Formation and Movement of Cationic Defects During Forming and Resistive Switching in SrTiO3 Thin Film Devices
The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly electron‐doped filaments. In this paper, the interface and subinterface region of electroformed and switched metal–insulator–metal structures fabricated...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 40; pp. 6360 - 6368 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly electron‐doped filaments. In this paper, the interface and subinterface region of electroformed and switched metal–insulator–metal structures fabricated from a thin Fe‐doped SrTiO3 (STO) film on n‐conducting Nb‐doped SrTiO3 crystals are investigated by photoemission electron microscopy, transmission electron microscopy, and hard X‐ray photoelectron spectroscopy in order to gain a deeper understanding of cation movement in this specific system. During electroforming, the segregation of Sr to the top interface and the generation of defect‐rich cones in the film are observed, apparently growing from the anode toward the cathode during electroforming. An unusual binding energy component of the Sr 3d emission line is observed which can be assigned to Sr″Ti−VO** defect complexes by performing ab initio calculations. Since this Sr component can be reversibly affected by an external electrical bias, the movement of both oxygen and Sr point defects and the formation of defect complexes Sr″Ti−VO** during resistive switching are suggested. These findings are discussed with regard to the point defect structure of the film and the local oxidation of the donor‐doped substrate. In particular, the apparent dichotomy between the observation of acceptor‐type defects and increased electronic conductivity in STO is addressed.
A low binding energy component of the Sr 3d photoemission line is observed in Fe‐doped SrTiO3 memristive devices and assigned to Sr″Ti−VO** defect complexes by ab initio calculations. Since this Sr component can be reversibly affected by an electrical bias, the movement of both oxygen and Sr vacancies and the formation of Sr″Ti−VO** defect complexes during resistive switching are suggested. |
---|---|
AbstractList | The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly electron‐doped filaments. In this paper, the interface and subinterface region of electroformed and switched metal–insulator–metal structures fabricated from a thin Fe‐doped SrTiO3 (STO) film on n‐conducting Nb‐doped SrTiO3 crystals are investigated by photoemission electron microscopy, transmission electron microscopy, and hard X‐ray photoelectron spectroscopy in order to gain a deeper understanding of cation movement in this specific system. During electroforming, the segregation of Sr to the top interface and the generation of defect‐rich cones in the film are observed, apparently growing from the anode toward the cathode during electroforming. An unusual binding energy component of the Sr 3d emission line is observed which can be assigned to Sr″Ti−VO** defect complexes by performing ab initio calculations. Since this Sr component can be reversibly affected by an external electrical bias, the movement of both oxygen and Sr point defects and the formation of defect complexes Sr″Ti−VO** during resistive switching are suggested. These findings are discussed with regard to the point defect structure of the film and the local oxidation of the donor‐doped substrate. In particular, the apparent dichotomy between the observation of acceptor‐type defects and increased electronic conductivity in STO is addressed.
A low binding energy component of the Sr 3d photoemission line is observed in Fe‐doped SrTiO3 memristive devices and assigned to Sr″Ti−VO** defect complexes by ab initio calculations. Since this Sr component can be reversibly affected by an electrical bias, the movement of both oxygen and Sr vacancies and the formation of Sr″Ti−VO** defect complexes during resistive switching are suggested. |
Author | Dittmann, Regina Koehl, Annemarie Schneider, Claus M. Lenser, Christian Patt, Marten Lezaic, Marjana Du, Hongchu Feyer, Vitaliy Waser, Rainer Slipukhina, Ivetta |
Author_xml | – sequence: 1 givenname: Christian surname: Lenser fullname: Lenser, Christian organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 2 givenname: Annemarie surname: Koehl fullname: Koehl, Annemarie organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 3 givenname: Ivetta surname: Slipukhina fullname: Slipukhina, Ivetta organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 4 givenname: Hongchu surname: Du fullname: Du, Hongchu organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 5 givenname: Marten surname: Patt fullname: Patt, Marten organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 6 givenname: Vitaliy surname: Feyer fullname: Feyer, Vitaliy organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 7 givenname: Claus M. surname: Schneider fullname: Schneider, Claus M. organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 8 givenname: Marjana surname: Lezaic fullname: Lezaic, Marjana organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 9 givenname: Rainer surname: Waser fullname: Waser, Rainer organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany – sequence: 10 givenname: Regina surname: Dittmann fullname: Dittmann, Regina email: r.dittmann@fz-juelich.de organization: Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany |
BookMark | eNo9UF1PwkAQvBhNBPTV5_sDxd0e7R2PBCyYgBDBj7fL0d7pKb2aXgX597Zi-jQ7szuT7HTJuSucJuQGoY8A4a3KTN4PASMAEeEZ6WCMccAgFOftjK-XpOv9BwByzgYdkidFmavKFo4ql9FFsde5dhUtDB3_yTalE210Wnk6-S6te6ONo8Hm_lF76yu713R9sFX63ujW0XW5sUtGNzWnid3ldcTeptpfkQujdl5f_2OPPCV3m_EsmC-n9-PRPLChYBgMNagw3sIWhdpqPtBpFg0x4sjjiAmhhEGFJlP1JgTBBfBUIIIRgFmsDLIeGZ5yD3anj_KrtLkqjxJBNk3JpinZNiVHk2TRstobnLz1Y_qn9aryU8ac8Ui-PEwlrlerGawS-cx-AUMZcFU |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL |
DOI | 10.1002/adfm.201500851 |
DatabaseName | Istex |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 6368 |
ExternalDocumentID | ADFM201500851 ark_67375_WNG_1SPPH0PF_V |
Genre | article |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research funderid: 05KS7UM1; 05K10UMA; 05KS7WW3; 05K10WW1 – fundername: EC FP7 MATERA project “Functional materials for resistive switching memories” – fundername: NWR Ziel 2 program |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT |
ID | FETCH-LOGICAL-i2831-9e0a26b0b18abe74ecd591571765388a8f1a1fda74e2087807c8110f801d6af13 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Aug 24 00:53:35 EDT 2024 Wed Oct 30 09:50:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i2831-9e0a26b0b18abe74ecd591571765388a8f1a1fda74e2087807c8110f801d6af13 |
Notes | istex:1904CE9CAEEA77AA557BDBF7C8E451E46577CB97 ark:/67375/WNG-1SPPH0PF-V EC FP7 MATERA project "Functional materials for resistive switching memories" Federal Ministry of Education and Research - No. 05KS7UM1; No. 05K10UMA; No. 05KS7WW3; No. 05K10WW1 NWR Ziel 2 program ArticleID:ADFM201500851 |
OpenAccessLink | https://bib-pubdb1.desy.de/record/288919/files/Sr_diffusion-accepted.pdf |
PageCount | 9 |
ParticipantIDs | wiley_primary_10_1002_adfm_201500851_ADFM201500851 istex_primary_ark_67375_WNG_1SPPH0PF_V |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | S. Kim, S. Choi, W. Lu, ACS Nano 2014, 8, 2369. B. P. Andreasson, M. Janousch, U. Staub, I. G. Meijer, Appl. Phys. Lett. 2009, 94, 13513. B. P. Andreasson, M. Janousch, U. Staub, T. Todorova, B. Delley, G. I. Meijer, E. Pomjakushina, Phys. Rev. B 2009, 80, 212103. A. Sawa, Mater. Today 2008, 11, 28. A. Koehl, H. Wasmund, A. Herpers, P. Guttmann, S. Werner, K. Henzler, H. Du, J. Mayer, R. Waser, R. Dittmann, APL Mater. 2013, 1,042102. R. Waser, J. Am. Ceram. Soc. U.S.A. 1991, 74, 1934. C. Lenser, A. Kuzmin, J. Purans, A. Kalinko, R. Waser, R. Dittmann, J. Appl. Phys. 2012, 111, 76101. B. Liu, V. R. Cooper, H. Xu, H. Xiao, Y. Zhang, W. J. Weber, Phys. Chem. Chem. Phys. 2014, 16, 15590. S. Menzel, M. Waters, A. Marchewka, A. Böttger, R. Dittmann, R. Waser, Adv. Funct. Mater. 2011, 21, 4487. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80. K. Szot, W. Speier, Phys. Rev. B: Condens. Matter 1999, 60, 5909. Y. Chen, W. Jung, Z. Cai, J. J. Kim, H. L. Tuller, B. Yildiz, Energy Environ. Sci. 2012, 5, 7979. A. Walsh, C. R. A. Catlow, A. G. H. Smith, A. A. Sokol, S. M. Woodley, Phys. Rev. B 2011, 83, 220301. J. S. Lee, S. B. Lee, B. Kahng, T. W. Noh, Appl. Phys. Lett. 2013, 102, 253503. C. Lenser, M. Patt, S. Menzel, C. Köhl, A Wiemann, C. Schneider, C. M. Waser, R. Dittmann, Adv. Funct. Mater. 2014, 24, 4466. C. Fadley, Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 547, 24. A. Gloskovskii, G. Stryganyuk, G. H. Fecher, C. Felser, S. Thiess, H. Schulz-Ritter, W. Drube, G. Berner, M. Sing, R. Claessen, M. Yamamoto, J. Electron Spectrosc. Relat. Phenom. 2012, 185, 47. R. Waser, M. Aono, Nat. Mater. 2007, 6, 833. E. Breckenfeld, R. Wilson, J. Karthik, A. R. Damodaran, D. G. Cahill, L. W. Martin, Chem. Mater. 2012, 24, 331. D. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R. A. Mackie, W. Egger, Phys. Rev. Lett. 2010, 105, 4. R. Meyer, R. Waser, J. Helmbold, G. Borchardt, Phys. Rev. Lett. 2003, 90, 105901. M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, Y. Tokura, Y. Fujishima, O. Strebel, M. Domke, G. Kaindl, J. van Elp, B. T. Thole, G. A. Sawatzky, M. Sacchi, N. Tsuda, Phys. Rev. B 1991, 44, 5419. H. P. Hjalmarson, H. Büttner, J. D. Dow, Phys. Rev. B 1981, 24, 6010. A. Beck, J. G., Bednorz, C. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 2000, 77, 139. A. Mueller, K. Haerdtl, Appl. Phys. A 1989, 49, 75. R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, A. Besmehn, F. Kronast, C. M. Schneider, R. Waser, Proc. IEEE 2012, 100, 1979. D. M. Smyth, Curr. Opin. Solid State Mater. Sci. 1996, 1, 692. S. Stille, C. Lenser, R. Dittmann, A. Koehl, I. Krug, R. Muenstermann, J. Perlich, C. M. Schneider, U. Klemradt, R. Waser, Appl. Phys. Lett. 2012, 100, 223503. R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Adv. Mater. 2010, 22, 4819. J. W. C. de Vries, R. M. Waser, Proc. 7th IEEE Int. Symp. Appl. Ferroelectr. IEEE, New York 1991, pp 557-561. D. Fuchs, M. Adam, P. Schweiss, S. Gerhold, S. Schuppler, R. Schneider, B. Obst, J. Appl. Phys. 2000, 88, 1844. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632. R. Meyer, R. Waser, J. Helmbold, G. Borchardt, J. Electroceram. 2002, 9, 101. S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 1994, 21, 165. M. Schie, A. Marchewka, T. Mueller, R. A. De Souza, R. Waser, J. Phys.: Condens. Matter 2012, 24, 485002. C. Wiemann, M. Patt, I. P. Krug, N. B. Weber, M. Escher, M. Merkel, C. M. Schneider, e-J. Surf. Sci. Nanotechnol. 2011, 9, 395. Y. S. Kim, J. Kim, M. J. Yoon, C. H. Sohn, S. B. Lee, D. Lee, B. C. Jeon, H. K. Yoo, T. W. Noh, A. Bostwick, E. Rotenberg, J. Yu, S. D. Bu, B. S. Mun, Appl. Phys. Lett. 2014, 104, 13501. B. Rahmati, J. Fleig, W. Sigle, E. Bischoff, J. Maier, M. Rühle, Surf. Sci. 2005, 595, 115. R. Merkle, J. Maier, Angew. Chem. Int. Ed. 2008, 47, 3874. G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169. T. Fujikawa, J. Phys. Soc. Jpn. 1983, 52, 4001. R. Wernicke, Phys. Status Solidi A 1978, 47, 139. F. M. F. de Groot, J. Faber, J. J. M. Michiels, M. T. Czyżyk, M. Abbate, J. C. Fuggle, Phys. Rev. B 1993, 48, 2074. K. Szot, W. Speier, U. Breuer, R. Meyer, J. Szade, R. Waser, Surf. Sci. 2000, 460, 112. 1993; 48 2012; 185 2012; 100 2009; 21 2013; 1 2002; 9 2009; 80 2005; 595 2010; 105 1991; 74 2000; 88 2011; 83 1981; 24 2013; 102 2014; 24 1983; 52 2008; 11 1991 1999; 60 1989; 49 1996; 54 1994; 21 2011; 9 2010; 22 2003; 90 2012; 111 2009; 94 1991; 44 2000; 77 2008; 47 2005; 547 2014; 16 2007; 6 2011; 21 2000; 460 1996; 1 1978; 47 2008; 453 2014; 8 2012; 24 2012; 5 2014; 104 |
References_xml | – volume: 90 start-page: 105901 year: 2003 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 2369 year: 2014 publication-title: ACS Nano – volume: 595 start-page: 115 year: 2005 publication-title: Surf. Sci. – volume: 9 start-page: 101 year: 2002 publication-title: J. Electroceram. – volume: 24 start-page: 485002 year: 2012 publication-title: J. Phys.: Condens. Matter – volume: 453 start-page: 80 year: 2008 publication-title: Nature – volume: 24 start-page: 331 year: 2012 publication-title: Chem. Mater – volume: 74 start-page: 1934 year: 1991 publication-title: J. Am. Ceram. Soc. U.S.A. – volume: 11 start-page: 28 year: 2008 publication-title: Mater. Today – volume: 80 start-page: 212103 year: 2009 publication-title: Phys. Rev. B – volume: 1 start-page: 692 year: 1996 publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 21 start-page: 2632 year: 2009 publication-title: Adv. Mater. – volume: 47 start-page: 139 year: 1978 publication-title: Phys. Status Solidi A – volume: 48 start-page: 2074 year: 1993 publication-title: Phys. Rev. B – volume: 49 start-page: 75 year: 1989 publication-title: Appl. Phys. A – volume: 5 start-page: 7979 year: 2012 publication-title: Energy Environ. Sci – volume: 9 start-page: 395 year: 2011 publication-title: e‐J. Surf. Sci. Nanotechnol. – volume: 47 start-page: 3874 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 833 year: 2007 publication-title: Nat. Mater. – volume: 21 start-page: 4487 year: 2011 publication-title: Adv. Funct. Mater. – volume: 102 start-page: 253503 year: 2013 publication-title: Appl. Phys. Lett. – volume: 77 start-page: 139 year: 2000 publication-title: Appl. Phys. Lett. – volume: 60 start-page: 5909 year: 1999 publication-title: Phys. Rev. B: Condens. Matter – volume: 111 start-page: 76101 year: 2012 publication-title: J. Appl. Phys – volume: 83 start-page: 220301 year: 2011 publication-title: Phys. Rev. B – volume: 16 start-page: 15590 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 88 start-page: 1844 year: 2000 publication-title: J. Appl. Phys. – volume: 22 start-page: 4819 year: 2010 publication-title: Adv. Mater – volume: 547 start-page: 24 year: 2005 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 104 start-page: 13501 year: 2014 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 042102 year: 2013 publication-title: APL Mater. – volume: 24 start-page: 4466 year: 2014 publication-title: Adv. Funct. Mater. – volume: 100 start-page: 1979 year: 2012 publication-title: Proc. IEEE – volume: 21 start-page: 165 year: 1994 publication-title: Surf. Interface Anal. – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B – volume: 24 start-page: 6010 year: 1981 publication-title: Phys. Rev. B – volume: 100 start-page: 223503 year: 2012 publication-title: Appl. Phys. Lett. – volume: 44 start-page: 5419 year: 1991 publication-title: Phys. Rev. B – volume: 94 start-page: 13513 year: 2009 publication-title: Appl. Phys. Lett. – volume: 105 start-page: 4 year: 2010 publication-title: Phys. Rev. Lett – start-page: 557 year: 1991 end-page: 561 – volume: 460 start-page: 112 year: 2000 publication-title: Surf. Sci. – volume: 52 start-page: 4001 year: 1983 publication-title: J. Phys. Soc. Jpn. – volume: 185 start-page: 47 year: 2012 publication-title: J. Electron Spectrosc. Relat. Phenom. |
SSID | ssj0017734 |
Score | 2.4451144 |
Snippet | The resistance switching phenomenon in many transition metal oxides is described by ion motion leading to the formation of oxygen‐deficient, highly... |
SourceID | wiley istex |
SourceType | Publisher |
StartPage | 6360 |
SubjectTerms | hard X-ray photoelectron spectroscopy photoemission electron microscopy resistive switching segregation |
Title | Formation and Movement of Cationic Defects During Forming and Resistive Switching in SrTiO3 Thin Film Devices |
URI | https://api.istex.fr/ark:/67375/WNG-1SPPH0PF-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201500851 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MJz34bcSv9GC8DdZ168qRMCcxAQkfym1puy5ZkGFgqPHX23YwwaOetmV9l-Zt-_Zp97xPAbhVU0TDSxC3KFfN4GLMrYZa_FhC2K7EAjvYJIV1uqQ9ch_H3ngji7_Qhyg33PTIMPFaD3DGF_Uf0VAWJzqTXAEajRpUEEbY15yuoF_qRyHfL34rE6QJXmi8Vm20nfq2uYKm2quf2xDVzDHhAWDr2hXUkkltmfOa-Pol3Pif6h-C_RUAhc2ixxyBHZkdg70NWcITMA3XGY2QZTHszIymeA5nCWwVG7gCBtLwQGBg0hyhttBXXb4vFzpwvEs4-Ehzw9WEaQYH82H6hKE-KBSG6etUfcJEqVMwCu-Hrba1OpbBShUWQVZD2swh3OaIMi59V4rYayBPrQuJip6U0QQxlMRMvXFs6lPbF1SBjETNhTFhCcJnoJLNMnkOIBVYeh7FzOEKl-GEYukSTxKXuDEiQlTBnWmW6K2Q3ojYfKKZaL4XvXQfIjTo9dp2L4yeq8Axzi4LFmrMTqTdHJVujppB2CmfLv5idAl29X3B57sClXy-lNcKl-T8xvS9b84-2NQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLagHAYHGNsQZTB8QLsF4jhx3COiZOVHu4qWrTfLdhwpKk1RSWHir8fPodm6I5yiJHaUPNvPn1--9xmhIztFtKKMKI8r2wwhpcpr2cWPp7UfGqppQF1SWLfHOrfh5ShasAkhF6bSh6gDbjAynL-GAQ4B6ZO_qqEyzSCV3CIagA2raM2OeQq7N7RvagUpEsfVj2VGgOJFRgvdRj84Wa5vwSnY9c8ySHWzTLKF1OL9KnLJ-HheqmP9_J9047s-4CPafMWg-LTqNNtoxRSf0MY_yoSf0SRZJDViWaS4O3Wy4iWeZvisiuFq3DaOCoLbLtMRQw04Qvkb8wC-49HgwVNeOromzgs8mA3znxTDXqE4ye8m9hHOUX1Bt8n58Kzjve7M4OUWjhCvZXwZMOUrwqUycWh0GrVIZJeGzDpQLnlGJMlSae8EPo-5H2tucUZmp8OUyYzQHdQopoXZRZhraqKIUxkoC81oxqkJWWRYyMKUMK2b6LtrF3FfqW8IORsDGS2OxO_eD0EG_X7H7yfiVxMFztp1wUqQORBgZlGbWZy2k259tveWSofoQ2fYvRbXF72rr2gdrlf0vn3UKGdzc2BhSqm-uY74AmxT3Ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8MgFCY6E6MP3o13eTC-VUtpKXs0zjovm4vzsjcCFJJm2i2zXuKvF6irl0d9atpyGnKAwwf9zgcAe2aKqEcaCY8K0wwhxsKrm8WPJ6UfKixxgF1SWKtNmrfheS_qfcviL_Uhqg03OzJcvLYDfJjqwy_RUJ5qm0luAI1FDZNgKiQG_lpYdF0JSKE4Lv8rE2QZXqg3lm30g8Of9gabWre-_cSobpJJ5gEfV6_klvQPngtxIN9_KTf-p_4LYO4TgcKjssssggmVL4HZb7qEy-AxGac0Qp6nsDVwouIFHGh4XO7gSthQjggCGy7PEVoLe7Xlr9WTjRwvCnZfs8KRNWGWw-7oJrvC0J4UCpPs4dF8woWpFXCbnNwcN73Pcxm8zIAR5NWVzwMifIEoFyoOlUyjOorMwpCY8Ek51YgjnXLzJvBpTP1YUoMytJkMU8I1wquglg9ytQYglVhFEcU8EAaYYU2xCkmkSEjCFBEp18G-axY2LLU3GB_1LRUtjth9-5ShbqfT9DsJu1sHgXN2VbCUYw6YdTOr3MyOGkmrutv4i9EumO40EnZ51r7YBDP2ccnt2wK1YvSstg1GKcSO64Yf6sHbmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+and+Movement+of+Cationic+Defects+During+Forming+and+Resistive+Switching+in+SrTiO3+Thin+Film+Devices&rft.jtitle=Advanced+functional+materials&rft.au=Lenser%2C+Christian&rft.au=Koehl%2C+Annemarie&rft.au=Slipukhina%2C+Ivetta&rft.au=Du%2C+Hongchu&rft.date=2015-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=40&rft.spage=6360&rft.epage=6368&rft_id=info:doi/10.1002%2Fadfm.201500851&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_1SPPH0PF_V |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |