A Review of Near-Memory Computing Architectures: Opportunities and Challenges

The conventional approach of moving stored data to the CPU for computation has become a major performance bottleneck for emerging scale-out data-intensive applications due to their limited data reuse. At the same time, the advancement in integration technologies have made the decade-old concept of c...

Full description

Saved in:
Bibliographic Details
Published in2018 21st Euromicro Conference on Digital System Design (DSD) pp. 608 - 617
Main Authors Singh, Gagandeep, Chelini, Lorenzo, Corda, Stefano, Javed Awan, Ahsan, Stuijk, Sander, Jordans, Roel, Corporaal, Henk, Boonstra, Albert-Jan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2018
Subjects
Online AccessGet full text
DOI10.1109/DSD.2018.00106

Cover

Loading…
Abstract The conventional approach of moving stored data to the CPU for computation has become a major performance bottleneck for emerging scale-out data-intensive applications due to their limited data reuse. At the same time, the advancement in integration technologies have made the decade-old concept of coupling compute units close to the memory (called Near-Memory Computing) more viable. Processing right at the "home" of data can completely diminish the data movement problem of data-intensive applications. This paper focuses on analyzing and organizing the extensive body of literature on near-memory computing across various dimensions: starting from the memory level where this paradigm is applied, to the granularity of the application that could be executed on the near-memory units. We highlight the challenges as well as the critical need of evaluation methodologies that can be employed in designing these special architectures. Using a case study, we present our methodology and also identify topics for future research to unlock the full potential of near-memory computing.
AbstractList The conventional approach of moving stored data to the CPU for computation has become a major performance bottleneck for emerging scale-out data-intensive applications due to their limited data reuse. At the same time, the advancement in integration technologies have made the decade-old concept of coupling compute units close to the memory (called Near-Memory Computing) more viable. Processing right at the "home" of data can completely diminish the data movement problem of data-intensive applications. This paper focuses on analyzing and organizing the extensive body of literature on near-memory computing across various dimensions: starting from the memory level where this paradigm is applied, to the granularity of the application that could be executed on the near-memory units. We highlight the challenges as well as the critical need of evaluation methodologies that can be employed in designing these special architectures. Using a case study, we present our methodology and also identify topics for future research to unlock the full potential of near-memory computing.
Author Corda, Stefano
Boonstra, Albert-Jan
Chelini, Lorenzo
Stuijk, Sander
Javed Awan, Ahsan
Corporaal, Henk
Singh, Gagandeep
Jordans, Roel
Author_xml – sequence: 1
  givenname: Gagandeep
  surname: Singh
  fullname: Singh, Gagandeep
– sequence: 2
  givenname: Lorenzo
  surname: Chelini
  fullname: Chelini, Lorenzo
– sequence: 3
  givenname: Stefano
  surname: Corda
  fullname: Corda, Stefano
– sequence: 4
  givenname: Ahsan
  surname: Javed Awan
  fullname: Javed Awan, Ahsan
– sequence: 5
  givenname: Sander
  surname: Stuijk
  fullname: Stuijk, Sander
– sequence: 6
  givenname: Roel
  surname: Jordans
  fullname: Jordans, Roel
– sequence: 7
  givenname: Henk
  surname: Corporaal
  fullname: Corporaal, Henk
– sequence: 8
  givenname: Albert-Jan
  surname: Boonstra
  fullname: Boonstra, Albert-Jan
BookMark eNotzLtOwzAUAFAjwUALKwuLfyDBrzjXbFEKBamlEo-5ctzr1lJechxQ_54BprOdBbnshx4JueMs55yZh9XHKheMQ84YZ_qCLHghQZeyLNk12Vb0Hb8D_tDB0ze0MdtiN8QzrYdunFPoj7SK7hQSujRHnB7pbhyHmOY-pIATtf2B1ifbttgfcbohV962E97-uyRfz0-f9Uu22a1f62qTBQE8ZV7IgnnQB62FR1SWNY0QRnPmCiNBeKYMCGWNAacsNI6D9goKCxIYdyiX5P7vDYi4H2PobDzvQRkOZSl_AYnZSTo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DSD.2018.00106
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538673770
9781538673775
EndPage 617
ExternalDocumentID 8491877
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i281t-f2350f86d662fee4a0bb229610c59382f049824a998c4a8bc186f485a83801ce3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:44 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i281t-f2350f86d662fee4a0bb229610c59382f049824a998c4a8bc186f485a83801ce3
OpenAccessLink https://research.tue.nl/en/publications/629e227d-b47e-4e89-b539-b0e072ecce08
PageCount 10
ParticipantIDs ieee_primary_8491877
PublicationCentury 2000
PublicationDate 2018-08
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08
PublicationDecade 2010
PublicationTitle 2018 21st Euromicro Conference on Digital System Design (DSD)
PublicationTitleAbbrev DSD
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0252292
Snippet The conventional approach of moving stored data to the CPU for computation has become a major performance bottleneck for emerging scale-out data-intensive...
SourceID ieee
SourceType Publisher
StartPage 608
SubjectTerms application characterization
Central Processing Unit
Coherence
computer architecture
data centric computing
Graphics processing units
Memory management
modeling
near data processing
near-memory computing
processing in memory
Programming
survey
Title A Review of Near-Memory Computing Architectures: Opportunities and Challenges
URI https://ieeexplore.ieee.org/document/8491877
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7qqae2aOmbHHpsdJNNstneRCtS0BZawZsk2QmUwip192B_fZNdtVJ6KLmEEEjIBOb1zXwI3QlQWUItJZlMBeEUgKSJd1wTbmLKM-liW6EtpnI8409zMW-g-30tDABU4DPohmmVy8-Wtgyhsp7iKVVJ0kRN77jVtVrbPow0SnvD12GAagVsJA0ERgdsKZWyGB2jye6YGiPy0S0L07Vfvzow_vceJ6jzU5aHX_YK5xQ1IG-jSR_X8X28dHjq_y2ZBPDsBtd8DX4j7h8kC9YP-HkVbO4yr3qpYp1neLBjVFl30Gz0-DYYky1HAnlnihbEsVhETslMSuYAuI6MYSz1RpEVaayY8x6AYlx7r8pyrYylSjquhFax100W4jPUypc5nCOcCmO19iaVcZwz6y0XJUzkhwCtEkguUDs8xWJVt8FYbF_h8u_lK3QUhFFj5a5Rq_gs4cbr78LcVoL7Br6vnNs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcGj3Zo0aRJvY3NMXafgBruNJE1AhG649qB_vUm7zSEeJJcQAgl5ge-95HvvA-CGGp4ypFGQxoIGBBkTCOYCV0ZUhEga20iXbItRPJiQxymd1sDtJhfGGFOSz0zLd8u__HSuC_9U1uZEIM7YDth1uE9Ela21qsSIQtHuvfY8WcuzI5GXMNrSSynhon8AkvVCFUvkvVXkqqW_ftVg_O9ODkHzJzEPvmwg5wjUTNYASQdWL_xwbuHI3dwg8fTZT1gpNriJsLP1XbC8g88L73UXWVlNFcoshd21psqyCSb9-3F3EKxUEoI3zFEeWBzR0PI4jWNsjSEyVApj4dwiTUXEsXUxAMdEurhKE8mVRjy2hFPJI4dO2kTHoJ7NM3MCoKBKS-mcKmUJwdr5Lpyq0DVqJGeGnYKGP4rZoiqEMVudwtnfw9dgbzBOhrPhw-jpHOx7w1TMuQtQzz8Kc-nQPFdXpRG_ASowoCs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+21st+Euromicro+Conference+on+Digital+System+Design+%28DSD%29&rft.atitle=A+Review+of+Near-Memory+Computing+Architectures%3A+Opportunities+and+Challenges&rft.au=Singh%2C+Gagandeep&rft.au=Chelini%2C+Lorenzo&rft.au=Corda%2C+Stefano&rft.au=Javed+Awan%2C+Ahsan&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=608&rft.epage=617&rft_id=info:doi/10.1109%2FDSD.2018.00106&rft.externalDocID=8491877