Half-integrality based algorithms for cosegmentation of images

We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 2028 - 2035
Main Authors Mukherjee, Lopamudra, Singh, Vikas, Dyer, Charles R.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov random field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L 2 (rather than L 1 ) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach.
AbstractList We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L(2) (rather than L(1)) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach.We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L(2) (rather than L(1)) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach.
We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L(2) (rather than L(1)) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach.
We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov Random Field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L 2 (rather than L 1 ) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach.
Author Singh, Vikas
Mukherjee, Lopamudra
Dyer, Charles R.
AuthorAffiliation Mathematics & Computer Science, Univ. of Wisconsin–Whitewater
Biostatistics & Medical Inform., Univ. of Wisconsin–Madison
Computer Sciences, Univ. of Wisconsin–Madison
AuthorAffiliation_xml – name: Biostatistics & Medical Inform., Univ. of Wisconsin–Madison
– name: Computer Sciences, Univ. of Wisconsin–Madison
– name: Mathematics & Computer Science, Univ. of Wisconsin–Whitewater
Author_xml – sequence: 1
  givenname: Lopamudra
  surname: Mukherjee
  fullname: Mukherjee, Lopamudra
  email: mukherjl@uww.edu
  organization: Mathematics & Computer Science, Univ. of Wisconsin-Whitewater, USA
– sequence: 2
  givenname: Vikas
  surname: Singh
  fullname: Singh, Vikas
  email: vsingh@biostat.wisc.edu
  organization: Biostatistics & Medical Inform., Univ. of Wisconsin-Madison, USA
– sequence: 3
  givenname: Charles R.
  surname: Dyer
  fullname: Dyer, Charles R.
  organization: Computer Sciences, Univ. of Wisconsin-Madison, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21445226$$D View this record in MEDLINE/PubMed
BookMark eNpVkU9Lw0AUxFetaFv7AUSQHL2k7v9kL4IUtUJBEfUaNtm36UqSrdlU6Lc30Frq6R1-w8zwZoQGjW8AoUuCp4RgdTv7fH2bUozVVFAspaBHaKKSlHDKOVOKkGM0JFiyWCqiTtDoD1A6OADnaBTCF8aUJRSfoXNKOBeUyiG6m-vKxq7poGx15bpNlOsAJtJV6VvXLesQWd9GhQ9Q1tB0unO-ibyNXK1LCBfo1OoqwGR3x-jj8eF9No8XL0_Ps_tF7GhKu1hgAthiYgrKTa6LxKSK89QkuWA2kdRIXRjNhVWgjJKF5jnoJLVpAUJxydgY3W19V-u8BlP0Tfq62arta7SbzGuX_SeNW2al_8kYlpzKtDe42Rm0_nsNoctqFwqoKt2AX4eMpExwzIgivfT6MGsf8ve0XnC1FTgA2OPdPuwXUjWANA
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
7X8
5PM
DOI 10.1109/CVPR.2009.5206652
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 2035
ExternalDocumentID PMC3064268
21445226
5206652
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: UL1 RR025011
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-i282t-501e0f01dc24dbac7d89448d7b53f762d6acda45f9e9d96ca4bea78f8ce594633
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Thu Aug 21 14:08:23 EDT 2025
Tue Aug 05 10:55:53 EDT 2025
Mon Jul 21 06:04:03 EDT 2025
Wed Aug 27 02:47:06 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i282t-501e0f01dc24dbac7d89448d7b53f762d6acda45f9e9d96ca4bea78f8ce594633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21445226
PQID 1835403191
PQPubID 23479
PageCount 8
ParticipantIDs pubmed_primary_21445226
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064268
proquest_miscellaneous_1835403191
ieee_primary_5206652
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationTitleAlternate Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.2987018
Snippet We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2028
SubjectTerms Biomedical imaging
Brain
Computer science
Computer vision
Histograms
Image segmentation
Markov random fields
Mathematics
Pathology
Videos
Title Half-integrality based algorithms for cosegmentation of images
URI https://ieeexplore.ieee.org/document/5206652
https://www.ncbi.nlm.nih.gov/pubmed/21445226
https://www.proquest.com/docview/1835403191
https://pubmed.ncbi.nlm.nih.gov/PMC3064268
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBSaAssLxmJI97G61d84VJRrZAWVYii3laOH-2KboKa7IVfjydxAq164BY7ieLYyXi-eXwD8CEUlUFaM8pUGaiIglPrmKLKLqQrouTKYKLw6qtaXogvl_JyDz5OuTAhhD74LMzxsPfl-8bt0FR2IpF7XCaB-ygBtyFXa7KnJNWEs6yaYJsnZKPM5FFYYDWW3vOpOFWGmTHJqydmHbmfcrvM7k9WmJPTH-ffBlrL_PRchuUhjfR-YOU_O9XZAazGdxwCVH7Od101d7_v0T_-7yQ8heO_OYHkfNrtnsFeqA_hICuxJIuINnWNdSLGvkN4spq4Ydsj-LS0N5FmmgoEAQR3Uk_szVVzu-muty1JijTBQPqrbc6MqkkTyWabZF97DBdnn7-fLmmu4kA3Cc51VBYsFLFg3i2Er6zTvjQJE3pdSR6TKPbKOm-FjCYYb5SzogpWl7HEBDGhOH8O-3VTh5dACudiQtTCLLQS2mkrbODSykozqZ2NMzjC-Vr_Gog61nmqZvB-XKp1-nnQI2Lr0OzaNevNXkkKsRm8GJZuuhm55FA5nYG-s6jTBUjMffdMvbnuCbp7VKfKVw8P5zU8HlxSaMd5A_vd7S68TZpNV73rP-k_YajwMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8hcFAvKKCuoo6JR2fp7Hx1LlwIZFWWEAOGWzOdD9jItoZ2L_71zrTTKoSDt04_0namfe_3vn4P4JPLShVpzTARucPMM4q1IQILPeMm85wKFQuFF2difsm-XvGrDfg81sI457rkMzeNm10s39ZmHV1lBzxyj_MgcLeC3uekr9YaPSoBnFCSwEkc02DbCDXGFGaxH0sX-xQUC0XUUObVUbMO7E9pnKcAKMnUwdGP8-89sWW6f2rE8hgmfZha-Y-uOtmGxfCWfYrKz-m6Lafm9wMCyP-dhuew97cqEJ2P-u4FbLhqB7YTjEVJSDRh19ApYti3A88WIztsswuHc33rcSKqiGYAirrUIn17Xd8t25tVgwKURjGV_nqVaqMqVHu0XAXp1-zB5cnxxdEcpz4OeBkMuhbzjLjMZ8SaGbOlNtLmKliFVpac-iCMrdDGasa9csoqYTQrnZa5z2OJGBOUvoTNqq7ca0CZMT7Y1EzNpGDSSM20o1zzUhIujfYT2I3zVfzqqTqKNFUT-DgsVRF-nxgT0ZWr101BOsdXkENkAq_6pRsvjmxyEZ5OQN5b1PGESM19_0i1vOkouju7TuRvHn-cD_BkfrE4LU6_nH17C0_7AFX06uzDZnu3du8CzmnL993n_QcR0vN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Half-integrality+based+algorithms+for+cosegmentation+of+images&rft.au=Mukherjee%2C+Lopamudra&rft.au=Singh%2C+Vikas&rft.au=Dyer%2C+Charles+R.&rft.date=2009-01-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2028&rft.epage=2035&rft_id=info:doi/10.1109%2FCVPR.2009.5206652&rft.externalDocID=5206652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon