Improving Normative Modeling for Multi-Modal Neuroimaging Data Using Mixture-of-Product-of-Experts Variational Autoencoders
Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate informat...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) Vol. 2024; pp. 1 - 5 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology. |
---|---|
AbstractList | Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology.Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology. Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD) deviate from the norm. Existing variational autoencoder (VAE)-based normative models using multimodal neuroimaging data aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors. This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations. In this work, we addressed the prior limitations by adopting the Mixture-of-Product-of-Experts (MoPoE) technique which allows better modelling of the joint latent posterior. Our model labelled subjects as outliers by calculating deviations from the multimodal latent space. Further, we identified which latent dimensions and brain regions were associated with abnormal deviations due to AD pathology. |
Author | Sotiras, Aristeidis Kumar, Sayantan Payne, Philip |
AuthorAffiliation | 1 Department of Computer Science and Engineering, Washington University in St. Louis, USA 2 Institute for Informatics, Data Science and Biostatistics, Washington University in St.Louis, USA 3 Department of Radiology, Washington University in St.Louis, USA |
AuthorAffiliation_xml | – name: 3 Department of Radiology, Washington University in St.Louis, USA – name: 1 Department of Computer Science and Engineering, Washington University in St. Louis, USA – name: 2 Institute for Informatics, Data Science and Biostatistics, Washington University in St.Louis, USA |
Author_xml | – sequence: 1 givenname: Sayantan surname: Kumar fullname: Kumar, Sayantan organization: Washington University in St. Louis,Department of Computer Science and Engineering,USA – sequence: 2 givenname: Philip surname: Payne fullname: Payne, Philip organization: Washington University in St. Louis,Department of Computer Science and Engineering,USA – sequence: 3 givenname: Aristeidis surname: Sotiras fullname: Sotiras, Aristeidis organization: Institute for Informatics, Data Science and Biostatistics, Washington University in St.Louis,USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39610661$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1O3DAUhU0FKhTmDSqaZTeZ2vFP7FVFKW1HYgCphW3k2DeDqySe2s4I1JfHIwbUeuOje46-I_u-Q_ujHwGhDwTPCcHq0-LnlwUXvMbzCldsTrCgXKp6D81UrSTlmBJKqXyDjohivJSMV_s7XatKHqJZjL9xPjVjFLO36JAqkSmCHKG_i2Ed_MaNq-LKh0Ent4Fi6S3021HnQ7Gc-uTKPNJ9cQVT8G7Qq635VSdd3MatXLqHNAUofVfeBG8nk7by4mENIcXiTgeXwX7MhLMpeRhNLgjxBB10uo8w293H6Pbbxa_zH-Xl9ffF-dll6SopUwm2NopLU3EjrOo6yq0UXVsJzQTTQjBGDKOt0qwWLeEda7G2zLKuNdZIbukx-vzMXU_tANbAmILum3XILwmPjdeu-d8Z3X2z8puGEIGxkjwTPu4Iwf-ZIKZmcNFA3-sR_BSbvACGhaxqkaOn_5a9trx8eQ68fw44AHi1X5ZKnwB38pcl |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL NPM 7X8 5PM |
DOI | 10.1109/ISBI56570.2024.10635897 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350313338 |
EISSN | 1945-8452 |
EndPage | 5 |
ExternalDocumentID | PMC11600985 39610661 10635897 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Health funderid: 10.13039/100018696 – fundername: NIH HHS grantid: S10 OD018091 – fundername: NIH HHS grantid: S10 OD025200 – fundername: NIA NIH HHS grantid: R01 AG067103 – fundername: NCRR NIH HHS grantid: S10 RR022984 |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS NPM 7X8 5PM |
ID | FETCH-LOGICAL-i288t-ed7c958c25c6d9ff35d86fb26a464a66441c43b9a476b15f4b0ad4d4fbcdc85d3 |
IEDL.DBID | RIE |
ISSN | 1945-7928 |
IngestDate | Sat Aug 23 05:22:06 EDT 2025 Thu Jul 10 23:28:48 EDT 2025 Thu Aug 28 04:43:02 EDT 2025 Wed Aug 27 02:32:07 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | variational autoencoders mixture-of-product-of-experts multimodal normative modelling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i288t-ed7c958c25c6d9ff35d86fb26a464a66441c43b9a476b15f4b0ad4d4fbcdc85d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39610661 |
PQID | 3134068276 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmed_primary_39610661 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11600985 proquest_miscellaneous_3134068276 ieee_primary_10635897 |
PublicationCentury | 2000 |
PublicationDate | 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 5 year: 2024 text: 20240501 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitleAbbrev | ISBI |
PublicationTitleAlternate | Proc IEEE Int Symp Biomed Imaging |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.305545 |
Snippet | Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer's Disease (AD)... Normative models in neuroimaging learn the brain patterns of healthy population distribution and estimate how disease subjects like Alzheimer’s Disease (AD)... |
SourceID | pubmedcentral proquest pubmed ieee |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Brain modeling Data aggregation Data models Estimation mixture-of-product-of-experts multimodal Neuroimaging normative modelling Pathology Sociology variational autoencoders |
Title | Improving Normative Modeling for Multi-Modal Neuroimaging Data Using Mixture-of-Product-of-Experts Variational Autoencoders |
URI | https://ieeexplore.ieee.org/document/10635897 https://www.ncbi.nlm.nih.gov/pubmed/39610661 https://www.proquest.com/docview/3134068276 https://pubmed.ncbi.nlm.nih.gov/PMC11600985 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuDCa4HlJSNx9bJJbMc-UqBqkbqqBEW9rfwUq0KCaIIQ_PnOONnQViBxs5JYcjy25vl9A_BSu-CldIqjfC0XBu-cDSlwZ2I0hqCcJaGRj1bq4ES8P5WnI1g9Y2FijLn4LC5omHP5ofU9hcrwhqN61KbegR303Aaw1hRQQV0o0Dcfa7iKpXl1-GHvkLJ6S3QDS7HYzh77qPzNpLxeGXlJ1ezfhtV2kUOFydmi79zC_7rG3_jff3EHZn9Qfex40ld34UZs7sGtS4SE9-H3FGNgq8GY_REZtUsj0DpD-5ZlwC7HR_YLy8Qem6-5zxF7azvLcgECO9r8pLwEbxM_HghlaZhJlbtz9gm98zECyV73XUtMmlRNPYOT_Xcf3xzwsT0D35RadzyG2hupfSm9CialSgatkiuVFUpYRYaWF5UzVtTKFTIJt7RBBJGcD17LUD2A3aZt4iNgvk52WSXthEVtmbxFgakyFSkGJ6OTc5jRPq6_DQwc6-0WzuHFVoZrvBaU67BNbPvzdVVUaKroslZzeDjIdJpdGbQZ0S6Zg74i7ekDoty--qbZfM7U20WhiIFVPv7Hgp7ATTprQ0XkU9jtvvfxGVotnXueT-sF3ZfxKQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAvvBa6PI3E1csmsR37yKvahe6qEi3qLfJTXQEJoglC8OcZO9nQViBxs5JYcjy25rNnvm8AnkvjLOdGULSvpkzhntMuOGqU90pFKmce2cirtVgcs3cn_GQgqycujPc-JZ_5WWymWL5rbBevynCHo3uUqrwK19Dx86yna41XKugNGZ7OhyyubK5eLD-8Wsa43hwPgjmbbfsPlVT-Biov50aeczb7N2G9HWafY_Jp1rVmZn9eUnD87_-4BZM_vD5yOHqs23DF13dg95wk4V34Nd4ykHUPZ797EgumRdo6QYRLEmWX4iP9mSRpj82XVOmIvNGtJikFgaw2P2JkgjaBHvaSsrGZZJXbM_IRz-fDHSR52bVN1NKM-dQTON5_e_R6QYcCDXSTS9lS70qruLQ5t8KpEArupAgmF5oJpkWEWpYVRmlWCpPxwMxcO-ZYMNZZyV1xD3bqpvZ7QGwZ9LwI0jCN_jJYjQYTeciCd4Z7w6cwifNYfe01OKrtFE7h2daGFW6MGO3QtW-6s6rICgQrMi_FFO73Nh17FwpRIyKTKcgL1h4_iKLbF9_Um9Mkvp1lImqw8gf_GNBTuL44Wh1UB8v1-4dwI667Pj_yEey03zr_GDFMa56klfsbjRr0cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Improving+Normative+Modeling+for+Multi-Modal+Neuroimaging+Data+Using+Mixture-of-Product-of-Experts+Variational+Autoencoders&rft.au=Kumar%2C+Sayantan&rft.au=Payne%2C+Philip&rft.au=Sotiras%2C+Aristeidis&rft.date=2024-05-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI56570.2024.10635897&rft.externalDocID=10635897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon |