Fast simulation-driven antenna design using response-feature surrogates
ABSTRACT In this article, a computationally efficient procedure for electromagnetic (EM)‐simulation‐driven design of antennas is presented. Our methodology is based on local approximation models of the antenna response, established using a set of suitably selected characteristic features rather than...
Saved in:
Published in | International journal of RF and microwave computer-aided engineering Vol. 25; no. 5; pp. 394 - 402 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.06.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
In this article, a computationally efficient procedure for electromagnetic (EM)‐simulation‐driven design of antennas is presented. Our methodology is based on local approximation models of the antenna response, established using a set of suitably selected characteristic features rather than the entire response (such as reflection versus frequency). The approximation model is utilized to verify the level of satisfying/violating given performance requirements, and to guide the optimization process towards a better design. By exploiting the fact that the dependence of the response features on the designable parameters of the antenna of interest is simple (close to linear or quadratic), the feature‐based optimization converges faster than conventional optimization of frequency‐based EM‐simulated responses. In order to further speed up the design, coarse‐discretization simulations are utilized to estimate the feature gradients with respect to adjustable parameters of the problem at hand. The optimization algorithm is embedded in the trust‐region framework for safeguarding convergence. The proposed technique is demonstrated using two antenna examples. In both the cases, the optimum design is obtained at the computational cost corresponding to a few high‐fidelity EM antenna simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:394–402, 2015. |
---|---|
AbstractList | ABSTRACT
In this article, a computationally efficient procedure for electromagnetic (EM)‐simulation‐driven design of antennas is presented. Our methodology is based on local approximation models of the antenna response, established using a set of suitably selected characteristic features rather than the entire response (such as reflection versus frequency). The approximation model is utilized to verify the level of satisfying/violating given performance requirements, and to guide the optimization process towards a better design. By exploiting the fact that the dependence of the response features on the designable parameters of the antenna of interest is simple (close to linear or quadratic), the feature‐based optimization converges faster than conventional optimization of frequency‐based EM‐simulated responses. In order to further speed up the design, coarse‐discretization simulations are utilized to estimate the feature gradients with respect to adjustable parameters of the problem at hand. The optimization algorithm is embedded in the trust‐region framework for safeguarding convergence. The proposed technique is demonstrated using two antenna examples. In both the cases, the optimum design is obtained at the computational cost corresponding to a few high‐fidelity EM antenna simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:394–402, 2015. In this article, a computationally efficient procedure for electromagnetic (EM)-simulation-driven design of antennas is presented. Our methodology is based on local approximation models of the antenna response, established using a set of suitably selected characteristic features rather than the entire response (such as reflection versus frequency). The approximation model is utilized to verify the level of satisfying/violating given performance requirements, and to guide the optimization process towards a better design. By exploiting the fact that the dependence of the response features on the designable parameters of the antenna of interest is simple (close to linear or quadratic), the feature-based optimization converges faster than conventional optimization of frequency-based EM-simulated responses. In order to further speed up the design, coarse-discretization simulations are utilized to estimate the feature gradients with respect to adjustable parameters of the problem at hand. The optimization algorithm is embedded in the trust-region framework for safeguarding convergence. The proposed technique is demonstrated using two antenna examples. In both the cases, the optimum design is obtained at the computational cost corresponding to a few high-fidelity EM antenna simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:394-402, 2015. In this article, a computationally efficient procedure for electromagnetic (EM)-simulation-driven design of antennas is presented. Our methodology is based on local approximation models of the antenna response, established using a set of suitably selected characteristic features rather than the entire response (such as reflection versus frequency). The approximation model is utilized to verify the level of satisfying/violating given performance requirements, and to guide the optimization process towards a better design. By exploiting the fact that the dependence of the response features on the designable parameters of the antenna of interest is simple (close to linear or quadratic), the feature-based optimization converges faster than conventional optimization of frequency-based EM-simulated responses. In order to further speed up the design, coarse-discretization simulations are utilized to estimate the feature gradients with respect to adjustable parameters of the problem at hand. The optimization algorithm is embedded in the trust-region framework for safeguarding convergence. The proposed technique is demonstrated using two antenna examples. In both the cases, the optimum design is obtained at the computational cost corresponding to a few high-fidelity EM antenna simulations. Int J RF and Microwave CAE 25:394-402, 2015. |
Author | Koziel, Slawomir |
Author_xml | – sequence: 1 givenname: Slawomir surname: Koziel fullname: Koziel, Slawomir email: koziel@ru.is organization: Engineering Optimization and Modeling Center, Reykjavik University, Menntavegur 1, 101, Reykjavik, Iceland |
BookMark | eNpdkEtPwzAQhC0EErRw4RdE4sIlZW0nfhxRRQuiBQnxulkmWSpD4hQ7AfrvSVvEgdOONN-MVjMgu77xSMgxhREFYGd1XeCIgZJ8hxxQ0DqFTD7vbrRIM6ZhnwxifAPoPcYPyHRiY5tEV3eVbV3j0zK4T_SJ9S16b5MSo1v4pIvOL5KAcdn4iOkr2rYLmMQuhGZhW4yHZO_VVhGPfu-QPEwu7seX6ex2ejU-n6WOacFTZBRyXpRYZi-FyF_QKlRKCmQWqNCZFcipsIIBL3KKpRTQ-0IVkGltC-BDcrrtXYbmo8PYmtrFAqvKemy6aKgELXOmmO7Rk3_oW9MF339nqFAqy3Mp14V0S325CldmGVxtw8pQMOtBzXpQsxnUzOfji43qM-k242KL338ZG96NkFzm5ulmaubj_Pla3N-ZR_4Dip98Gw |
CODEN | IJMEFQ |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/mmce.20873 |
DatabaseName | Istex Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-047X |
EndPage | 402 |
ExternalDocumentID | 3716065321 MMCE20873 ark_67375_WNG_MC5XK6TR_V |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJCF ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ATUGU AUFTA AZBYB AZFZN AZQEC BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BROTX BRXPI BSCLL BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H13 HCIFZ HF~ HHY HHZ HVGLF HZ~ I-F IX1 JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 O66 O9- OIG P2W P2X P4D PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WYISQ XG1 XV2 ZZTAW ~IA ~WT AANHP ACCMX ACRPL ACUHS ACYXJ ADNMO 1OB 7SC 7SP 8FD ADMLS AGQPQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i2963-e21053cded4bc65bea8e8876e2a01694a6e316a6203c51ed760e8868c0499ac03 |
IEDL.DBID | DR2 |
ISSN | 1096-4290 |
IngestDate | Fri Jul 11 04:47:21 EDT 2025 Wed Aug 13 11:04:32 EDT 2025 Wed Jan 22 17:03:16 EST 2025 Wed Oct 30 09:51:42 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i2963-e21053cded4bc65bea8e8876e2a01694a6e316a6203c51ed760e8868c0499ac03 |
Notes | ArticleID:MMCE20873 ark:/67375/WNG-MC5XK6TR-V istex:39C1F220013AC49988A6E30EC31767BBF84C567D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1688455770 |
PQPubID | 1026345 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1709752829 proquest_journals_1688455770 wiley_primary_10_1002_mmce_20873_MMCE20873 istex_primary_ark_67375_WNG_MC5XK6TR_V |
PublicationCentury | 2000 |
PublicationDate | 2015-06 June 2015 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International journal of RF and microwave computer-aided engineering |
PublicationTitleAlternate | Int J RF and Microwave Comp Aid Eng |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | H. Kabir, Y. Wang, M. Yu, and Q.J. Zhang, Neural network inverse modeling and applications to microwave filter design, IEEE Trans Microwave Theory Tech 56 (2008), 867-879. M.B. Yelten, T. Zhu, S. Koziel, P.D. Franzon, and M.B. Steer, Demystifying surrogate modeling for circuits and systems, IEEE Circuits Syst Mag 12 (2012), 45-63. E.S. Siah, M. Sasena, J.L. Volakis, P.Y. Papalambros, and R.W. Wiese, Fast parameter optimization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling, IEEE Trans Microwave Theory Tech 52 (2004), 276-285. S. Koziel and L. Leifsson, Response correction techniques for surrogate-based design optimization of microwave structures, Int J. RF Microwave CAE 22 (2012), 211-223. S. Koziel, J.W. Bandler, and K. Madsen, Space-mapping based interpolation for engineering optimization, IEEE Trans Microwave Theory Tech 54 (2006), 2410-2421. S. Koziel, Q.S. Cheng, and J.W. Bandler, Space mapping, IEEE Microwave Mag 9 (2008), 105-122. R.L. Haupt, Antenna design with a mixed integer genetic algorithm, IEEE Trans Antennas Propag 55 (2007), 577-582. N. Jin and Y. Rahmat-Samii, Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs, IEEE Trans Antennas Propag 53 (2005), 3459-3468. N.K. Nikolova, Ying Li, Yan Li, and M.H. Bakr, Sensitivity analysis of scattering parameters with electromagnetic time-domain simulators, IEEE Trans Microwave Theory Tech 54 (2006), 1598-1610. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, Space mapping: The state of the art, IEEE Trans Microwave Theory Tech 52 (2004), 337-361. P. Jacobson and T. Rylander, Gradient-based shape optimization of conformal array antennas, IET Microwaves Antennas Prop 4 (2010), 200-209. D. Nair and J.P. Webb, Optimization of microwave devices using 3-D finite elements and the design sensitivity of the frequency response, IEEE Trans Magn 39 (2003), 1325-1328. N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, Surrogate-based analysis and optimization, Prog Aerospace Sci 41 (2005), 1-28. S. Koziel, J.W. Bandler, and K. Madsen, Towards a rigorous formulation of the space mapping technique for engineering design, Proc Int Symp Circuits Syst ISCAS 1 (2005), 5605-5608. S. Koziel and S. Ogurtsov, Antenna design by simulation-driven optimization. Surrogate-based approach, Springer, New York, 2014. A.I.J. Forrester and A.J. Keane, Recent advances in surrogate-based optimization, Prog Aerospace Sci 45 (2009), 50-79. M.F. Pantoja, P. Meincke, and A.R. Bretones, A hybrid genetic algorithm space-mapping tool for the optimization of antennas, IEEE Trans Antennas Propag 55 (2007), 777-781. M. Martinez-Ramon and C. Christodoulou, Support vector machines for antenna array processing and electromagnetics, Synthesis Lectures Comp Electromagnetics 1 (2006), 1. J.I. Toivanen, R.A.E. Makinen, S. Jarvenpaa, P. Yla-Oijala, and J. Rahola, Electromagnetic sensitivity analysis and shape optimization using method of moments and automatic differentiation, IEEE Trans Antennas Prop 57 (2009), 168-175. D. Echeverria and P.W. Hemker, Space mapping and defect correction, CMAM, Int Mathematical J Comp Methods Appl Mathematics 5 (2005), 107-136. S. Koziel, F. Mosler, S. Reitzinger, and P. Thoma, Robust microwave design optimization using adjoint sensitivity and trust regions, Int J RF Microwave CAE 22 (2012), 10-19. S. Koziel, J.W. Bandler, and K. Madsen, Space mapping with adaptive response correction for microwave design optimization, IEEE Trans Microwave Theory Tech 57 (2009), 478-486. S. Koziel, Computationally efficient multi-fidelity multi-grid design optimization of microwave structures, Appl Comp Electromagnetics Soc J 25 (2010), 578-586. J. Nocedal and S. Wright, Numerical optimization, 2nd ed., Springer, New York, 2006. E.K. Murphy and V.V. Yakovlev, Neural network optimization of complex microwave structures with a reduced number of full-wave analyses, Int J. RF Microwave CAE 21 (2010), 2. T.G. Kolda, R.M. Lewis, and V. Torczon, Optimization by direct search: New perspectives on some classical and modern methods, SIAM Rev 45 (2003), 385-482. E.S. Siah, T. Ozdemir, J.L. Volakis, P. Papalambros, and R. Wiese, Fast parameter optimization using Kriging metamodeling [antenna EM modeling/simulation], IEEE Antennas Prop Int Symp (2003), 76-79. 2009; 45 2011 2006; 54 2010 2009 2008; 9 2005; 41 2007 2008; 56 2006 2005 2003; 39 2003 2006; 1 2007; 55 2012; 12 2004; 52 2010; 21 2009; 57 2010; 25 2000 2005; 5 2005; 53 2005; 1 2014 2013 2012; 22 2010; 4 2003; 45 |
References_xml | – reference: M.B. Yelten, T. Zhu, S. Koziel, P.D. Franzon, and M.B. Steer, Demystifying surrogate modeling for circuits and systems, IEEE Circuits Syst Mag 12 (2012), 45-63. – reference: D. Nair and J.P. Webb, Optimization of microwave devices using 3-D finite elements and the design sensitivity of the frequency response, IEEE Trans Magn 39 (2003), 1325-1328. – reference: E.S. Siah, T. Ozdemir, J.L. Volakis, P. Papalambros, and R. Wiese, Fast parameter optimization using Kriging metamodeling [antenna EM modeling/simulation], IEEE Antennas Prop Int Symp (2003), 76-79. – reference: S. Koziel, J.W. Bandler, and K. Madsen, Space-mapping based interpolation for engineering optimization, IEEE Trans Microwave Theory Tech 54 (2006), 2410-2421. – reference: D. Echeverria and P.W. Hemker, Space mapping and defect correction, CMAM, Int Mathematical J Comp Methods Appl Mathematics 5 (2005), 107-136. – reference: N.K. Nikolova, Ying Li, Yan Li, and M.H. Bakr, Sensitivity analysis of scattering parameters with electromagnetic time-domain simulators, IEEE Trans Microwave Theory Tech 54 (2006), 1598-1610. – reference: E.K. Murphy and V.V. Yakovlev, Neural network optimization of complex microwave structures with a reduced number of full-wave analyses, Int J. RF Microwave CAE 21 (2010), 2. – reference: S. Koziel and S. Ogurtsov, Antenna design by simulation-driven optimization. Surrogate-based approach, Springer, New York, 2014. – reference: T.G. Kolda, R.M. Lewis, and V. Torczon, Optimization by direct search: New perspectives on some classical and modern methods, SIAM Rev 45 (2003), 385-482. – reference: A.I.J. Forrester and A.J. Keane, Recent advances in surrogate-based optimization, Prog Aerospace Sci 45 (2009), 50-79. – reference: S. Koziel, Computationally efficient multi-fidelity multi-grid design optimization of microwave structures, Appl Comp Electromagnetics Soc J 25 (2010), 578-586. – reference: M. Martinez-Ramon and C. Christodoulou, Support vector machines for antenna array processing and electromagnetics, Synthesis Lectures Comp Electromagnetics 1 (2006), 1. – reference: N. Jin and Y. Rahmat-Samii, Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs, IEEE Trans Antennas Propag 53 (2005), 3459-3468. – reference: R.L. Haupt, Antenna design with a mixed integer genetic algorithm, IEEE Trans Antennas Propag 55 (2007), 577-582. – reference: S. Koziel and L. Leifsson, Response correction techniques for surrogate-based design optimization of microwave structures, Int J. RF Microwave CAE 22 (2012), 211-223. – reference: S. Koziel, J.W. Bandler, and K. Madsen, Space mapping with adaptive response correction for microwave design optimization, IEEE Trans Microwave Theory Tech 57 (2009), 478-486. – reference: S. Koziel, J.W. Bandler, and K. Madsen, Towards a rigorous formulation of the space mapping technique for engineering design, Proc Int Symp Circuits Syst ISCAS 1 (2005), 5605-5608. – reference: E.S. Siah, M. Sasena, J.L. Volakis, P.Y. Papalambros, and R.W. Wiese, Fast parameter optimization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling, IEEE Trans Microwave Theory Tech 52 (2004), 276-285. – reference: S. Koziel, Q.S. Cheng, and J.W. Bandler, Space mapping, IEEE Microwave Mag 9 (2008), 105-122. – reference: J. Nocedal and S. Wright, Numerical optimization, 2nd ed., Springer, New York, 2006. – reference: S. Koziel, F. Mosler, S. Reitzinger, and P. Thoma, Robust microwave design optimization using adjoint sensitivity and trust regions, Int J RF Microwave CAE 22 (2012), 10-19. – reference: M.F. Pantoja, P. Meincke, and A.R. Bretones, A hybrid genetic algorithm space-mapping tool for the optimization of antennas, IEEE Trans Antennas Propag 55 (2007), 777-781. – reference: H. Kabir, Y. Wang, M. Yu, and Q.J. Zhang, Neural network inverse modeling and applications to microwave filter design, IEEE Trans Microwave Theory Tech 56 (2008), 867-879. – reference: J.I. Toivanen, R.A.E. Makinen, S. Jarvenpaa, P. Yla-Oijala, and J. Rahola, Electromagnetic sensitivity analysis and shape optimization using method of moments and automatic differentiation, IEEE Trans Antennas Prop 57 (2009), 168-175. – reference: N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, Surrogate-based analysis and optimization, Prog Aerospace Sci 41 (2005), 1-28. – reference: J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, Space mapping: The state of the art, IEEE Trans Microwave Theory Tech 52 (2004), 337-361. – reference: P. Jacobson and T. Rylander, Gradient-based shape optimization of conformal array antennas, IET Microwaves Antennas Prop 4 (2010), 200-209. – year: 2011 – year: 2009 – volume: 55 start-page: 577 year: 2007 end-page: 582 article-title: Antenna design with a mixed integer genetic algorithm publication-title: IEEE Trans Antennas Propag – start-page: 33 year: 2011 end-page: 60 – volume: 9 start-page: 105 year: 2008 end-page: 122 article-title: Space mapping publication-title: IEEE Microwave Mag – year: 2005 – volume: 57 start-page: 168 year: 2009 end-page: 175 article-title: Electromagnetic sensitivity analysis and shape optimization using method of moments and automatic differentiation publication-title: IEEE Trans Antennas Prop – volume: 39 start-page: 1325 year: 2003 end-page: 1328 article-title: Optimization of microwave devices using 3‐D finite elements and the design sensitivity of the frequency response publication-title: IEEE Trans Magn – volume: 22 start-page: 10 year: 2012 end-page: 19 article-title: Robust microwave design optimization using adjoint sensitivity and trust regions publication-title: Int J RF Microwave CAE – volume: 52 start-page: 276 year: 2004 end-page: 285 article-title: Fast parameter optimization of large‐scale electromagnetic objects using DIRECT with Kriging metamodeling publication-title: IEEE Trans Microwave Theory Tech – volume: 25 start-page: 578 year: 2010 end-page: 586 article-title: Computationally efficient multi‐fidelity multi‐grid design optimization of microwave structures publication-title: Appl Comp Electromagnetics Soc J – year: 2007 – volume: 21 start-page: 2 year: 2010 article-title: Neural network optimization of complex microwave structures with a reduced number of full‐wave analyses publication-title: Int J. RF Microwave CAE – start-page: 76 year: 2003 end-page: 79 article-title: Fast parameter optimization using Kriging metamodeling [antenna EM modeling/simulation] publication-title: IEEE Antennas Prop Int Symp – year: 2000 – volume: 41 start-page: 1 year: 2005 end-page: 28 article-title: Surrogate‐based analysis and optimization publication-title: Prog Aerospace Sci – volume: 12 start-page: 45 year: 2012 end-page: 63 article-title: Demystifying surrogate modeling for circuits and systems publication-title: IEEE Circuits Syst Mag – volume: 5 start-page: 107 year: 2005 end-page: 136 article-title: Space mapping and defect correction publication-title: CMAM, Int Mathematical J Comp Methods Appl Mathematics – year: 2014 – year: 2010 – volume: 45 start-page: 385 year: 2003 end-page: 482 article-title: Optimization by direct search: New perspectives on some classical and modern methods publication-title: SIAM Rev – volume: 57 start-page: 478 year: 2009 end-page: 486 article-title: Space mapping with adaptive response correction for microwave design optimization publication-title: IEEE Trans Microwave Theory Tech – volume: 53 start-page: 3459 year: 2005 end-page: 3468 article-title: Parallel particle swarm optimization and finite‐ difference time‐domain (PSO/FDTD) algorithm for multiband and wide‐band patch antenna designs publication-title: IEEE Trans Antennas Propag – volume: 4 start-page: 200 year: 2010 end-page: 209 article-title: Gradient‐based shape optimization of conformal array antennas publication-title: IET Microwaves Antennas Prop – volume: 56 start-page: 867 year: 2008 end-page: 879 article-title: Neural network inverse modeling and applications to microwave filter design publication-title: IEEE Trans Microwave Theory Tech – volume: 1 start-page: 1 year: 2006 article-title: Support vector machines for antenna array processing and electromagnetics publication-title: Synthesis Lectures Comp Electromagnetics – volume: 1 start-page: 5605 year: 2005 end-page: 5608 article-title: Towards a rigorous formulation of the space mapping technique for engineering design publication-title: Proc Int Symp Circuits Syst ISCAS – volume: 55 start-page: 777 year: 2007 end-page: 781 article-title: A hybrid genetic algorithm space‐mapping tool for the optimization of antennas publication-title: IEEE Trans Antennas Propag – volume: 54 start-page: 1598 year: 2006 end-page: 1610 article-title: Sensitivity analysis of scattering parameters with electromagnetic time‐domain simulators publication-title: IEEE Trans Microwave Theory Tech – volume: 45 start-page: 50 year: 2009 end-page: 79 article-title: Recent advances in surrogate‐based optimization publication-title: Prog Aerospace Sci – year: 2006 – volume: 22 start-page: 211 year: 2012 end-page: 223 article-title: Response correction techniques for surrogate‐based design optimization of microwave structures publication-title: Int J. RF Microwave CAE – volume: 54 start-page: 2410 year: 2006 end-page: 2421 article-title: Space‐mapping based interpolation for engineering optimization publication-title: IEEE Trans Microwave Theory Tech – volume: 52 start-page: 337 year: 2004 end-page: 361 article-title: Space mapping: The state of the art publication-title: IEEE Trans Microwave Theory Tech – year: 2013 |
SSID | ssj0009923 |
Score | 2.4359848 |
Snippet | ABSTRACT
In this article, a computationally efficient procedure for electromagnetic (EM)‐simulation‐driven design of antennas is presented. Our methodology is... In this article, a computationally efficient procedure for electromagnetic (EM)-simulation-driven design of antennas is presented. Our methodology is based on... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 394 |
SubjectTerms | antenna optimization Antennas Approximation Computational efficiency Computer simulation computer-aided design design automation electromagnetic-driven design Mathematical analysis Mathematical models Microwaves Optimization response features surrogate modeling |
Title | Fast simulation-driven antenna design using response-feature surrogates |
URI | https://api.istex.fr/ark:/67375/WNG-MC5XK6TR-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmmce.20873 https://www.proquest.com/docview/1688455770 https://www.proquest.com/docview/1709752829 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CTumhbfqg2yTFgdJDwbuy1noYcglLtkvD5hCy7V6KkOxxCWG9wd6F0lN_Qn5jfkk08j7S3pqbQfJDGs34G-nTJ4CP2nFbOuFi7SNknGYFxpn0OQ-nJTOmM84E7R0eX8jRJP06FdMdOFnvhWn1ITYTbuQZIV6Tg1vX9LaiobNZTjKXWpHUJ5G1CBFdbrWjsoy37PpMxj7oso02Ke9tb_WQlHrz11_48jFKDb-Z4Qv4sf7All1y010uXDf__Y9241Nb8BKer_BndNoOmH3YweoVPHukSvgazoe2WUTN9Wx1stf9n7uipqAYkRWqykZFoH1ExJn_GdUtyxZ9tRKDTGjULOt6TvNzzRuYDM-uBqN4deZCfM29L8boU0DRzwssUpdL4dBq9HFIIrek25Jaif1EWslZPxcJFkoyXy51TqmTzVn_LexW8wrfQZRK5_GPSrhCTLV_gErKMpGsxKwsPYzowKfQ9-a21dUwtr4hmpkS5vvFFzMeiOm5vLo03zpwuDaOWXlYYxKpdSqEUqwDx5ti7xu04GErnC99HcUyJWituAOfgyU272rVmrkhG5hgAzMeD87C1fv_qXwAex5DiZY9dgi7i3qJRx6nLNyHMB4fAPyh5UE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOUAP5bNioUCQEAektI4Tf-RYrbosbLOHagt7s5xkgqpqs1WyK6Ge-An8Rn5JPU7YLdzgFslOong8kzf28xuAdzrntspFHmoXIcMkLTFMpct5OG2ZMZ1yJujscDaV4_Pk81zMe24OnYXp9CE2C27kGT5ek4PTgvTRVjV0sShI51Kr-C7co5LePqM626pHpSnv-PWpDF3YZRt1Un60vdeBUhrP738gzNs41f9oRg-7aqqt1yckfsnl4XqVHxbXf6k3_vc3PIK9HoIGx92ceQx3sH4Cu7eECZ_CZGTbVdBeLPriXr9-_CwbiosBGaKubVB65kdAtPlvQdMRbdF1q9ArhQbtummWtETXPoPz0clsOA77sgvhBXfuGKLLAkVclFgmeSFFjlajC0USuSXplsRKjCNpJWdxISIslWSuXeqCsidbsHgfdupljc8hSGTuIJCKuEJMtHuAiqoqkqzCtKockhjAez_45qqT1jC2uSSmmRLm6_SjyYZiPpGzM_NlAAe_rWN6J2tNJLVOhFCKDeDtptm5B-152BqXa9dHsVQJ2i4ewAdvis27OsFmbsgGxtvAZNnwxF-9-JfOb-D-eJadmtNP08lLeOAglejIZAews2rW-MrBllX-2k_OG0rk6Vw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiF6KM-q2xYIEuKAlNZx4kckLmjpUlh2haoW9lJZTjKpqmqzVbIrVT31J_Ab-SV4nH0UbnCLZMdJPJ7JN_bnzwBvdMZtmYks1C5ChklaYJhKl_NwWjJjOuVM0N7hwVAenSZfRmK0Bu8Xe2FafYjlhBt5ho_X5OBXRXmwEg0dj3OSudQqvgf3E-naJUh0vBKPSlPe0utTGbqoy5bipPxgda_DpNSd138AzLsw1f9neo_gbPGGLb3kcn82zfbzm7_EG__3Ex7D5hyABh_aEfME1rB6Cht3ZAmfQb9nm2nQXIznR3v9uv1Z1BQVAzJDVdmg8LyPgEjz50Hd0mzRVSvR64QGzayuJzRB1zyH097hSfconB-6EF5w54whuhxQxHmBRZLlUmRoNbpAJJFbEm5JrMQ4klZyFuciwkJJ5sqlzil3sjmLt2C9mlS4DUEiMweAVMQVYqJdAyoqy0iyEtOydDiiA29935urVljD2PqSeGZKmB_DT2bQFaO-PDk23zuwtzCOmbtYYyKpdSKEUqwDr5fFzjloxcNWOJm5OoqlStBicQfeeUssn9XKNXNDNjDeBmYw6B76q51_qfwKHnz72DNfPw_7u_DQ4SnRMsn2YH1az_CFwyzT7KUfmr8BxMzoFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+simulation-driven+antenna+design+using+response-feature+surrogates&rft.jtitle=International+journal+of+RF+and+microwave+computer-aided+engineering&rft.au=Koziel%2C+Slawomir&rft.date=2015-06-01&rft.issn=1096-4290&rft.eissn=1099-047X&rft.volume=25&rft.issue=5&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1002%2Fmmce.20873&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-4290&client=summon |