Reproductive versatility in legumes: the case of amphicarpy in Trifolium polymorphum

Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers...

Full description

Saved in:
Bibliographic Details
Published inPlant biology (Stuttgart, Germany) Vol. 16; no. 3; pp. 690 - 696
Main Authors Speroni, G., Izaguirre, P., Bernardello, G., Franco, J.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures.
AbstractList Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures.
Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures.Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self-compatible allogamous, with aerial floral traits favouring cross-pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self- and cross-pollinations. Seed production was higher in self-pollinations, which is consistent with the higher rate of pollen tube development observed in self-crosses. Spontaneous self-pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self- and cross-pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures.
Author Speroni, G.
Izaguirre, P.
Bernardello, G.
Franco, J.
Author_xml – sequence: 1
  givenname: G.
  surname: Speroni
  fullname: Speroni, G.
  email: G. Speroni, Av. E. Garzón 780, CP 12900, Montevideo, Uruguay, speronig@gmail.com
  organization: Facultad Agronomía, Dpto. Biología Vegetal, Universidad de la República, Montevideo, Uruguay
– sequence: 2
  givenname: P.
  surname: Izaguirre
  fullname: Izaguirre, P.
  organization: Facultad Agronomía, Dpto. Biología Vegetal, Universidad de la República, Montevideo, Uruguay
– sequence: 3
  givenname: G.
  surname: Bernardello
  fullname: Bernardello, G.
  organization: Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
– sequence: 4
  givenname: J.
  surname: Franco
  fullname: Franco, J.
  organization: Facultad Agronomía, Dpto. Biometría, Universidad de la República, Montevideo, Uruguay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24138122$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAURC1URB-w4AeQl2xS_EqTsEMFClKBChWxtBznhhrsJthJRf-eqC3M5o40R1eaGaLeuloDQueUjGmnq9rmY8oo5UdoQAVPo3SSJL2djztPeB8NQ_gkhIqM0BPUZ4LylDI2QMtXqH1VtLoxG8Ab8EE1xppmi80aW_hoHYRr3KwAaxUAVyVWrl4ZrXy9Q5belJU1rcN1Zbeu8vWqdafouFQ2wNnhjtDb_d1y-hDNX2aP05t5ZFgqmkgVWapFTBMWT3SsGWhWclayQikuioRCnBS5UIIILvJME6oy3lVICScZybnmI3S5_9tV-G4hNNKZoMFatYaqDZLGVAjOWJZ16MUBbXMHhay9ccpv5d8SHRDtARMa-PnPlf-Sk4QnsXx_nsn5YsoIe1rIW_4L3lZwIg
ContentType Journal Article
Copyright 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Copyright_xml – notice: 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/plb.12113
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1438-8677
Editor Peeters, T.
Editor_xml – sequence: 5
  givenname: T.
  surname: Peeters
  fullname: Peeters, T.
EndPage 696
ExternalDocumentID 24138122
ark_67375_WNG_LPC202MP_D
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
RJQFR
ROL
RTC
RX1
SUPJJ
SV3
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
BIYOS
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7X8
ID FETCH-LOGICAL-i284t-ad98c4517256c5c2ec2f32f2daa34d71e57db4a40434b9c01a93014803090b3c3
ISSN 1435-8603
1438-8677
IngestDate Tue Aug 05 11:33:16 EDT 2025
Mon Jul 21 06:02:36 EDT 2025
Wed Oct 30 09:52:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords pollen tube development
Amphicarpy
mixed mating system
Leguminosae
Trifolium
Language English
License 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i284t-ad98c4517256c5c2ec2f32f2daa34d71e57db4a40434b9c01a93014803090b3c3
Notes Comisión Sectorial de Investigación Científica (CSIC)
ark:/67375/WNG-LPC202MP-D
istex:13068C8F0BD6AA4C38ECFA4FB72D9D45ADC1CF19
ArticleID:PLB12113
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/plb.12113
PMID 24138122
PQID 1514432299
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1514432299
pubmed_primary_24138122
istex_primary_ark_67375_WNG_LPC202MP_D
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Plant biology (Stuttgart, Germany)
PublicationTitleAlternate Plant Biol J
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References McCullagh P., Nelder J.A. (1983) Generalized linear models. Chapman & Hall, London, UK.
Stephenson A.G. (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253-279.
Etcheverry A.V., Aleman M.M., Figueroa Fleming T. (2008) Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Annals of Botany, 102, 305-316.
Speroni G., Izaguirre P. (2003) Características biológicas de la leguminosa nativa promisoria forrajera Trifolium polymorphum Poir. (Fabaceae, Faboideae). Agrociencia, VII, 68-76.
Busch J.W., Delph L.F. (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109, 553-562.
Barrett S.C.H. (2010) Understanding plant reproductive diversity. Philosophical Transactions of the Royal Society Series B, 365, 99-109.
Lloyd D.G., Webb C.J. (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. New Zealand Journal of Botany, 24, 135-162.
Lloyd D.G. (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. International Journal of Plant Science, 153, 370-380.
Small E. (1986) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Plant Systematics and Evolution, 160, 195-205.
Burkart A. (1952) Las Leguminosas argentinas silvestres y cultivadas. ACME, Buenos Aires, Argentina.
Cheplick G.P. (1987) The ecology of amphicarpic plants. Trends in Ecology & Evolution, 2, 97-101.
Kearns C.A., Inouye D.W. (1993) Techniques for pollination biologists. University Press of Colorado, Boulder, CO, USA.
Lloyd D.G., Schoen D.J. (1992) Self and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Science, 153, 358-369.
Busch J.W., Herlihy C.R., Gunn L., Werner W.J. (2010) Mixed mating in a recently derived self-compatible population of Leavenworthia alabamica (Brassicaceae). American Journal of Botany, 97, 1005-1013.
Gibbs P.E., Sassaki R. (1998) Reproductive biology of Dalbergia miscolobium Benth. (Leguminosae-Papilionoideae) in SE Brazil: the effects of pistillate sorting on fruit-set. Annals of Botany, 81, 735-740.
Speroni G., Izaguirre P., Bernardello G. (2012) Fenología intrafloral de Trifolium polymorphum (Leguminosae). Hacia la interpretación de su sistema reproductivo. Editorial Académica Española, Saarbrücken, Germany.
De las Heras M.A., Hidalgo P.J., Ubera J.L. (2001) Stigmatic cuticle in Hedysarum glomeratum: structure and function. International Journal of Developmental Biology, 45, 41-42.
Rivals P. (1953) Sur quelques Légumineuses géocarpes et amphicarpes. Revue Internationale de Botanique Appliquée et d'agriculture tropicale, 33, 244-249.
Plitman U. (1973) Biological flora of Israel, 4. Vicia sativa ssp amphicarpa (Dorh.) Aschers. & Graebn. Israel Journal of Botany, 22, 178-194.
Goodwillie C., Kalisz S., Eckert C.G. (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution and Systematics, 36, 47-79.
Lev-Yadun S. (2000) Why are underground flowering and fruiting more common in Israel than anywhere else in the world? Current Science, 79, 289.
Morgan M.T., Wilson W.G. (2005) Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution, 59, 1143-1148.
Coll J., Zarza A. (1992) Leguminosas nativas promisorias: Trébol polimorfo y babosita. Boletín de Divulgeción Nº 22. Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay.
Burkart A. (1987) Flora Ilustrada de Entre Ríos. III. Colección del INTA. 6, Buenos Aires, Argentina.
Steets J.A., Hamrick J.L., Ashman T.-L. (2006) Consequences of vegetative herbivory for maintenance of intermediate outcrossing in an annual plant. Ecology, 87, 2717-2727.
Tan D.-Y., Zhang Y., Wang A.-B. (2010) A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance. Chinese Journal of Plant Ecology, 34, 72-88.
Sadeh A., Guterman H., Gersani M., Ovadia O. (2009) Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evolutionary Ecology, 23, 373-388.
Charlesworth D. (2006) Evolution of plant breeding systems. Current Biology, 16, 726-735.
Koller D., Roth N. (1964) Studies on the ecological and physiological significance of amphicarpy in Gimnarrhena micrantha (Compositae). American Journal of Botany, 51, 26-35.
Neal P.R., Anderson G.J. (2005) Are 'mating systems' 'breeding systems' of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Systematics and Evolution, 250, 173-185.
Galloni M., Podda L., Vivarelli D., Cristofolini G. (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164.
Conterato I.F., Schifino-Wittmann M.T., Dall'agnol M. (2010) Seed dimorphism: chromosome number and karyotype of the amphicarpic species Trifolium argentinense Speg. Genetic Resources and Crop Evolution, 57, 727-731.
Abd El Moneim A.M., Elias S.F. (2003) Underground Vetch (Vicia sativa ssp amphicarpa): a potential pasture and forage legume for dry areas in west Asia. Journal of Agronomy and Crop Science, 189, 136-141.
Speroni G., Izaguirre P. (2001) Morfología y esporogénesis en flores aéreas y subterráneas de la especie anficárpica Trifolium polymorphum (Fabaceae, Papilionoideae). Boletín de la Sociedad Argentina de Botánica, 36, 253-265.
Vallejo-Marín M., Dorken M.E., Barretts S.C.H. (2010) The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution and Systematics, 41, 193-213.
Goodwillie C., Sargent R.D., Eckert C.G., Elle E., Geber M.A., Johnston M.O., Kalisz S., Moeller D.A., Reer H., Vallejo-Marin M., Winn A.A. (2009) Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185, 311-332.
Imbert E. (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36.
Dumas C., Knox R.B. (1983) Callose determination of pistil viability and incompatibility. Theoretical and Applied Genetics, 67, 1-10.
Heslop-Harrison J., Heslop-Harrison Y. (1983) Pollen-stigma interaction in the Leguminosae: the organization of the stigma in Trifolium pratense L. Annals of Botany, 51, 571-583.
Steets J.A., Wolf D.E., Auld J.R., Ashman T.-L. (2007) Expression and evolution of mixed mating in hermaphroditic plants and animals. Evolution, 61, 2043-2055.
Zhang Y., Yang J., Rao G.Y. (2006) Comparative study on the aerial and subterranean flower development in Amphicarpaea edgeworthii Benth. (Leguminosae: Papilionoideae), an amphicarpic species. International Journal of Plant Science, 167, 943-949.
Westoby V., Jurado E., Leishman V. (1992) Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 7, 368-372.
Kaul V., Koul A.K., Sharme M.C. (2000) The underground flower. Current Science, 78, 39-44.
Speroni G., Izaguirre P., Bernardello G., Franco J. (2009) Intrafloral phenology of Trifolium polymorphum Poir. (Leguminosae) aerial flowers and reproductive implications. Acta Botânica Brasilica, 23, 881-888.
Sahai K. (2009) Reproductive biology of two species of Canavalia DC. (Fabaceae) - A non-conventional wild legume. Flora, 204, 762-768.
Honnay O., Jacquemyn H. (2010) Clonal plants: beyond the patterns - ecological and evolutionary dynamics of asexual reproduction. Evolutionary Ecology, 24, 1393-1397.
Basso-Alves J.P., Agostini K., De Padua Teixeiras S. (2011) Pollen and stigma morphology of some Phaseoleae species (Leguminosae) with different pollinators. Plant Biology, 13, 602-610.
Fevereiro-Barbosa V.P. (1987) Macroptilium (Bentham) Urban do Brasil (Leguminosae-Faboideae-Phaseoleae-Phaseolinae). Arquivos do Jardim Botânico do Rio de Janeiro, 23, 109-180.
Ivey C.T., Carr D.E. (2005) Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). American Journal of Botany, 92, 1641-1649.
Zhang Y., Yang J., Rao G.Y. (2005) Genetic diversity of an amphicarpic species, Amphicarpaea edgeworthii Benth. (Leguminosae) based on RAPD markers. Biochemical Systematics and Ecology, 33, 1246-1257.
Braza R., Arroyo J., García M.B. (2010) Natural variation of fecundity components in a widespread plant with dimorphic seeds. Acta Oecologica, 36, 471-476.
Culley T.M., Klooster M.R. (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Botanical Review, 73, 1-30.
Barker N.P. (2005) A Review and survey of Basicarpy, Geocarpy, and Amphicarpy in the African and Madagascan Flora. Annals of the Missouri Botanical Garden, 92, 445-462.
Real D., Dalla Rizza M., Reyno R., Quesenberry K.H. (2007) Breeding system of the aerial flowers in an amphicarpic clover species: Trifolium polymorphum. Crop Science, 47, 1401-1406.
Speroni G., Izaguirre P., Bernardello G. (2010) Sobre las causas ontogenéticas de la productividad diferencial de semillas en la especie anficárpica Trifolium polymorphum (Leguminosae). Boletín de la Sociedad Argentina de Botánica, 45, 57-72.
Frankel R., Galum E. (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin, Germany.
Charlesworth D. (1989) Evolution of low female fertility in plants: pollen limitation, resource allocation and genetic load. Trends in Ecology & Evolution, 4, 289-292.
Karron J.D., Ivey C.T., Mitchell R.J., Whitehead M.R., Peakall R., Case A.L. (2012) New perspectives on the evolution of plant mating systems. Annals of Botany, 109, 493-503.
Bruneau A., Anderson G.J. (1988) Reproductive biology of diploid and triploid Apios americana (Legum
References_xml – reference: Goodwillie C., Sargent R.D., Eckert C.G., Elle E., Geber M.A., Johnston M.O., Kalisz S., Moeller D.A., Reer H., Vallejo-Marin M., Winn A.A. (2009) Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185, 311-332.
– reference: Koller D., Roth N. (1964) Studies on the ecological and physiological significance of amphicarpy in Gimnarrhena micrantha (Compositae). American Journal of Botany, 51, 26-35.
– reference: Steets J.A., Hamrick J.L., Ashman T.-L. (2006) Consequences of vegetative herbivory for maintenance of intermediate outcrossing in an annual plant. Ecology, 87, 2717-2727.
– reference: Zhang Y., Yang J., Rao G.Y. (2006) Comparative study on the aerial and subterranean flower development in Amphicarpaea edgeworthii Benth. (Leguminosae: Papilionoideae), an amphicarpic species. International Journal of Plant Science, 167, 943-949.
– reference: Busch J.W., Herlihy C.R., Gunn L., Werner W.J. (2010) Mixed mating in a recently derived self-compatible population of Leavenworthia alabamica (Brassicaceae). American Journal of Botany, 97, 1005-1013.
– reference: Braza R., Arroyo J., García M.B. (2010) Natural variation of fecundity components in a widespread plant with dimorphic seeds. Acta Oecologica, 36, 471-476.
– reference: Bruneau A., Anderson G.J. (1988) Reproductive biology of diploid and triploid Apios americana (Leguminosae). American Journal of Botany, 75, 1876-1883.
– reference: Sahai K. (2009) Reproductive biology of two species of Canavalia DC. (Fabaceae) - A non-conventional wild legume. Flora, 204, 762-768.
– reference: Etcheverry A.V., Aleman M.M., Figueroa Fleming T. (2008) Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: Papilionoideae). Annals of Botany, 102, 305-316.
– reference: Kaul V., Koul A.K., Sharme M.C. (2000) The underground flower. Current Science, 78, 39-44.
– reference: Kearns C.A., Inouye D.W. (1993) Techniques for pollination biologists. University Press of Colorado, Boulder, CO, USA.
– reference: Lloyd D.G. (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. International Journal of Plant Science, 153, 370-380.
– reference: Morgan M.T., Wilson W.G. (2005) Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution, 59, 1143-1148.
– reference: Westoby V., Jurado E., Leishman V. (1992) Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 7, 368-372.
– reference: McCullagh P., Nelder J.A. (1983) Generalized linear models. Chapman & Hall, London, UK.
– reference: Speroni G., Izaguirre P., Bernardello G. (2010) Sobre las causas ontogenéticas de la productividad diferencial de semillas en la especie anficárpica Trifolium polymorphum (Leguminosae). Boletín de la Sociedad Argentina de Botánica, 45, 57-72.
– reference: Speroni G., Izaguirre P., Bernardello G. (2012) Fenología intrafloral de Trifolium polymorphum (Leguminosae). Hacia la interpretación de su sistema reproductivo. Editorial Académica Española, Saarbrücken, Germany.
– reference: Neal P.R., Anderson G.J. (2005) Are 'mating systems' 'breeding systems' of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Systematics and Evolution, 250, 173-185.
– reference: Ivey C.T., Carr D.E. (2005) Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). American Journal of Botany, 92, 1641-1649.
– reference: Conterato I.F., Schifino-Wittmann M.T., Dall'agnol M. (2010) Seed dimorphism: chromosome number and karyotype of the amphicarpic species Trifolium argentinense Speg. Genetic Resources and Crop Evolution, 57, 727-731.
– reference: Heslop-Harrison J., Heslop-Harrison Y. (1983) Pollen-stigma interaction in the Leguminosae: the organization of the stigma in Trifolium pratense L. Annals of Botany, 51, 571-583.
– reference: De las Heras M.A., Hidalgo P.J., Ubera J.L. (2001) Stigmatic cuticle in Hedysarum glomeratum: structure and function. International Journal of Developmental Biology, 45, 41-42.
– reference: Fevereiro-Barbosa V.P. (1987) Macroptilium (Bentham) Urban do Brasil (Leguminosae-Faboideae-Phaseoleae-Phaseolinae). Arquivos do Jardim Botânico do Rio de Janeiro, 23, 109-180.
– reference: Zhang Y., Yang J., Rao G.Y. (2005) Genetic diversity of an amphicarpic species, Amphicarpaea edgeworthii Benth. (Leguminosae) based on RAPD markers. Biochemical Systematics and Ecology, 33, 1246-1257.
– reference: Burkart A. (1987) Flora Ilustrada de Entre Ríos. III. Colección del INTA. 6, Buenos Aires, Argentina.
– reference: Basso-Alves J.P., Agostini K., De Padua Teixeiras S. (2011) Pollen and stigma morphology of some Phaseoleae species (Leguminosae) with different pollinators. Plant Biology, 13, 602-610.
– reference: Cheplick G.P. (1987) The ecology of amphicarpic plants. Trends in Ecology & Evolution, 2, 97-101.
– reference: Barker N.P. (2005) A Review and survey of Basicarpy, Geocarpy, and Amphicarpy in the African and Madagascan Flora. Annals of the Missouri Botanical Garden, 92, 445-462.
– reference: Speroni G., Izaguirre P. (2001) Morfología y esporogénesis en flores aéreas y subterráneas de la especie anficárpica Trifolium polymorphum (Fabaceae, Papilionoideae). Boletín de la Sociedad Argentina de Botánica, 36, 253-265.
– reference: Steets J.A., Wolf D.E., Auld J.R., Ashman T.-L. (2007) Expression and evolution of mixed mating in hermaphroditic plants and animals. Evolution, 61, 2043-2055.
– reference: Culley T.M., Klooster M.R. (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Botanical Review, 73, 1-30.
– reference: Frankel R., Galum E. (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin, Germany.
– reference: Barrett S.C.H. (2010) Understanding plant reproductive diversity. Philosophical Transactions of the Royal Society Series B, 365, 99-109.
– reference: Coll J., Zarza A. (1992) Leguminosas nativas promisorias: Trébol polimorfo y babosita. Boletín de Divulgeción Nº 22. Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay.
– reference: Busch J.W., Delph L.F. (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109, 553-562.
– reference: Real D., Dalla Rizza M., Reyno R., Quesenberry K.H. (2007) Breeding system of the aerial flowers in an amphicarpic clover species: Trifolium polymorphum. Crop Science, 47, 1401-1406.
– reference: Abd El Moneim A.M., Elias S.F. (2003) Underground Vetch (Vicia sativa ssp amphicarpa): a potential pasture and forage legume for dry areas in west Asia. Journal of Agronomy and Crop Science, 189, 136-141.
– reference: Vallejo-Marín M., Dorken M.E., Barretts S.C.H. (2010) The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution and Systematics, 41, 193-213.
– reference: Honnay O., Jacquemyn H. (2010) Clonal plants: beyond the patterns - ecological and evolutionary dynamics of asexual reproduction. Evolutionary Ecology, 24, 1393-1397.
– reference: Plitman U. (1973) Biological flora of Israel, 4. Vicia sativa ssp amphicarpa (Dorh.) Aschers. & Graebn. Israel Journal of Botany, 22, 178-194.
– reference: Small E. (1986) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Plant Systematics and Evolution, 160, 195-205.
– reference: Speroni G., Izaguirre P., Bernardello G., Franco J. (2009) Intrafloral phenology of Trifolium polymorphum Poir. (Leguminosae) aerial flowers and reproductive implications. Acta Botânica Brasilica, 23, 881-888.
– reference: Tan D.-Y., Zhang Y., Wang A.-B. (2010) A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance. Chinese Journal of Plant Ecology, 34, 72-88.
– reference: Gibbs P.E., Sassaki R. (1998) Reproductive biology of Dalbergia miscolobium Benth. (Leguminosae-Papilionoideae) in SE Brazil: the effects of pistillate sorting on fruit-set. Annals of Botany, 81, 735-740.
– reference: Stephenson A.G. (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253-279.
– reference: Lloyd D.G., Webb C.J. (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. New Zealand Journal of Botany, 24, 135-162.
– reference: Galloni M., Podda L., Vivarelli D., Cristofolini G. (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164.
– reference: Charlesworth D. (2006) Evolution of plant breeding systems. Current Biology, 16, 726-735.
– reference: Sadeh A., Guterman H., Gersani M., Ovadia O. (2009) Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evolutionary Ecology, 23, 373-388.
– reference: Bawa K.S., Webb C.J. (1984) Flower, fruit and seed abortion in tropical forest trees: implications for the evolution of paternal and maternal reproductive patters. American Journal of Botany, 71, 736-751.
– reference: Lev-Yadun S. (2000) Why are underground flowering and fruiting more common in Israel than anywhere else in the world? Current Science, 79, 289.
– reference: Burkart A. (1952) Las Leguminosas argentinas silvestres y cultivadas. ACME, Buenos Aires, Argentina.
– reference: Lloyd D.G., Schoen D.J. (1992) Self and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Science, 153, 358-369.
– reference: Imbert E. (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36.
– reference: Dumas C., Knox R.B. (1983) Callose determination of pistil viability and incompatibility. Theoretical and Applied Genetics, 67, 1-10.
– reference: Goodwillie C., Kalisz S., Eckert C.G. (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution and Systematics, 36, 47-79.
– reference: Speroni G., Izaguirre P. (2003) Características biológicas de la leguminosa nativa promisoria forrajera Trifolium polymorphum Poir. (Fabaceae, Faboideae). Agrociencia, VII, 68-76.
– reference: Karron J.D., Ivey C.T., Mitchell R.J., Whitehead M.R., Peakall R., Case A.L. (2012) New perspectives on the evolution of plant mating systems. Annals of Botany, 109, 493-503.
– reference: Charlesworth D. (1989) Evolution of low female fertility in plants: pollen limitation, resource allocation and genetic load. Trends in Ecology & Evolution, 4, 289-292.
– reference: Rivals P. (1953) Sur quelques Légumineuses géocarpes et amphicarpes. Revue Internationale de Botanique Appliquée et d'agriculture tropicale, 33, 244-249.
SSID ssj0014901
Score 2.0599837
Snippet Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium...
SourceID proquest
pubmed
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 690
SubjectTerms Amphicarpy
Fruit - physiology
Germination
Leguminosae
mixed mating system
Pollen Tube - growth & development
pollen tube development
Pollination - physiology
Reproduction
Seeds - growth & development
Trifolium
Trifolium - physiology
Title Reproductive versatility in legumes: the case of amphicarpy in Trifolium polymorphum
URI https://api.istex.fr/ark:/67375/WNG-LPC202MP-D/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/24138122
https://www.proquest.com/docview/1514432299
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOCCeHd5yUiIS5Vq13ayG260hRZEq4puRW-RX1lF7CarkEhsfz0zdl4gVgIuUeQ4ieSZTL7xzHxDyGtuZnairQlUbGwgjE0DxTic2SiWUiIFFFYjn55FJ5fi01V41efPu-qSSu3r6z_WlfyPVGEM5IpVsv8g2e6hMADnIF84goTh-FcyBvTsCVsx_QfzK2Dcweos31vaRb3yCW-ILbX0m_YSpJdh0MVNmpdZWiyzeoXNGjarAha9oWZo8Cr2NKr2WqYmQKMXVV1VC-kLfY7RrOebwW7CBfKOuy5RfdOuj9dyUWflb-VkB7gRWZo29tPNdp0-ij5g1exITESf_7dvvRUVYEWRKO8XMxsN1IkPbGbk-4VuseXrpUIGDF-wOpDpeuWEimFBwCis_511SYbtpZvkFgMfAttbHH3puMXAMxxPGqopTO3q3oP00M2d4LDgt_Zju_fhUMj8HrnbuA_0ndeF--SGzR-Q2wcFQPzNQzIfKgQdKATNctooxFsK6kBRHWiR0l4dcEqnDnSgDo_I5Yf388OToGmbEWSANapAmnimRQjINIx0qJnVLOUsZUZKLsx0YsOpUUIirZJQsR5PZIx-9QyDbWPFNX9MdvIit7uEGq24NYI5HkHA2opNU2WkUFrNuIj5iLxxC5SsPTVKIstvmCk4DZOvZ8fJ5_NDNman58nRiLxqVzAB-4VBKZnbov6eAOIUAv4qcTwiT_zSdk9r5fB065Vn5E6vgc_JTlXW9gWgxEq9dNL-CSSCad8
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproductive+versatility+in+legumes%3A+the+case+of+amphicarpy+in+Trifolium+polymorphum&rft.jtitle=Plant+biology+%28Stuttgart%2C+Germany%29&rft.au=Speroni%2C+G&rft.au=Izaguirre%2C+P&rft.au=Bernardello%2C+G&rft.au=Franco%2C+J&rft.date=2014-05-01&rft.eissn=1438-8677&rft.volume=16&rft.issue=3&rft.spage=690&rft_id=info:doi/10.1111%2Fplb.12113&rft_id=info%3Apmid%2F24138122&rft.externalDocID=24138122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-8603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-8603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-8603&client=summon