Half-integrality based algorithms for cosegmentation of images
We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 2028 - 2035 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov random field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L 2 (rather than L 1 ) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach. |
---|---|
AbstractList | We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L(2) (rather than L(1)) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach.We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L(2) (rather than L(1)) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach. We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L(2) (rather than L(1)) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach. We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L 2 (rather than L 1 ) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach. |
Author | Singh, Vikas Mukherjee, Lopamudra Dyer, Charles R. |
AuthorAffiliation | Mathematics & Computer Science, Univ. of Wisconsin–Whitewater Biostatistics & Medical Inform., Univ. of Wisconsin–Madison Computer Sciences, Univ. of Wisconsin–Madison |
AuthorAffiliation_xml | – name: Biostatistics & Medical Inform., Univ. of Wisconsin–Madison – name: Computer Sciences, Univ. of Wisconsin–Madison – name: Mathematics & Computer Science, Univ. of Wisconsin–Whitewater |
Author_xml | – sequence: 1 givenname: Lopamudra surname: Mukherjee fullname: Mukherjee, Lopamudra email: mukherjl@uww.edu organization: Mathematics & Computer Science, Univ. of Wisconsin-Whitewater, USA – sequence: 2 givenname: Vikas surname: Singh fullname: Singh, Vikas email: vsingh@biostat.wisc.edu organization: Biostatistics & Medical Inform., Univ. of Wisconsin-Madison, USA – sequence: 3 givenname: Charles R. surname: Dyer fullname: Dyer, Charles R. organization: Computer Sciences, Univ. of Wisconsin-Madison, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21445226$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU9Lw0AUxFetaFv7AUSQHL2k7v9kL4IUtUJBEfUaNtm36UqSrdlU6Lc30Frq6R1-w8zwZoQGjW8AoUuCp4RgdTv7fH2bUozVVFAspaBHaKKSlHDKOVOKkGM0JFiyWCqiTtDoD1A6OADnaBTCF8aUJRSfoXNKOBeUyiG6m-vKxq7poGx15bpNlOsAJtJV6VvXLesQWd9GhQ9Q1tB0unO-ibyNXK1LCBfo1OoqwGR3x-jj8eF9No8XL0_Ps_tF7GhKu1hgAthiYgrKTa6LxKSK89QkuWA2kdRIXRjNhVWgjJKF5jnoJLVpAUJxydgY3W19V-u8BlP0Tfq62arta7SbzGuX_SeNW2al_8kYlpzKtDe42Rm0_nsNoctqFwqoKt2AX4eMpExwzIgivfT6MGsf8ve0XnC1FTgA2OPdPuwXUjWANA |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO NPM 7X8 5PM |
DOI | 10.1109/CVPR.2009.5206652 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISBN | 9781424439911 1424439914 |
EISSN | 1063-6919 |
EndPage | 2035 |
ExternalDocumentID | PMC3064268 21445226 5206652 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: UL1 RR025011 |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-i282t-501e0f01dc24dbac7d89448d7b53f762d6acda45f9e9d96ca4bea78f8ce594633 |
IEDL.DBID | RIE |
ISBN | 1424439922 9781424439928 |
ISSN | 1063-6919 |
IngestDate | Thu Aug 21 14:08:23 EDT 2025 Tue Aug 05 10:55:53 EDT 2025 Mon Jul 21 06:04:03 EDT 2025 Wed Aug 27 02:47:06 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i282t-501e0f01dc24dbac7d89448d7b53f762d6acda45f9e9d96ca4bea78f8ce594633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21445226 |
PQID | 1835403191 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_21445226 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064268 proquest_miscellaneous_1835403191 ieee_primary_5206652 |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | 2009 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationTitleAlternate | Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000453166 ssj0003211698 |
Score | 2.2987018 |
Snippet | We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can... |
SourceID | pubmedcentral proquest pubmed ieee |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2028 |
SubjectTerms | Biomedical imaging Brain Computer science Computer vision Histograms Image segmentation Markov random fields Mathematics Pathology Videos |
Title | Half-integrality based algorithms for cosegmentation of images |
URI | https://ieeexplore.ieee.org/document/5206652 https://www.ncbi.nlm.nih.gov/pubmed/21445226 https://www.proquest.com/docview/1835403191 https://pubmed.ncbi.nlm.nih.gov/PMC3064268 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBSaAssLxmJI97G61d84VJRrZAWVYii3laOH-2KboKa7IVfjydxAq164BY7ieLYyXi-eXwD8CEUlUFaM8pUGaiIglPrmKLKLqQrouTKYKLw6qtaXogvl_JyDz5OuTAhhD74LMzxsPfl-8bt0FR2IpF7XCaB-ygBtyFXa7KnJNWEs6yaYJsnZKPM5FFYYDWW3vOpOFWGmTHJqydmHbmfcrvM7k9WmJPTH-ffBlrL_PRchuUhjfR-YOU_O9XZAazGdxwCVH7Od101d7_v0T_-7yQ8heO_OYHkfNrtnsFeqA_hICuxJIuINnWNdSLGvkN4spq4Ydsj-LS0N5FmmgoEAQR3Uk_szVVzu-muty1JijTBQPqrbc6MqkkTyWabZF97DBdnn7-fLmmu4kA3Cc51VBYsFLFg3i2Er6zTvjQJE3pdSR6TKPbKOm-FjCYYb5SzogpWl7HEBDGhOH8O-3VTh5dACudiQtTCLLQS2mkrbODSykozqZ2NMzjC-Vr_Gog61nmqZvB-XKp1-nnQI2Lr0OzaNevNXkkKsRm8GJZuuhm55FA5nYG-s6jTBUjMffdMvbnuCbp7VKfKVw8P5zU8HlxSaMd5A_vd7S68TZpNV73rP-k_YajwMw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8hcFAvKKCuoo6JR2fp7Hx1LlwIZFWWEAOGWzOdD9jItoZ2L_71zrTTKoSDt04_0namfe_3vn4P4JPLShVpzTARucPMM4q1IQILPeMm85wKFQuFF2difsm-XvGrDfg81sI457rkMzeNm10s39ZmHV1lBzxyj_MgcLeC3uekr9YaPSoBnFCSwEkc02DbCDXGFGaxH0sX-xQUC0XUUObVUbMO7E9pnKcAKMnUwdGP8-89sWW6f2rE8hgmfZha-Y-uOtmGxfCWfYrKz-m6Lafm9wMCyP-dhuew97cqEJ2P-u4FbLhqB7YTjEVJSDRh19ApYti3A88WIztsswuHc33rcSKqiGYAirrUIn17Xd8t25tVgwKURjGV_nqVaqMqVHu0XAXp1-zB5cnxxdEcpz4OeBkMuhbzjLjMZ8SaGbOlNtLmKliFVpac-iCMrdDGasa9csoqYTQrnZa5z2OJGBOUvoTNqq7ca0CZMT7Y1EzNpGDSSM20o1zzUhIujfYT2I3zVfzqqTqKNFUT-DgsVRF-nxgT0ZWr101BOsdXkENkAq_6pRsvjmxyEZ5OQN5b1PGESM19_0i1vOkouju7TuRvHn-cD_BkfrE4LU6_nH17C0_7AFX06uzDZnu3du8CzmnL993n_QcR0vN8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Half-integrality+based+algorithms+for+cosegmentation+of+images&rft.au=Mukherjee%2C+Lopamudra&rft.au=Singh%2C+Vikas&rft.au=Dyer%2C+Charles+R.&rft.date=2009-01-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2028&rft.epage=2035&rft_id=info:doi/10.1109%2FCVPR.2009.5206652&rft.externalDocID=5206652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |