Local color transfer via probabilistic segmentation by expectation-maximization
We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme to impose both spatial and color smoothness to infer natural connectivity among pixels. Unlike previous work, our method takes local color inf...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 747 - 754 vol. 1 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme to impose both spatial and color smoothness to infer natural connectivity among pixels. Unlike previous work, our method takes local color information into consideration, and segment image with soft region boundaries for seamless color transfer and compositing. Our modified EM method has two advantages in color manipulation: first, subject to different levels of color smoothness in image space, our algorithm produces an optimal number of regions upon convergence, where the color statistics in each region can be adequately characterized by a component of a Gaussian mixture model (GMM). Second, we allow a pixel to fall in several regions according to our estimated probability distribution in the EM step, resulting in a transparency-like ratio for compositing different regions seamlessly. Hence, natural color transition across regions can be achieved, where the necessary intra-region and inter-region smoothness are enforced without losing original details. We demonstrate results on a variety of applications including image deblurring, enhanced color transfer, and colorizing gray scale images. Comparisons with previous methods are also presented. |
---|---|
AbstractList | We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme to impose both spatial and color smoothness to infer natural connectivity among pixels. Unlike previous work, our method takes local color information into consideration, and segment image with soft region boundaries for seamless color transfer and compositing. Our modified EM method has two advantages in color manipulation: first, subject to different levels of color smoothness in image space, our algorithm produces an optimal number of regions upon convergence, where the color statistics in each region can be adequately characterized by a component of a Gaussian mixture model (GMM). Second, we allow a pixel to fall in several regions according to our estimated probability distribution in the EM step, resulting in a transparency-like ratio for compositing different regions seamlessly. Hence, natural color transition across regions can be achieved, where the necessary intra-region and inter-region smoothness are enforced without losing original details. We demonstrate results on a variety of applications including image deblurring, enhanced color transfer, and colorizing gray scale images. Comparisons with previous methods are also presented. |
Author | Chi-Keung Tang Jiaya Jia Yu-Wing Tai |
Author_xml | – sequence: 1 surname: Yu-Wing Tai fullname: Yu-Wing Tai organization: Hong Kong Univ. of Sci. & Technol., China – sequence: 2 surname: Jiaya Jia fullname: Jiaya Jia – sequence: 3 surname: Chi-Keung Tang fullname: Chi-Keung Tang |
BookMark | eNpNjMtKAzEYRoNWsK1dunKTF5gx10mylMEbDFRE3ZZc_pHI3EgGaX16xbrwbD4OH5wVWgzjAAhdUlJSSsx1_fb0XDJCZMmoPEFLSipeVIaaU7QiqjKSccXY4t9xjjY5f5AfuOFasCXaNqO3HfZjNyY8JzvkFhL-jBZPaXTWxS7mOXqc4b2HYbZzHAfsDhj2E_ijFr3dxz5-_coFOmttl2Hzt2v0enf7Uj8Uzfb-sb5pisg0mYu2pUYbZZmxhGsIgQQhQLPgtGaCSKaVDEEpE5wCoX0rua44184acNobvkZXx24EgN2UYm_TYUdFpbjg_BsdP1MS |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.215 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Statistics Computer Science |
EISSN | 1063-6919 |
EndPage | 754 vol. 1 |
ExternalDocumentID | 1467343 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i280t-ff19897a29a038edd0d44e82db8824052875dd779db7e48cf5386338ba9eb8c93 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i280t-ff19897a29a038edd0d44e82db8824052875dd779db7e48cf5386338ba9eb8c93 |
OpenAccessLink | https://repository.hkust.edu.hk/ir/bitstream/1783.1-2711/1/cvpr05_postrefereed.pdf |
ParticipantIDs | ieee_primary_1467343 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.1360135 |
Snippet | We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 747 |
SubjectTerms | Color Colored noise Convergence Digital images Image restoration Image segmentation Pixel Probability distribution Statistical distributions Statistics |
Title | Local color transfer via probabilistic segmentation by expectation-maximization |
URI | https://ieeexplore.ieee.org/document/1467343 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2AEycUMP5ODx4tjK3d2jORECNKjBhupF07QwzDwDDqX2-_7gfGePCyrF0Pa7Ou7_va9x5CV0IlkWSKEmnhAaFRyAgfxB4xoN7NtDScAlF4ch-OZ_R2zuY1dF1xYYwx7vCZ6cGt28vX63gHqbI-zOqABnVUt4FbztWq8inAMeVFmAflwEY2oah2FHxwY3E7n2FAQjEQeQgvGDzwCyWesiz2Ypz94fP0MU-9-GCd-8OCxa1AoxaalO-eHzx57e0y1Yu_fsk6_rdzB6i75_rhabWKHaKaSduoVYBTXEz9ra0q_R_KujZqAlLNhZ476OEOVkUMItgbnDk4bNu-LyUGzxqn4wst8da8rAq-U4rVJwaLgTgvkpX8WK4KYmgXzUY3T8MxKdwayNLnXkaSBI5fRdIX0gu40drTlBrua2VBvIWFNjRjWkeRAEFnyuPE_mpDGyArKYzisQiOUCNdp-YY4SC2QaP2eDKQmjKmVODbC6MWDFmEE8UnqAPjt3jLBTkWxdCd_l19hppOb9XlTc5RI9vszIVFEpm6dJ_QNxQsv_Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB0hOMAJyodaSsEHevSSdZzEPnBaQAssFFVQcVvs2EErtEvFZluW38Jf6X_rjJMsVcUViUsUO77E4483Y897ALvaFplJrOQG4QGXWZpw1c4j7om9O3HGK0mJwmfnafdKnlwn13PwPMuF8d6Hy2e-Ra_hLN_d5xMKle3RrI5lI1V96qe_0UEb7x8foDW_CnF0eNnp8lpDgA-EikpeFHQpKDNCmyhW3rnISemVcBahJYIVdBgS57JME82wVHmBC0CKbps12luVE9USLvALiDMSUWWHzSI4lNWqaseSyjH6UqmenWEI0n8JZ61pzFPd1lXQQCf0QdTcP01Zv9B_7nV-XHyvgj2CxHr_EX0Je97RMvxpequ66nLXmpS2lT_9RyT5XrtzBdZfshnZxWyf_gBzfrQKyzX8ZvXiNsaqRuGiqVuFJcLiFZX1Gnzr0b7PiOb7gZUB8GPbXwPDSJUnMBVTSzb2t8M6o2vE7JSRiEJeFfnQPA6GderrOly9yc9vwPzofuQ_AotzdItdpIq2cTi0rI0FPhKJcA8xXJZ_gjWyV_9nRTnSr021-Xr1Dix2L896_d7x-elnWArssiFKtAXz5cPEf0HcVNrtMHwZ3Ly1gf8CKqsdPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Local+color+transfer+via+probabilistic+segmentation+by+expectation-maximization&rft.au=Yu-Wing+Tai&rft.au=Jiaya+Jia&rft.au=Chi-Keung+Tang&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=747&rft.epage=754+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.215&rft.externalDocID=1467343 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |