Formation and Movement of Cationic Defects During Forming and Resistive Switching in SrTiO3 Thin Film Devices

The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly electron‐doped filaments. In this paper, the interface and subinterface region of electroformed and switched metal–insulator–metal structures fabricated...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 40; pp. 6360 - 6368
Main Authors Lenser, Christian, Koehl, Annemarie, Slipukhina, Ivetta, Du, Hongchu, Patt, Marten, Feyer, Vitaliy, Schneider, Claus M., Lezaic, Marjana, Waser, Rainer, Dittmann, Regina
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly electron‐doped filaments. In this paper, the interface and subinterface region of electroformed and switched metal–insulator–metal structures fabricated from a thin Fe‐doped SrTiO3 (STO) film on n‐conducting Nb‐doped SrTiO3 crystals are investigated by photoemission electron microscopy, transmission electron microscopy, and hard X‐ray photoelectron spectroscopy in order to gain a deeper understanding of cation movement in this specific system. During electroforming, the segregation of Sr to the top interface and the generation of defect‐rich cones in the film are observed, apparently growing from the anode toward the cathode during electroforming. An unusual binding energy component of the Sr 3d emission line is observed which can be assigned to Sr″Ti−VO** defect complexes by performing ab initio calculations. Since this Sr component can be reversibly affected by an external electrical bias, the movement of both oxygen and Sr point defects and the formation of defect complexes Sr″Ti−VO** during resistive switching are suggested. These findings are discussed with regard to the point defect structure of the film and the local oxidation of the donor‐doped substrate. In particular, the apparent dichotomy between the observation of acceptor‐type defects and increased electronic conductivity in STO is addressed. A low binding energy component of the Sr 3d photoemission line is observed in Fe‐doped SrTiO3 memristive devices and assigned to Sr″Ti−VO** defect complexes by ab initio calculations. Since this Sr component can be reversibly affected by an electrical bias, the movement of both oxygen and Sr vacancies and the formation of Sr″Ti−VO** defect complexes during resistive switching are suggested.
AbstractList The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly electron‐doped filaments. In this paper, the interface and subinterface region of electroformed and switched metal–insulator–metal structures fabricated from a thin Fe‐doped SrTiO3 (STO) film on n‐conducting Nb‐doped SrTiO3 crystals are investigated by photoemission electron microscopy, transmission electron microscopy, and hard X‐ray photoelectron spectroscopy in order to gain a deeper understanding of cation movement in this specific system. During electroforming, the segregation of Sr to the top interface and the generation of defect‐rich cones in the film are observed, apparently growing from the anode toward the cathode during electroforming. An unusual binding energy component of the Sr 3d emission line is observed which can be assigned to Sr″Ti−VO** defect complexes by performing ab initio calculations. Since this Sr component can be reversibly affected by an external electrical bias, the movement of both oxygen and Sr point defects and the formation of defect complexes Sr″Ti−VO** during resistive switching are suggested. These findings are discussed with regard to the point defect structure of the film and the local oxidation of the donor‐doped substrate. In particular, the apparent dichotomy between the observation of acceptor‐type defects and increased electronic conductivity in STO is addressed. A low binding energy component of the Sr 3d photoemission line is observed in Fe‐doped SrTiO3 memristive devices and assigned to Sr″Ti−VO** defect complexes by ab initio calculations. Since this Sr component can be reversibly affected by an electrical bias, the movement of both oxygen and Sr vacancies and the formation of Sr″Ti−VO** defect complexes during resistive switching are suggested.
Author Dittmann, Regina
Koehl, Annemarie
Schneider, Claus M.
Lenser, Christian
Patt, Marten
Lezaic, Marjana
Du, Hongchu
Feyer, Vitaliy
Waser, Rainer
Slipukhina, Ivetta
Author_xml – sequence: 1
  givenname: Christian
  surname: Lenser
  fullname: Lenser, Christian
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 2
  givenname: Annemarie
  surname: Koehl
  fullname: Koehl, Annemarie
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 3
  givenname: Ivetta
  surname: Slipukhina
  fullname: Slipukhina, Ivetta
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 4
  givenname: Hongchu
  surname: Du
  fullname: Du, Hongchu
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 5
  givenname: Marten
  surname: Patt
  fullname: Patt, Marten
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 6
  givenname: Vitaliy
  surname: Feyer
  fullname: Feyer, Vitaliy
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 7
  givenname: Claus M.
  surname: Schneider
  fullname: Schneider, Claus M.
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 8
  givenname: Marjana
  surname: Lezaic
  fullname: Lezaic, Marjana
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 9
  givenname: Rainer
  surname: Waser
  fullname: Waser, Rainer
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
– sequence: 10
  givenname: Regina
  surname: Dittmann
  fullname: Dittmann, Regina
  email: r.dittmann@fz-juelich.de
  organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany
BookMark eNo9UF1PwkAQvBhNBPTV5_sDxd0e7R2PBCyYgBDBj7fL0d7pKb2aXgX597Zi-jQ7szuT7HTJuSucJuQGoY8A4a3KTN4PASMAEeEZ6WCMccAgFOftjK-XpOv9BwByzgYdkidFmavKFo4ql9FFsde5dhUtDB3_yTalE210Wnk6-S6te6ONo8Hm_lF76yu713R9sFX63ujW0XW5sUtGNzWnid3ldcTeptpfkQujdl5f_2OPPCV3m_EsmC-n9-PRPLChYBgMNagw3sIWhdpqPtBpFg0x4sjjiAmhhEGFJlP1JgTBBfBUIIIRgFmsDLIeGZ5yD3anj_KrtLkqjxJBNk3JpinZNiVHk2TRstobnLz1Y_qn9aryU8ac8Ui-PEwlrlerGawS-cx-AUMZcFU
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
DOI 10.1002/adfm.201500851
DatabaseName Istex
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 6368
ExternalDocumentID ADFM201500851
ark_67375_WNG_1SPPH0PF_V
Genre article
GrantInformation_xml – fundername: Federal Ministry of Education and Research
  funderid: 05KS7UM1; 05K10UMA; 05KS7WW3; 05K10WW1
– fundername: EC FP7 MATERA project “Functional materials for resistive switching memories”
– fundername: NWR Ziel 2 program
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-LOGICAL-i2831-9e0a26b0b18abe74ecd591571765388a8f1a1fda74e2087807c8110f801d6af13
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Aug 24 00:53:35 EDT 2024
Wed Oct 30 09:50:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2831-9e0a26b0b18abe74ecd591571765388a8f1a1fda74e2087807c8110f801d6af13
Notes istex:1904CE9CAEEA77AA557BDBF7C8E451E46577CB97
ark:/67375/WNG-1SPPH0PF-V
EC FP7 MATERA project "Functional materials for resistive switching memories"
Federal Ministry of Education and Research - No. 05KS7UM1; No. 05K10UMA; No. 05KS7WW3; No. 05K10WW1
NWR Ziel 2 program
ArticleID:ADFM201500851
OpenAccessLink https://bib-pubdb1.desy.de/record/288919/files/Sr_diffusion-accepted.pdf
PageCount 9
ParticipantIDs wiley_primary_10_1002_adfm_201500851_ADFM201500851
istex_primary_ark_67375_WNG_1SPPH0PF_V
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References S. Kim, S. Choi, W. Lu, ACS Nano 2014, 8, 2369.
B. P. Andreasson, M. Janousch, U. Staub, I. G. Meijer, Appl. Phys. Lett. 2009, 94, 13513.
B. P. Andreasson, M. Janousch, U. Staub, T. Todorova, B. Delley, G. I. Meijer, E. Pomjakushina, Phys. Rev. B 2009, 80, 212103.
A. Sawa, Mater. Today 2008, 11, 28.
A. Koehl, H. Wasmund, A. Herpers, P. Guttmann, S. Werner, K. Henzler, H. Du, J. Mayer, R. Waser, R. Dittmann, APL Mater. 2013, 1,042102.
R. Waser, J. Am. Ceram. Soc. U.S.A. 1991, 74, 1934.
C. Lenser, A. Kuzmin, J. Purans, A. Kalinko, R. Waser, R. Dittmann, J. Appl. Phys. 2012, 111, 76101.
B. Liu, V. R. Cooper, H. Xu, H. Xiao, Y. Zhang, W. J. Weber, Phys. Chem. Chem. Phys. 2014, 16, 15590.
S. Menzel, M. Waters, A. Marchewka, A. Böttger, R. Dittmann, R. Waser, Adv. Funct. Mater. 2011, 21, 4487.
D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80.
K. Szot, W. Speier, Phys. Rev. B: Condens. Matter 1999, 60, 5909.
Y. Chen, W. Jung, Z. Cai, J. J. Kim, H. L. Tuller, B. Yildiz, Energy Environ. Sci. 2012, 5, 7979.
A. Walsh, C. R. A. Catlow, A. G. H. Smith, A. A. Sokol, S. M. Woodley, Phys. Rev. B 2011, 83, 220301.
J. S. Lee, S. B. Lee, B. Kahng, T. W. Noh, Appl. Phys. Lett. 2013, 102, 253503.
C. Lenser, M. Patt, S. Menzel, C. Köhl, A Wiemann, C. Schneider, C. M. Waser, R. Dittmann, Adv. Funct. Mater. 2014, 24, 4466.
C. Fadley, Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 547, 24.
A. Gloskovskii, G. Stryganyuk, G. H. Fecher, C. Felser, S. Thiess, H. Schulz-Ritter, W. Drube, G. Berner, M. Sing, R. Claessen, M. Yamamoto, J. Electron Spectrosc. Relat. Phenom. 2012, 185, 47.
R. Waser, M. Aono, Nat. Mater. 2007, 6, 833.
E. Breckenfeld, R. Wilson, J. Karthik, A. R. Damodaran, D. G. Cahill, L. W. Martin, Chem. Mater. 2012, 24, 331.
D. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R. A. Mackie, W. Egger, Phys. Rev. Lett. 2010, 105, 4.
R. Meyer, R. Waser, J. Helmbold, G. Borchardt, Phys. Rev. Lett. 2003, 90, 105901.
M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, Y. Tokura, Y. Fujishima, O. Strebel, M. Domke, G. Kaindl, J. van Elp, B. T. Thole, G. A. Sawatzky, M. Sacchi, N. Tsuda, Phys. Rev. B 1991, 44, 5419.
H. P. Hjalmarson, H. Büttner, J. D. Dow, Phys. Rev. B 1981, 24, 6010.
A. Beck, J. G., Bednorz, C. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 2000, 77, 139.
A. Mueller, K. Haerdtl, Appl. Phys. A 1989, 49, 75.
R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, A. Besmehn, F. Kronast, C. M. Schneider, R. Waser, Proc. IEEE 2012, 100, 1979.
D. M. Smyth, Curr. Opin. Solid State Mater. Sci. 1996, 1, 692.
S. Stille, C. Lenser, R. Dittmann, A. Koehl, I. Krug, R. Muenstermann, J. Perlich, C. M. Schneider, U. Klemradt, R. Waser, Appl. Phys. Lett. 2012, 100, 223503.
R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Adv. Mater. 2010, 22, 4819.
J. W. C. de Vries, R. M. Waser, Proc. 7th IEEE Int. Symp. Appl. Ferroelectr. IEEE, New York 1991, pp 557-561.
D. Fuchs, M. Adam, P. Schweiss, S. Gerhold, S. Schuppler, R. Schneider, B. Obst, J. Appl. Phys. 2000, 88, 1844.
R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.
R. Meyer, R. Waser, J. Helmbold, G. Borchardt, J. Electroceram. 2002, 9, 101.
S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 1994, 21, 165.
M. Schie, A. Marchewka, T. Mueller, R. A. De Souza, R. Waser, J. Phys.: Condens. Matter 2012, 24, 485002.
C. Wiemann, M. Patt, I. P. Krug, N. B. Weber, M. Escher, M. Merkel, C. M. Schneider, e-J. Surf. Sci. Nanotechnol. 2011, 9, 395.
Y. S. Kim, J. Kim, M. J. Yoon, C. H. Sohn, S. B. Lee, D. Lee, B. C. Jeon, H. K. Yoo, T. W. Noh, A. Bostwick, E. Rotenberg, J. Yu, S. D. Bu, B. S. Mun, Appl. Phys. Lett. 2014, 104, 13501.
B. Rahmati, J. Fleig, W. Sigle, E. Bischoff, J. Maier, M. Rühle, Surf. Sci. 2005, 595, 115.
R. Merkle, J. Maier, Angew. Chem. Int. Ed. 2008, 47, 3874.
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
T. Fujikawa, J. Phys. Soc. Jpn. 1983, 52, 4001.
R. Wernicke, Phys. Status Solidi A 1978, 47, 139.
F. M. F. de Groot, J. Faber, J. J. M. Michiels, M. T. Czyżyk, M. Abbate, J. C. Fuggle, Phys. Rev. B 1993, 48, 2074.
K. Szot, W. Speier, U. Breuer, R. Meyer, J. Szade, R. Waser, Surf. Sci. 2000, 460, 112.
1993; 48
2012; 185
2012; 100
2009; 21
2013; 1
2002; 9
2009; 80
2005; 595
2010; 105
1991; 74
2000; 88
2011; 83
1981; 24
2013; 102
2014; 24
1983; 52
2008; 11
1991
1999; 60
1989; 49
1996; 54
1994; 21
2011; 9
2010; 22
2003; 90
2012; 111
2009; 94
1991; 44
2000; 77
2008; 47
2005; 547
2014; 16
2007; 6
2011; 21
2000; 460
1996; 1
1978; 47
2008; 453
2014; 8
2012; 24
2012; 5
2014; 104
References_xml – volume: 90
  start-page: 105901
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 2369
  year: 2014
  publication-title: ACS Nano
– volume: 595
  start-page: 115
  year: 2005
  publication-title: Surf. Sci.
– volume: 9
  start-page: 101
  year: 2002
  publication-title: J. Electroceram.
– volume: 24
  start-page: 485002
  year: 2012
  publication-title: J. Phys.: Condens. Matter
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 24
  start-page: 331
  year: 2012
  publication-title: Chem. Mater
– volume: 74
  start-page: 1934
  year: 1991
  publication-title: J. Am. Ceram. Soc. U.S.A.
– volume: 11
  start-page: 28
  year: 2008
  publication-title: Mater. Today
– volume: 80
  start-page: 212103
  year: 2009
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 692
  year: 1996
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 21
  start-page: 2632
  year: 2009
  publication-title: Adv. Mater.
– volume: 47
  start-page: 139
  year: 1978
  publication-title: Phys. Status Solidi A
– volume: 48
  start-page: 2074
  year: 1993
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 75
  year: 1989
  publication-title: Appl. Phys. A
– volume: 5
  start-page: 7979
  year: 2012
  publication-title: Energy Environ. Sci
– volume: 9
  start-page: 395
  year: 2011
  publication-title: e‐J. Surf. Sci. Nanotechnol.
– volume: 47
  start-page: 3874
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 833
  year: 2007
  publication-title: Nat. Mater.
– volume: 21
  start-page: 4487
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 102
  start-page: 253503
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 139
  year: 2000
  publication-title: Appl. Phys. Lett.
– volume: 60
  start-page: 5909
  year: 1999
  publication-title: Phys. Rev. B: Condens. Matter
– volume: 111
  start-page: 76101
  year: 2012
  publication-title: J. Appl. Phys
– volume: 83
  start-page: 220301
  year: 2011
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 15590
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 88
  start-page: 1844
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 22
  start-page: 4819
  year: 2010
  publication-title: Adv. Mater
– volume: 547
  start-page: 24
  year: 2005
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 104
  start-page: 13501
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 042102
  year: 2013
  publication-title: APL Mater.
– volume: 24
  start-page: 4466
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 100
  start-page: 1979
  year: 2012
  publication-title: Proc. IEEE
– volume: 21
  start-page: 165
  year: 1994
  publication-title: Surf. Interface Anal.
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 6010
  year: 1981
  publication-title: Phys. Rev. B
– volume: 100
  start-page: 223503
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 5419
  year: 1991
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 13513
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 105
  start-page: 4
  year: 2010
  publication-title: Phys. Rev. Lett
– start-page: 557
  year: 1991
  end-page: 561
– volume: 460
  start-page: 112
  year: 2000
  publication-title: Surf. Sci.
– volume: 52
  start-page: 4001
  year: 1983
  publication-title: J. Phys. Soc. Jpn.
– volume: 185
  start-page: 47
  year: 2012
  publication-title: J. Electron Spectrosc. Relat. Phenom.
SSID ssj0017734
Score 2.4451144
Snippet The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly...
SourceID wiley
istex
SourceType Publisher
StartPage 6360
SubjectTerms hard X-ray photoelectron spectroscopy
photoemission electron microscopy
resistive switching
segregation
Title Formation and Movement of Cationic Defects During Forming and Resistive Switching in SrTiO3 Thin Film Devices
URI https://api.istex.fr/ark:/67375/WNG-1SPPH0PF-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201500851
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MJz34bcSv9GC8DdZ168qRMCcxAQkfym1puy5ZkGFgqPHX23YwwaOetmV9l-Zt-_Zp97xPAbhVU0TDSxC3KFfN4GLMrYZa_FhC2K7EAjvYJIV1uqQ9ch_H3ngji7_Qhyg33PTIMPFaD3DGF_Uf0VAWJzqTXAEajRpUEEbY15yuoF_qRyHfL34rE6QJXmi8Vm20nfq2uYKm2quf2xDVzDHhAWDr2hXUkkltmfOa-Pol3Pif6h-C_RUAhc2ixxyBHZkdg70NWcITMA3XGY2QZTHszIymeA5nCWwVG7gCBtLwQGBg0hyhttBXXb4vFzpwvEs4-Ehzw9WEaQYH82H6hKE-KBSG6etUfcJEqVMwCu-Hrba1OpbBShUWQVZD2swh3OaIMi59V4rYayBPrQuJip6U0QQxlMRMvXFs6lPbF1SBjETNhTFhCcJnoJLNMnkOIBVYeh7FzOEKl-GEYukSTxKXuDEiQlTBnWmW6K2Q3ojYfKKZaL4XvXQfIjTo9dp2L4yeq8Axzi4LFmrMTqTdHJVujppB2CmfLv5idAl29X3B57sClXy-lNcKl-T8xvS9b84-2NQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLagHAYHGNsQZTB8QLsF4jhx3COiZOVHu4qWrTfLdhwpKk1RSWHir8fPodm6I5yiJHaUPNvPn1--9xmhIztFtKKMKI8r2wwhpcpr2cWPp7UfGqppQF1SWLfHOrfh5ShasAkhF6bSh6gDbjAynL-GAQ4B6ZO_qqEyzSCV3CIagA2raM2OeQq7N7RvagUpEsfVj2VGgOJFRgvdRj84Wa5vwSnY9c8ySHWzTLKF1OL9KnLJ-HheqmP9_J9047s-4CPafMWg-LTqNNtoxRSf0MY_yoSf0SRZJDViWaS4O3Wy4iWeZvisiuFq3DaOCoLbLtMRQw04Qvkb8wC-49HgwVNeOromzgs8mA3znxTDXqE4ye8m9hHOUX1Bt8n58Kzjve7M4OUWjhCvZXwZMOUrwqUycWh0GrVIZJeGzDpQLnlGJMlSae8EPo-5H2tucUZmp8OUyYzQHdQopoXZRZhraqKIUxkoC81oxqkJWWRYyMKUMK2b6LtrF3FfqW8IORsDGS2OxO_eD0EG_X7H7yfiVxMFztp1wUqQORBgZlGbWZy2k259tveWSofoQ2fYvRbXF72rr2gdrlf0vn3UKGdzc2BhSqm-uY74AmxT3Ow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8MgFCY6E6MP3o13eTC-VUtpKXs0zjovm4vzsjcCFJJm2i2zXuKvF6irl0d9atpyGnKAwwf9zgcAe2aKqEcaCY8K0wwhxsKrm8WPJ6UfKixxgF1SWKtNmrfheS_qfcviL_Uhqg03OzJcvLYDfJjqwy_RUJ5qm0luAI1FDZNgKiQG_lpYdF0JSKE4Lv8rE2QZXqg3lm30g8Of9gabWre-_cSobpJJ5gEfV6_klvQPngtxIN9_KTf-p_4LYO4TgcKjssssggmVL4HZb7qEy-AxGac0Qp6nsDVwouIFHGh4XO7gSthQjggCGy7PEVoLe7Xlr9WTjRwvCnZfs8KRNWGWw-7oJrvC0J4UCpPs4dF8woWpFXCbnNwcN73Pcxm8zIAR5NWVzwMifIEoFyoOlUyjOorMwpCY8Ek51YgjnXLzJvBpTP1YUoMytJkMU8I1wquglg9ytQYglVhFEcU8EAaYYU2xCkmkSEjCFBEp18G-axY2LLU3GB_1LRUtjth9-5ShbqfT9DsJu1sHgXN2VbCUYw6YdTOr3MyOGkmrutv4i9EumO40EnZ51r7YBDP2ccnt2wK1YvSstg1GKcSO64Yf6sHbmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+and+Movement+of+Cationic+Defects+During+Forming+and+Resistive+Switching+in+SrTiO3+Thin+Film+Devices&rft.jtitle=Advanced+functional+materials&rft.au=Lenser%2C+Christian&rft.au=Koehl%2C+Annemarie&rft.au=Slipukhina%2C+Ivetta&rft.au=Du%2C+Hongchu&rft.date=2015-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=40&rft.spage=6360&rft.epage=6368&rft_id=info:doi/10.1002%2Fadfm.201500851&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_1SPPH0PF_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon