Local color transfer via probabilistic segmentation by expectation-maximization

We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme to impose both spatial and color smoothness to infer natural connectivity among pixels. Unlike previous work, our method takes local color inf...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 747 - 754 vol. 1
Main Authors Yu-Wing Tai, Jiaya Jia, Chi-Keung Tang
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme to impose both spatial and color smoothness to infer natural connectivity among pixels. Unlike previous work, our method takes local color information into consideration, and segment image with soft region boundaries for seamless color transfer and compositing. Our modified EM method has two advantages in color manipulation: first, subject to different levels of color smoothness in image space, our algorithm produces an optimal number of regions upon convergence, where the color statistics in each region can be adequately characterized by a component of a Gaussian mixture model (GMM). Second, we allow a pixel to fall in several regions according to our estimated probability distribution in the EM step, resulting in a transparency-like ratio for compositing different regions seamlessly. Hence, natural color transition across regions can be achieved, where the necessary intra-region and inter-region smoothness are enforced without losing original details. We demonstrate results on a variety of applications including image deblurring, enhanced color transfer, and colorizing gray scale images. Comparisons with previous methods are also presented.
AbstractList We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme to impose both spatial and color smoothness to infer natural connectivity among pixels. Unlike previous work, our method takes local color information into consideration, and segment image with soft region boundaries for seamless color transfer and compositing. Our modified EM method has two advantages in color manipulation: first, subject to different levels of color smoothness in image space, our algorithm produces an optimal number of regions upon convergence, where the color statistics in each region can be adequately characterized by a component of a Gaussian mixture model (GMM). Second, we allow a pixel to fall in several regions according to our estimated probability distribution in the EM step, resulting in a transparency-like ratio for compositing different regions seamlessly. Hence, natural color transition across regions can be achieved, where the necessary intra-region and inter-region smoothness are enforced without losing original details. We demonstrate results on a variety of applications including image deblurring, enhanced color transfer, and colorizing gray scale images. Comparisons with previous methods are also presented.
Author Chi-Keung Tang
Jiaya Jia
Yu-Wing Tai
Author_xml – sequence: 1
  surname: Yu-Wing Tai
  fullname: Yu-Wing Tai
  organization: Hong Kong Univ. of Sci. & Technol., China
– sequence: 2
  surname: Jiaya Jia
  fullname: Jiaya Jia
– sequence: 3
  surname: Chi-Keung Tang
  fullname: Chi-Keung Tang
BookMark eNpNjMtKAzEYRoNWsK1dunKTF5gx10mylMEbDFRE3ZZc_pHI3EgGaX16xbrwbD4OH5wVWgzjAAhdUlJSSsx1_fb0XDJCZMmoPEFLSipeVIaaU7QiqjKSccXY4t9xjjY5f5AfuOFasCXaNqO3HfZjNyY8JzvkFhL-jBZPaXTWxS7mOXqc4b2HYbZzHAfsDhj2E_ijFr3dxz5-_coFOmttl2Hzt2v0enf7Uj8Uzfb-sb5pisg0mYu2pUYbZZmxhGsIgQQhQLPgtGaCSKaVDEEpE5wCoX0rua44184acNobvkZXx24EgN2UYm_TYUdFpbjg_BsdP1MS
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.215
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
Computer Science
EISSN 1063-6919
EndPage 754 vol. 1
ExternalDocumentID 1467343
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i280t-ff19897a29a038edd0d44e82db8824052875dd779db7e48cf5386338ba9eb8c93
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i280t-ff19897a29a038edd0d44e82db8824052875dd779db7e48cf5386338ba9eb8c93
OpenAccessLink https://repository.hkust.edu.hk/ir/bitstream/1783.1-2711/1/cvpr05_postrefereed.pdf
ParticipantIDs ieee_primary_1467343
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.1360135
Snippet We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme...
SourceID ieee
SourceType Publisher
StartPage 747
SubjectTerms Color
Colored noise
Convergence
Digital images
Image restoration
Image segmentation
Pixel
Probability distribution
Statistical distributions
Statistics
Title Local color transfer via probabilistic segmentation by expectation-maximization
URI https://ieeexplore.ieee.org/document/1467343
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2AEycUMP5ODx4tjK3d2jORECNKjBhupF07QwzDwDDqX2-_7gfGePCyrF0Pa7Ou7_va9x5CV0IlkWSKEmnhAaFRyAgfxB4xoN7NtDScAlF4ch-OZ_R2zuY1dF1xYYwx7vCZ6cGt28vX63gHqbI-zOqABnVUt4FbztWq8inAMeVFmAflwEY2oah2FHxwY3E7n2FAQjEQeQgvGDzwCyWesiz2Ypz94fP0MU-9-GCd-8OCxa1AoxaalO-eHzx57e0y1Yu_fsk6_rdzB6i75_rhabWKHaKaSduoVYBTXEz9ra0q_R_KujZqAlLNhZ476OEOVkUMItgbnDk4bNu-LyUGzxqn4wst8da8rAq-U4rVJwaLgTgvkpX8WK4KYmgXzUY3T8MxKdwayNLnXkaSBI5fRdIX0gu40drTlBrua2VBvIWFNjRjWkeRAEFnyuPE_mpDGyArKYzisQiOUCNdp-YY4SC2QaP2eDKQmjKmVODbC6MWDFmEE8UnqAPjt3jLBTkWxdCd_l19hppOb9XlTc5RI9vszIVFEpm6dJ_QNxQsv_Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB0hOMAJyodaSsEHevSSdZzEPnBaQAssFFVQcVvs2EErtEvFZluW38Jf6X_rjJMsVcUViUsUO77E4483Y897ALvaFplJrOQG4QGXWZpw1c4j7om9O3HGK0mJwmfnafdKnlwn13PwPMuF8d6Hy2e-Ra_hLN_d5xMKle3RrI5lI1V96qe_0UEb7x8foDW_CnF0eNnp8lpDgA-EikpeFHQpKDNCmyhW3rnISemVcBahJYIVdBgS57JME82wVHmBC0CKbps12luVE9USLvALiDMSUWWHzSI4lNWqaseSyjH6UqmenWEI0n8JZ61pzFPd1lXQQCf0QdTcP01Zv9B_7nV-XHyvgj2CxHr_EX0Je97RMvxpequ66nLXmpS2lT_9RyT5XrtzBdZfshnZxWyf_gBzfrQKyzX8ZvXiNsaqRuGiqVuFJcLiFZX1Gnzr0b7PiOb7gZUB8GPbXwPDSJUnMBVTSzb2t8M6o2vE7JSRiEJeFfnQPA6GderrOly9yc9vwPzofuQ_AotzdItdpIq2cTi0rI0FPhKJcA8xXJZ_gjWyV_9nRTnSr021-Xr1Dix2L896_d7x-elnWArssiFKtAXz5cPEf0HcVNrtMHwZ3Ly1gf8CKqsdPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Local+color+transfer+via+probabilistic+segmentation+by+expectation-maximization&rft.au=Yu-Wing+Tai&rft.au=Jiaya+Jia&rft.au=Chi-Keung+Tang&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=747&rft.epage=754+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.215&rft.externalDocID=1467343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon