Reproductive versatility in legumes: the case of amphicarpy in Trifolium polymorphum
Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers...
Saved in:
Published in | Plant biology (Stuttgart, Germany) Vol. 16; no. 3; pp. 690 - 696 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures. |
---|---|
AbstractList | Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures. Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures.Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures. |
Author | Speroni, G. Izaguirre, P. Bernardello, G. Franco, J. |
Author_xml | – sequence: 1 givenname: G. surname: Speroni fullname: Speroni, G. email: G. Speroni, Av. E. Garzón 780, CP 12900, Montevideo, Uruguay, speronig@gmail.com organization: Facultad Agronomía, Dpto. Biología Vegetal, Universidad de la República, Montevideo, Uruguay – sequence: 2 givenname: P. surname: Izaguirre fullname: Izaguirre, P. organization: Facultad Agronomía, Dpto. Biología Vegetal, Universidad de la República, Montevideo, Uruguay – sequence: 3 givenname: G. surname: Bernardello fullname: Bernardello, G. organization: Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina – sequence: 4 givenname: J. surname: Franco fullname: Franco, J. organization: Facultad Agronomía, Dpto. Biometría, Universidad de la República, Montevideo, Uruguay |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24138122$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kMtOwzAURC1URB-w4AeQl2xS_EqTsEMFClKBChWxtBznhhrsJthJRf-eqC3M5o40R1eaGaLeuloDQueUjGmnq9rmY8oo5UdoQAVPo3SSJL2djztPeB8NQ_gkhIqM0BPUZ4LylDI2QMtXqH1VtLoxG8Ab8EE1xppmi80aW_hoHYRr3KwAaxUAVyVWrl4ZrXy9Q5belJU1rcN1Zbeu8vWqdafouFQ2wNnhjtDb_d1y-hDNX2aP05t5ZFgqmkgVWapFTBMWT3SsGWhWclayQikuioRCnBS5UIIILvJME6oy3lVICScZybnmI3S5_9tV-G4hNNKZoMFatYaqDZLGVAjOWJZ16MUBbXMHhay9ccpv5d8SHRDtARMa-PnPlf-Sk4QnsXx_nsn5YsoIe1rIW_4L3lZwIg |
ContentType | Journal Article |
Copyright | 2013 German Botanical Society and The Royal Botanical Society of the Netherlands. |
Copyright_xml | – notice: 2013 German Botanical Society and The Royal Botanical Society of the Netherlands. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/plb.12113 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1438-8677 |
Editor | Peeters, T. |
Editor_xml | – sequence: 5 givenname: T. surname: Peeters fullname: Peeters, T. |
EndPage | 696 |
ExternalDocumentID | 24138122 ark_67375_WNG_LPC202MP_D |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X H13 HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 R.K RIG RJQFR ROL RTC RX1 SUPJJ SV3 UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ BIYOS CGR CUY CVF ECM EIF NPM 1OB 7X8 |
ID | FETCH-LOGICAL-i284t-ad98c4517256c5c2ec2f32f2daa34d71e57db4a40434b9c01a93014803090b3c3 |
ISSN | 1435-8603 1438-8677 |
IngestDate | Tue Aug 05 11:33:16 EDT 2025 Mon Jul 21 06:02:36 EDT 2025 Wed Oct 30 09:52:38 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | pollen tube development Amphicarpy mixed mating system Leguminosae Trifolium |
Language | English |
License | 2013 German Botanical Society and The Royal Botanical Society of the Netherlands. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-i284t-ad98c4517256c5c2ec2f32f2daa34d71e57db4a40434b9c01a93014803090b3c3 |
Notes | Comisión Sectorial de Investigación Científica (CSIC) ark:/67375/WNG-LPC202MP-D istex:13068C8F0BD6AA4C38ECFA4FB72D9D45ADC1CF19 ArticleID:PLB12113 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/plb.12113 |
PMID | 24138122 |
PQID | 1514432299 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1514432299 pubmed_primary_24138122 istex_primary_ark_67375_WNG_LPC202MP_D |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Plant biology (Stuttgart, Germany) |
PublicationTitleAlternate | Plant Biol J |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | McCullagh P., Nelder J.A. (1983) Generalized linear models. Chapman & Hall, London, UK. Stephenson A.G. (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253-279. Etcheverry A.V., Aleman M.M., Figueroa Fleming T. (2008) Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Annals of Botany, 102, 305-316. Speroni G., Izaguirre P. (2003) Características biológicas de la leguminosa nativa promisoria forrajera Trifolium polymorphum Poir. (Fabaceae, Faboideae). Agrociencia, VII, 68-76. Busch J.W., Delph L.F. (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109, 553-562. Barrett S.C.H. (2010) Understanding plant reproductive diversity. Philosophical Transactions of the Royal Society Series B, 365, 99-109. Lloyd D.G., Webb C.J. (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. New Zealand Journal of Botany, 24, 135-162. Lloyd D.G. (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. International Journal of Plant Science, 153, 370-380. Small E. (1986) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Plant Systematics and Evolution, 160, 195-205. Burkart A. (1952) Las Leguminosas argentinas silvestres y cultivadas. ACME, Buenos Aires, Argentina. Cheplick G.P. (1987) The ecology of amphicarpic plants. Trends in Ecology & Evolution, 2, 97-101. Kearns C.A., Inouye D.W. (1993) Techniques for pollination biologists. University Press of Colorado, Boulder, CO, USA. Lloyd D.G., Schoen D.J. (1992) Self and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Science, 153, 358-369. Busch J.W., Herlihy C.R., Gunn L., Werner W.J. (2010) Mixed mating in a recently derived self-compatible population of Leavenworthia alabamica (Brassicaceae). American Journal of Botany, 97, 1005-1013. Gibbs P.E., Sassaki R. (1998) Reproductive biology of Dalbergia miscolobium Benth. (Leguminosae-Papilionoideae) in SE Brazil: the effects of pistillate sorting on fruit-set. Annals of Botany, 81, 735-740. Speroni G., Izaguirre P., Bernardello G. (2012) Fenología intrafloral de Trifolium polymorphum (Leguminosae). Hacia la interpretación de su sistema reproductivo. Editorial Académica Española, Saarbrücken, Germany. De las Heras M.A., Hidalgo P.J., Ubera J.L. (2001) Stigmatic cuticle in Hedysarum glomeratum: structure and function. International Journal of Developmental Biology, 45, 41-42. Rivals P. (1953) Sur quelques Légumineuses géocarpes et amphicarpes. Revue Internationale de Botanique Appliquée et d'agriculture tropicale, 33, 244-249. Plitman U. (1973) Biological flora of Israel, 4. Vicia sativa ssp amphicarpa (Dorh.) Aschers. & Graebn. Israel Journal of Botany, 22, 178-194. Goodwillie C., Kalisz S., Eckert C.G. (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution and Systematics, 36, 47-79. Lev-Yadun S. (2000) Why are underground flowering and fruiting more common in Israel than anywhere else in the world? Current Science, 79, 289. Morgan M.T., Wilson W.G. (2005) Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution, 59, 1143-1148. Coll J., Zarza A. (1992) Leguminosas nativas promisorias: Trébol polimorfo y babosita. Boletín de Divulgeción Nº 22. Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay. Burkart A. (1987) Flora Ilustrada de Entre Ríos. III. Colección del INTA. 6, Buenos Aires, Argentina. Steets J.A., Hamrick J.L., Ashman T.-L. (2006) Consequences of vegetative herbivory for maintenance of intermediate outcrossing in an annual plant. Ecology, 87, 2717-2727. Tan D.-Y., Zhang Y., Wang A.-B. (2010) A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance. Chinese Journal of Plant Ecology, 34, 72-88. Sadeh A., Guterman H., Gersani M., Ovadia O. (2009) Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evolutionary Ecology, 23, 373-388. Charlesworth D. (2006) Evolution of plant breeding systems. Current Biology, 16, 726-735. Koller D., Roth N. (1964) Studies on the ecological and physiological significance of amphicarpy in Gimnarrhena micrantha (Compositae). American Journal of Botany, 51, 26-35. Neal P.R., Anderson G.J. (2005) Are 'mating systems' 'breeding systems' of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Systematics and Evolution, 250, 173-185. Galloni M., Podda L., Vivarelli D., Cristofolini G. (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164. Conterato I.F., Schifino-Wittmann M.T., Dall'agnol M. (2010) Seed dimorphism: chromosome number and karyotype of the amphicarpic species Trifolium argentinense Speg. Genetic Resources and Crop Evolution, 57, 727-731. Abd El Moneim A.M., Elias S.F. (2003) Underground Vetch (Vicia sativa ssp amphicarpa): a potential pasture and forage legume for dry areas in west Asia. Journal of Agronomy and Crop Science, 189, 136-141. Speroni G., Izaguirre P. (2001) Morfología y esporogénesis en flores aéreas y subterráneas de la especie anficárpica Trifolium polymorphum (Fabaceae, Papilionoideae). Boletín de la Sociedad Argentina de Botánica, 36, 253-265. Vallejo-Marín M., Dorken M.E., Barretts S.C.H. (2010) The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution and Systematics, 41, 193-213. Goodwillie C., Sargent R.D., Eckert C.G., Elle E., Geber M.A., Johnston M.O., Kalisz S., Moeller D.A., Reer H., Vallejo-Marin M., Winn A.A. (2009) Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185, 311-332. Imbert E. (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36. Dumas C., Knox R.B. (1983) Callose determination of pistil viability and incompatibility. Theoretical and Applied Genetics, 67, 1-10. Heslop-Harrison J., Heslop-Harrison Y. (1983) Pollen-stigma interaction in the Leguminosae: the organization of the stigma in Trifolium pratense L. Annals of Botany, 51, 571-583. Steets J.A., Wolf D.E., Auld J.R., Ashman T.-L. (2007) Expression and evolution of mixed mating in hermaphroditic plants and animals. Evolution, 61, 2043-2055. Zhang Y., Yang J., Rao G.Y. (2006) Comparative study on the aerial and subterranean flower development in Amphicarpaea edgeworthii Benth. (Leguminosae: Papilionoideae), an amphicarpic species. International Journal of Plant Science, 167, 943-949. Westoby V., Jurado E., Leishman V. (1992) Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 7, 368-372. Kaul V., Koul A.K., Sharme M.C. (2000) The underground flower. Current Science, 78, 39-44. Speroni G., Izaguirre P., Bernardello G., Franco J. (2009) Intrafloral phenology of Trifolium polymorphum Poir. (Leguminosae) aerial flowers and reproductive implications. Acta Botânica Brasilica, 23, 881-888. Sahai K. (2009) Reproductive biology of two species of Canavalia DC. (Fabaceae) - A non-conventional wild legume. Flora, 204, 762-768. Honnay O., Jacquemyn H. (2010) Clonal plants: beyond the patterns - ecological and evolutionary dynamics of asexual reproduction. Evolutionary Ecology, 24, 1393-1397. Basso-Alves J.P., Agostini K., De Padua Teixeiras S. (2011) Pollen and stigma morphology of some Phaseoleae species (Leguminosae) with different pollinators. Plant Biology, 13, 602-610. Fevereiro-Barbosa V.P. (1987) Macroptilium (Bentham) Urban do Brasil (Leguminosae-Faboideae-Phaseoleae-Phaseolinae). Arquivos do Jardim Botânico do Rio de Janeiro, 23, 109-180. Ivey C.T., Carr D.E. (2005) Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). American Journal of Botany, 92, 1641-1649. Zhang Y., Yang J., Rao G.Y. (2005) Genetic diversity of an amphicarpic species, Amphicarpaea edgeworthii Benth. (Leguminosae) based on RAPD markers. Biochemical Systematics and Ecology, 33, 1246-1257. Braza R., Arroyo J., García M.B. (2010) Natural variation of fecundity components in a widespread plant with dimorphic seeds. Acta Oecologica, 36, 471-476. Culley T.M., Klooster M.R. (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Botanical Review, 73, 1-30. Barker N.P. (2005) A Review and survey of Basicarpy, Geocarpy, and Amphicarpy in the African and Madagascan Flora. Annals of the Missouri Botanical Garden, 92, 445-462. Real D., Dalla Rizza M., Reyno R., Quesenberry K.H. (2007) Breeding system of the aerial flowers in an amphicarpic clover species: Trifolium polymorphum. Crop Science, 47, 1401-1406. Speroni G., Izaguirre P., Bernardello G. (2010) Sobre las causas ontogenéticas de la productividad diferencial de semillas en la especie anficárpica Trifolium polymorphum (Leguminosae). Boletín de la Sociedad Argentina de Botánica, 45, 57-72. Frankel R., Galum E. (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin, Germany. Charlesworth D. (1989) Evolution of low female fertility in plants: pollen limitation, resource allocation and genetic load. Trends in Ecology & Evolution, 4, 289-292. Karron J.D., Ivey C.T., Mitchell R.J., Whitehead M.R., Peakall R., Case A.L. (2012) New perspectives on the evolution of plant mating systems. Annals of Botany, 109, 493-503. Bruneau A., Anderson G.J. (1988) Reproductive biology of diploid and triploid Apios americana (Legum |
References_xml | – reference: Goodwillie C., Sargent R.D., Eckert C.G., Elle E., Geber M.A., Johnston M.O., Kalisz S., Moeller D.A., Reer H., Vallejo-Marin M., Winn A.A. (2009) Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185, 311-332. – reference: Koller D., Roth N. (1964) Studies on the ecological and physiological significance of amphicarpy in Gimnarrhena micrantha (Compositae). American Journal of Botany, 51, 26-35. – reference: Steets J.A., Hamrick J.L., Ashman T.-L. (2006) Consequences of vegetative herbivory for maintenance of intermediate outcrossing in an annual plant. Ecology, 87, 2717-2727. – reference: Zhang Y., Yang J., Rao G.Y. (2006) Comparative study on the aerial and subterranean flower development in Amphicarpaea edgeworthii Benth. (Leguminosae: Papilionoideae), an amphicarpic species. International Journal of Plant Science, 167, 943-949. – reference: Busch J.W., Herlihy C.R., Gunn L., Werner W.J. (2010) Mixed mating in a recently derived self-compatible population of Leavenworthia alabamica (Brassicaceae). American Journal of Botany, 97, 1005-1013. – reference: Braza R., Arroyo J., García M.B. (2010) Natural variation of fecundity components in a widespread plant with dimorphic seeds. Acta Oecologica, 36, 471-476. – reference: Bruneau A., Anderson G.J. (1988) Reproductive biology of diploid and triploid Apios americana (Leguminosae). American Journal of Botany, 75, 1876-1883. – reference: Sahai K. (2009) Reproductive biology of two species of Canavalia DC. (Fabaceae) - A non-conventional wild legume. Flora, 204, 762-768. – reference: Etcheverry A.V., Aleman M.M., Figueroa Fleming T. (2008) Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Annals of Botany, 102, 305-316. – reference: Kaul V., Koul A.K., Sharme M.C. (2000) The underground flower. Current Science, 78, 39-44. – reference: Kearns C.A., Inouye D.W. (1993) Techniques for pollination biologists. University Press of Colorado, Boulder, CO, USA. – reference: Lloyd D.G. (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. International Journal of Plant Science, 153, 370-380. – reference: Morgan M.T., Wilson W.G. (2005) Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution, 59, 1143-1148. – reference: Westoby V., Jurado E., Leishman V. (1992) Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 7, 368-372. – reference: McCullagh P., Nelder J.A. (1983) Generalized linear models. Chapman & Hall, London, UK. – reference: Speroni G., Izaguirre P., Bernardello G. (2010) Sobre las causas ontogenéticas de la productividad diferencial de semillas en la especie anficárpica Trifolium polymorphum (Leguminosae). Boletín de la Sociedad Argentina de Botánica, 45, 57-72. – reference: Speroni G., Izaguirre P., Bernardello G. (2012) Fenología intrafloral de Trifolium polymorphum (Leguminosae). Hacia la interpretación de su sistema reproductivo. Editorial Académica Española, Saarbrücken, Germany. – reference: Neal P.R., Anderson G.J. (2005) Are 'mating systems' 'breeding systems' of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Systematics and Evolution, 250, 173-185. – reference: Ivey C.T., Carr D.E. (2005) Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). American Journal of Botany, 92, 1641-1649. – reference: Conterato I.F., Schifino-Wittmann M.T., Dall'agnol M. (2010) Seed dimorphism: chromosome number and karyotype of the amphicarpic species Trifolium argentinense Speg. Genetic Resources and Crop Evolution, 57, 727-731. – reference: Heslop-Harrison J., Heslop-Harrison Y. (1983) Pollen-stigma interaction in the Leguminosae: the organization of the stigma in Trifolium pratense L. Annals of Botany, 51, 571-583. – reference: De las Heras M.A., Hidalgo P.J., Ubera J.L. (2001) Stigmatic cuticle in Hedysarum glomeratum: structure and function. International Journal of Developmental Biology, 45, 41-42. – reference: Fevereiro-Barbosa V.P. (1987) Macroptilium (Bentham) Urban do Brasil (Leguminosae-Faboideae-Phaseoleae-Phaseolinae). Arquivos do Jardim Botânico do Rio de Janeiro, 23, 109-180. – reference: Zhang Y., Yang J., Rao G.Y. (2005) Genetic diversity of an amphicarpic species, Amphicarpaea edgeworthii Benth. (Leguminosae) based on RAPD markers. Biochemical Systematics and Ecology, 33, 1246-1257. – reference: Burkart A. (1987) Flora Ilustrada de Entre Ríos. III. Colección del INTA. 6, Buenos Aires, Argentina. – reference: Basso-Alves J.P., Agostini K., De Padua Teixeiras S. (2011) Pollen and stigma morphology of some Phaseoleae species (Leguminosae) with different pollinators. Plant Biology, 13, 602-610. – reference: Cheplick G.P. (1987) The ecology of amphicarpic plants. Trends in Ecology & Evolution, 2, 97-101. – reference: Barker N.P. (2005) A Review and survey of Basicarpy, Geocarpy, and Amphicarpy in the African and Madagascan Flora. Annals of the Missouri Botanical Garden, 92, 445-462. – reference: Speroni G., Izaguirre P. (2001) Morfología y esporogénesis en flores aéreas y subterráneas de la especie anficárpica Trifolium polymorphum (Fabaceae, Papilionoideae). Boletín de la Sociedad Argentina de Botánica, 36, 253-265. – reference: Steets J.A., Wolf D.E., Auld J.R., Ashman T.-L. (2007) Expression and evolution of mixed mating in hermaphroditic plants and animals. Evolution, 61, 2043-2055. – reference: Culley T.M., Klooster M.R. (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Botanical Review, 73, 1-30. – reference: Frankel R., Galum E. (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin, Germany. – reference: Barrett S.C.H. (2010) Understanding plant reproductive diversity. Philosophical Transactions of the Royal Society Series B, 365, 99-109. – reference: Coll J., Zarza A. (1992) Leguminosas nativas promisorias: Trébol polimorfo y babosita. Boletín de Divulgeción Nº 22. Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay. – reference: Busch J.W., Delph L.F. (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109, 553-562. – reference: Real D., Dalla Rizza M., Reyno R., Quesenberry K.H. (2007) Breeding system of the aerial flowers in an amphicarpic clover species: Trifolium polymorphum. Crop Science, 47, 1401-1406. – reference: Abd El Moneim A.M., Elias S.F. (2003) Underground Vetch (Vicia sativa ssp amphicarpa): a potential pasture and forage legume for dry areas in west Asia. Journal of Agronomy and Crop Science, 189, 136-141. – reference: Vallejo-Marín M., Dorken M.E., Barretts S.C.H. (2010) The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution and Systematics, 41, 193-213. – reference: Honnay O., Jacquemyn H. (2010) Clonal plants: beyond the patterns - ecological and evolutionary dynamics of asexual reproduction. Evolutionary Ecology, 24, 1393-1397. – reference: Plitman U. (1973) Biological flora of Israel, 4. Vicia sativa ssp amphicarpa (Dorh.) Aschers. & Graebn. Israel Journal of Botany, 22, 178-194. – reference: Small E. (1986) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Plant Systematics and Evolution, 160, 195-205. – reference: Speroni G., Izaguirre P., Bernardello G., Franco J. (2009) Intrafloral phenology of Trifolium polymorphum Poir. (Leguminosae) aerial flowers and reproductive implications. Acta Botânica Brasilica, 23, 881-888. – reference: Tan D.-Y., Zhang Y., Wang A.-B. (2010) A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance. Chinese Journal of Plant Ecology, 34, 72-88. – reference: Gibbs P.E., Sassaki R. (1998) Reproductive biology of Dalbergia miscolobium Benth. (Leguminosae-Papilionoideae) in SE Brazil: the effects of pistillate sorting on fruit-set. Annals of Botany, 81, 735-740. – reference: Stephenson A.G. (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253-279. – reference: Lloyd D.G., Webb C.J. (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. New Zealand Journal of Botany, 24, 135-162. – reference: Galloni M., Podda L., Vivarelli D., Cristofolini G. (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164. – reference: Charlesworth D. (2006) Evolution of plant breeding systems. Current Biology, 16, 726-735. – reference: Sadeh A., Guterman H., Gersani M., Ovadia O. (2009) Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evolutionary Ecology, 23, 373-388. – reference: Bawa K.S., Webb C.J. (1984) Flower, fruit and seed abortion in tropical forest trees: implications for the evolution of paternal and maternal reproductive patters. American Journal of Botany, 71, 736-751. – reference: Lev-Yadun S. (2000) Why are underground flowering and fruiting more common in Israel than anywhere else in the world? Current Science, 79, 289. – reference: Burkart A. (1952) Las Leguminosas argentinas silvestres y cultivadas. ACME, Buenos Aires, Argentina. – reference: Lloyd D.G., Schoen D.J. (1992) Self and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Science, 153, 358-369. – reference: Imbert E. (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36. – reference: Dumas C., Knox R.B. (1983) Callose determination of pistil viability and incompatibility. Theoretical and Applied Genetics, 67, 1-10. – reference: Goodwillie C., Kalisz S., Eckert C.G. (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution and Systematics, 36, 47-79. – reference: Speroni G., Izaguirre P. (2003) Características biológicas de la leguminosa nativa promisoria forrajera Trifolium polymorphum Poir. (Fabaceae, Faboideae). Agrociencia, VII, 68-76. – reference: Karron J.D., Ivey C.T., Mitchell R.J., Whitehead M.R., Peakall R., Case A.L. (2012) New perspectives on the evolution of plant mating systems. Annals of Botany, 109, 493-503. – reference: Charlesworth D. (1989) Evolution of low female fertility in plants: pollen limitation, resource allocation and genetic load. Trends in Ecology & Evolution, 4, 289-292. – reference: Rivals P. (1953) Sur quelques Légumineuses géocarpes et amphicarpes. Revue Internationale de Botanique Appliquée et d'agriculture tropicale, 33, 244-249. |
SSID | ssj0014901 |
Score | 2.0599837 |
Snippet | Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium... |
SourceID | proquest pubmed istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 690 |
SubjectTerms | Amphicarpy Fruit - physiology Germination Leguminosae mixed mating system Pollen Tube - growth & development pollen tube development Pollination - physiology Reproduction Seeds - growth & development Trifolium Trifolium - physiology |
Title | Reproductive versatility in legumes: the case of amphicarpy in Trifolium polymorphum |
URI | https://api.istex.fr/ark:/67375/WNG-LPC202MP-D/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/24138122 https://www.proquest.com/docview/1514432299 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOCCeHd5yUiIS5Vq13ayG260hRZEq4puRW-RX1lF7CarkEhsfz0zdl4gVgIuUeQ4ieSZTL7xzHxDyGtuZnairQlUbGwgjE0DxTic2SiWUiIFFFYjn55FJ5fi01V41efPu-qSSu3r6z_WlfyPVGEM5IpVsv8g2e6hMADnIF84goTh-FcyBvTsCVsx_QfzK2Dcweos31vaRb3yCW-ILbX0m_YSpJdh0MVNmpdZWiyzeoXNGjarAha9oWZo8Cr2NKr2WqYmQKMXVV1VC-kLfY7RrOebwW7CBfKOuy5RfdOuj9dyUWflb-VkB7gRWZo29tPNdp0-ij5g1exITESf_7dvvRUVYEWRKO8XMxsN1IkPbGbk-4VuseXrpUIGDF-wOpDpeuWEimFBwCis_511SYbtpZvkFgMfAttbHH3puMXAMxxPGqopTO3q3oP00M2d4LDgt_Zju_fhUMj8HrnbuA_0ndeF--SGzR-Q2wcFQPzNQzIfKgQdKATNctooxFsK6kBRHWiR0l4dcEqnDnSgDo_I5Yf388OToGmbEWSANapAmnimRQjINIx0qJnVLOUsZUZKLsx0YsOpUUIirZJQsR5PZIx-9QyDbWPFNX9MdvIit7uEGq24NYI5HkHA2opNU2WkUFrNuIj5iLxxC5SsPTVKIstvmCk4DZOvZ8fJ5_NDNman58nRiLxqVzAB-4VBKZnbov6eAOIUAv4qcTwiT_zSdk9r5fB065Vn5E6vgc_JTlXW9gWgxEq9dNL-CSSCad8 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproductive+versatility+in+legumes%3A+the+case+of+amphicarpy+in+Trifolium+polymorphum&rft.jtitle=Plant+biology+%28Stuttgart%2C+Germany%29&rft.au=Speroni%2C+G&rft.au=Izaguirre%2C+P&rft.au=Bernardello%2C+G&rft.au=Franco%2C+J&rft.date=2014-05-01&rft.eissn=1438-8677&rft.volume=16&rft.issue=3&rft.spage=690&rft_id=info:doi/10.1111%2Fplb.12113&rft_id=info%3Apmid%2F24138122&rft.externalDocID=24138122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-8603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-8603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-8603&client=summon |