR6yHAXOhIxwc9L3hnojbfZlQq673U_N34ApDlnAti5Tn5v1wyD--wljkFiaxLNfVz4nBw0_LcZYLsig-qjh0lgdlbqy5-0TQkjPBw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8MHvSEIkb87MHrYKxbt3olElQgxIDhtrTrmyHGzQgc5K-3rxsz8SPxtnZLlzbb-_79HiHXZrprfJ_IgYBLx2eh68g0TB3ESAowKkhKRCOPxnww8-_nwbzk2bZYGACwxWfQxkuby9d5ssZQWYcb9zsy8nbXqH0_KMBaVUDFDQJUVtWYGdeGiyql4GE7Fpv65MzhoissGSTSuWEdZUnFsx1XCU1XdHpPk0fE9IXt4vVlG5YfstsqpH69QHovLY8h1qG8tNcr1U4231ge_7nXA9L8Qv7RSaXTDskOZA1SL01VWgqCpZnadoPYzh2Rm5Kq9ZnKTNOyMGmDY9sHkOqPTL4ukiVdZBTBfzmtyribZNa_nfYGTtmZwVkw1105wviVUcLCSEeAjIVSsSBlEEKiIFJpCmA8JaW0lxgLQ2stQglcJgKpYsytgB2TWpZncEJo6suuQPivp6TPuIpUIDRIL_VZiiKnRRp4OPFbQb4RF-fSIlfb04_N_4BJDplBvl7GXW7W973w7yeMSWKJEk9_XfmK7A2mo2E8vBs_nJH9gq0WIy7npLZ6X8OFsUFW6tJ-e59JONJU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+pp.+568-574.+1997&rft.atitle=Learning+and+recognizing+human+dynamics+in+video+sequences&rft.au=Bregler%2C+Christoph&rft.date=1997-01-01&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=568&rft.epage=574&rft_id=info:doi/10.1109%2Fcvpr.1997.609382&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon