Improving Normative Modeling for Multi-Modal Neuroimaging Data Using Mixture-of-Product-of-Experts Variational Autoencoders

Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate informat...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) Vol. 2024; pp. 1 - 5
Main Authors Kumar, Sayantan, Payne, Philip, Sotiras, Aristeidis
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology.
AbstractList Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology.Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology.
Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology.
Author Sotiras, Aristeidis
Kumar, Sayantan
Payne, Philip
AuthorAffiliation 1 Department of Computer Science and Engineering, Washington University in St. Louis, USA
2 Institute for Informatics, Data Science and Biostatistics, Washington University in St.Louis, USA
3 Department of Radiology, Washington University in St.Louis, USA
AuthorAffiliation_xml – name: 3 Department of Radiology, Washington University in St.Louis, USA
– name: 1 Department of Computer Science and Engineering, Washington University in St. Louis, USA
– name: 2 Institute for Informatics, Data Science and Biostatistics, Washington University in St.Louis, USA
Author_xml – sequence: 1
  givenname: Sayantan
  surname: Kumar
  fullname: Kumar, Sayantan
  organization: Washington University in St. Louis,Department of Computer Science and Engineering,USA
– sequence: 2
  givenname: Philip
  surname: Payne
  fullname: Payne, Philip
  organization: Washington University in St. Louis,Department of Computer Science and Engineering,USA
– sequence: 3
  givenname: Aristeidis
  surname: Sotiras
  fullname: Sotiras, Aristeidis
  organization: Institute for Informatics, Data Science and Biostatistics, Washington University in St.Louis,USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39610661$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1O3DAUhU0FKhTmDSqaZTeZ2vFP7FVFKW1HYgCphW3k2DeDqySe2s4I1JfHIwbUeuOje46-I_u-Q_ujHwGhDwTPCcHq0-LnlwUXvMbzCldsTrCgXKp6D81UrSTlmBJKqXyDjohivJSMV_s7XatKHqJZjL9xPjVjFLO36JAqkSmCHKG_i2Ed_MaNq-LKh0Ent4Fi6S3021HnQ7Gc-uTKPNJ9cQVT8G7Qq635VSdd3MatXLqHNAUofVfeBG8nk7by4mENIcXiTgeXwX7MhLMpeRhNLgjxBB10uo8w293H6Pbbxa_zH-Xl9ffF-dll6SopUwm2NopLU3EjrOo6yq0UXVsJzQTTQjBGDKOt0qwWLeEda7G2zLKuNdZIbukx-vzMXU_tANbAmILum3XILwmPjdeu-d8Z3X2z8puGEIGxkjwTPu4Iwf-ZIKZmcNFA3-sR_BSbvACGhaxqkaOn_5a9trx8eQ68fw44AHi1X5ZKnwB38pcl
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
NPM
7X8
5PM
DOI 10.1109/ISBI56570.2024.10635897
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350313338
EISSN 1945-8452
EndPage 5
ExternalDocumentID PMC11600985
39610661
10635897
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Health
  funderid: 10.13039/100018696
– fundername: NIH HHS
  grantid: S10 OD018091
– fundername: NIH HHS
  grantid: S10 OD025200
– fundername: NIA NIH HHS
  grantid: R01 AG067103
– fundername: NCRR NIH HHS
  grantid: S10 RR022984
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
NPM
7X8
5PM
ID FETCH-LOGICAL-i288t-ed7c958c25c6d9ff35d86fb26a464a66441c43b9a476b15f4b0ad4d4fbcdc85d3
IEDL.DBID RIE
ISSN 1945-7928
IngestDate Sat Aug 23 05:22:06 EDT 2025
Thu Jul 10 23:28:48 EDT 2025
Thu Aug 28 04:43:02 EDT 2025
Wed Aug 27 02:32:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords variational autoencoders
mixture-of-product-of-experts
multimodal
normative modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i288t-ed7c958c25c6d9ff35d86fb26a464a66441c43b9a476b15f4b0ad4d4fbcdc85d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39610661
PQID 3134068276
PQPubID 23479
PageCount 5
ParticipantIDs pubmed_primary_39610661
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11600985
proquest_miscellaneous_3134068276
ieee_primary_10635897
PublicationCentury 2000
PublicationDate 20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240501
  day: 1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationTitleAlternate Proc IEEE Int Symp Biomed Imaging
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.305545
Snippet Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD)...
Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer’s Disease (AD)...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Brain modeling
Data aggregation
Data models
Estimation
mixture-of-product-of-experts
multimodal
Neuroimaging
normative modelling
Pathology
Sociology
variational autoencoders
Title Improving Normative Modeling for Multi-Modal Neuroimaging Data Using Mixture-of-Product-of-Experts Variational Autoencoders
URI https://ieeexplore.ieee.org/document/10635897
https://www.ncbi.nlm.nih.gov/pubmed/39610661
https://www.proquest.com/docview/3134068276
https://pubmed.ncbi.nlm.nih.gov/PMC11600985
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuDCa4HlJSNx9bJJbMc-UqBqkbqqBEW9rfwUq0KCaIIQ_PnOONnQViBxs5JYcjy25vl9A_BSu-CldIqjfC0XBu-cDSlwZ2I0hqCcJaGRj1bq4ES8P5WnI1g9Y2FijLn4LC5omHP5ofU9hcrwhqN61KbegR303Aaw1hRQQV0o0Dcfa7iKpXl1-GHvkLJ6S3QDS7HYzh77qPzNpLxeGXlJ1ezfhtV2kUOFydmi79zC_7rG3_jff3EHZn9Qfex40ld34UZs7sGtS4SE9-H3FGNgq8GY_REZtUsj0DpD-5ZlwC7HR_YLy8Qem6-5zxF7azvLcgECO9r8pLwEbxM_HghlaZhJlbtz9gm98zECyV73XUtMmlRNPYOT_Xcf3xzwsT0D35RadzyG2hupfSm9CialSgatkiuVFUpYRYaWF5UzVtTKFTIJt7RBBJGcD17LUD2A3aZt4iNgvk52WSXthEVtmbxFgakyFSkGJ6OTc5jRPq6_DQwc6-0WzuHFVoZrvBaU67BNbPvzdVVUaKroslZzeDjIdJpdGbQZ0S6Zg74i7ekDoty--qbZfM7U20WhiIFVPv7Hgp7ATTprQ0XkU9jtvvfxGVotnXueT-sF3ZfxKQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAvvBa6PI3E1csmsR37yKvahe6qEi3qLfJTXQEJoglC8OcZO9nQViBxs5JYcjy25rNnvm8AnkvjLOdGULSvpkzhntMuOGqU90pFKmce2cirtVgcs3cn_GQgqycujPc-JZ_5WWymWL5rbBevynCHo3uUqrwK19Dx86yna41XKugNGZ7OhyyubK5eLD-8Wsa43hwPgjmbbfsPlVT-Biov50aeczb7N2G9HWafY_Jp1rVmZn9eUnD87_-4BZM_vD5yOHqs23DF13dg95wk4V34Nd4ykHUPZ797EgumRdo6QYRLEmWX4iP9mSRpj82XVOmIvNGtJikFgaw2P2JkgjaBHvaSsrGZZJXbM_IRz-fDHSR52bVN1NKM-dQTON5_e_R6QYcCDXSTS9lS70qruLQ5t8KpEArupAgmF5oJpkWEWpYVRmlWCpPxwMxcO-ZYMNZZyV1xD3bqpvZ7QGwZ9LwI0jCN_jJYjQYTeciCd4Z7w6cwifNYfe01OKrtFE7h2daGFW6MGO3QtW-6s6rICgQrMi_FFO73Nh17FwpRIyKTKcgL1h4_iKLbF9_Um9Mkvp1lImqw8gf_GNBTuL44Wh1UB8v1-4dwI667Pj_yEey03zr_GDFMa56klfsbjRr0cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Improving+Normative+Modeling+for+Multi-Modal+Neuroimaging+Data+Using+Mixture-of-Product-of-Experts+Variational+Autoencoders&rft.au=Kumar%2C+Sayantan&rft.au=Payne%2C+Philip&rft.au=Sotiras%2C+Aristeidis&rft.date=2024-05-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI56570.2024.10635897&rft.externalDocID=10635897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon