Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization

Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many computer vision tasks. In real cases, however, an MSI is always corrupted by various noises. In this paper, we propose a new tensor-based de...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1692 - 1700
Main Authors Qi Xie, Qian Zhao, Deyu Meng, Zongben Xu, Shuhang Gu, Wangmeng Zuo, Lei Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2016.187

Cover

Loading…
Abstract Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many computer vision tasks. In real cases, however, an MSI is always corrupted by various noises. In this paper, we propose a new tensor-based denoising approach by fully considering two intrinsic characteristics underlying an MSI, i.e., the global correlation along spectrum (GCS) and nonlocal self-similarity across space (NSS). In specific, we construct a new tensor sparsity measure, called intrinsic tensor sparsity (ITS) measure, which encodes both sparsity insights delivered by the most typical Tucker and CANDECOMP/ PARAFAC (CP) low-rank decomposition for a general tensor. Then we build a new MSI denoising model by applying the proposed ITS measure on tensors formed by non-local similar patches within the MSI. The intrinsic GCS and NSS knowledge can then be efficiently explored under the regularization of this tensor sparsity measure to finely rectify the recovery of a MSI from its corruption. A series of experiments on simulated and real MSI denoising problems show that our method outperforms all state-of-the-arts under comprehensive quantitative performance measures.
AbstractList Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many computer vision tasks. In real cases, however, an MSI is always corrupted by various noises. In this paper, we propose a new tensor-based denoising approach by fully considering two intrinsic characteristics underlying an MSI, i.e., the global correlation along spectrum (GCS) and nonlocal self-similarity across space (NSS). In specific, we construct a new tensor sparsity measure, called intrinsic tensor sparsity (ITS) measure, which encodes both sparsity insights delivered by the most typical Tucker and CANDECOMP/ PARAFAC (CP) low-rank decomposition for a general tensor. Then we build a new MSI denoising model by applying the proposed ITS measure on tensors formed by non-local similar patches within the MSI. The intrinsic GCS and NSS knowledge can then be efficiently explored under the regularization of this tensor sparsity measure to finely rectify the recovery of a MSI from its corruption. A series of experiments on simulated and real MSI denoising problems show that our method outperforms all state-of-the-arts under comprehensive quantitative performance measures.
Author Deyu Meng
Qian Zhao
Lei Zhang
Qi Xie
Wangmeng Zuo
Zongben Xu
Shuhang Gu
Author_xml – sequence: 1
  surname: Qi Xie
  fullname: Qi Xie
  email: xq.liwu@stu.xjtu.edu.cn
– sequence: 2
  surname: Qian Zhao
  fullname: Qian Zhao
  email: timmy.zhaoqian@gmail.com
– sequence: 3
  surname: Deyu Meng
  fullname: Deyu Meng
  email: dymeng@mail.xjtu.edu.cn
– sequence: 4
  surname: Zongben Xu
  fullname: Zongben Xu
  email: zbxu@mail.xjtu.edu.cn
– sequence: 5
  surname: Shuhang Gu
  fullname: Shuhang Gu
  email: shuhanggu@gmail.com
– sequence: 6
  surname: Wangmeng Zuo
  fullname: Wangmeng Zuo
  email: wmzuo@hit.edu.cn
– sequence: 7
  surname: Lei Zhang
  fullname: Lei Zhang
  email: cslzhang@comp.polyu.edu.hk
BookMark eNotjEFLwzAYQKMoOGePnrzkD3TmS5r0y1Gm08lEmcXrSNuvI9KlI-kO89c70NOD9-Bds4swBGLsFsQMQNj7-dfHeiYFmBlgecYyWyIUplSIGuCcTUAYlRsL9oplKX0LIcAaBLQT9vp26Eef9tSM0fV8uXNbSvyRwuCTD1teH_kyjNGH5BteUUhD5J97F5Mfj3xN20Pvov9xox_CDbvsXJ8o--eUVYunav6Sr96fl_OHVe4lijE3hLpr2w4VQdcQCkWtrE_CYWE0Wt0WhehqaVtbCwSpUEqDjVanokStpuzub-uJaLOPfuficVOWKLQ26hd65k-I
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.187
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 1700
ExternalDocumentID 7780556
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i280t-6e85fddf83e1fce803ed2bddfa8465895d440fb29d9b0812382268c5395d30b3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:54:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i280t-6e85fddf83e1fce803ed2bddfa8465895d440fb29d9b0812382268c5395d30b3
OpenAccessLink http://ira.lib.polyu.edu.hk/bitstream/10397/105696/1/Gu_Multispectral_Images_Denoising.pdf
PageCount 9
ParticipantIDs ieee_primary_7780556
PublicationCentury 2000
PublicationDate 2016-06
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.4467869
Snippet Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many...
SourceID ieee
SourceType Publisher
StartPage 1692
SubjectTerms Correlation
Image denoising
Noise reduction
Stacking
Tensile stress
Three-dimensional displays
Two dimensional displays
Title Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization
URI https://ieeexplore.ieee.org/document/7780556
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nB49ujHbt1jNKkARDCBpuZP1YQtRBxjjoX-9rN0Y0Hrytb2nWtGvf-72-33sI3QlBWEJ06IEyUABQOGypEFCKIQBwCZdUaUtwnjzz0Us4XrBFA93XXBhjjAs-M759dHf5eq121lXWi2wCfsabqAnAreRqHfwpgsPnRN2mgGy4qG8UiK3Gcsix2Ru8Tmc2sIv7_fhnZRWnWIZtNNkPqYwnefN3hfTV169sjf8d8zHqHih8eForpxPUMNkpalc2J6529BZE-7IOe1kHjR0p11Ew8-QdP33AkbPFDyZbr6xjActP_JQV-SqDBcZzgMFr6LxJXHQHnrna9nnF7uyi-fBxPhh5VckFb0XioPC4iVmqdRpT00-ViQNqNJEgSMBOYbFgOgyDVBKhhQRjAvQ9mG-xYhTe0EDSM9TK1pk5R5hQGuo0irTNkaZEIpkG7BeFMfRJUxVdoI6drOWmTKqxrObp8m_xFTqyi1XGaF2jVpHvzA1YA4W8db_BN6kBskM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0Y7brtp5RAgiEkGm4kfVjCVEHGeOgf72v2xjRePC2vqVZ06597_f6fu8hdMc5YRFRrgXKQAJA8WBLuYBSNAGASzxBpTIE59HY6724gxmb1dB9xYXRWufBZ9o2j_ldvlrKjXGVtX2TgJ95e2ifGTJuwdbaeVS4Bx_kVZsCtvF4dadATD2WXZbNdud1MjWhXZ79EPysrZKrlm4DjbaDKiJK3uxNJmz59Stf439HfYRaOxIfnlTq6RjVdHKCGqXVics9vQbRtrDDVtZEg5yWm5Mw0-gd9z_g0FnjR50sF8a1gMUn7idZukhgiXEIQHgJnVdRHt-Bp3l1-7Tkd7ZQ2H0KOz2rLLpgLUjgZJanAxYrFQdUP8RSBw7ViggQRGCpsIAz5bpOLAhXXIA5ARofDLhAMgpvqCPoKaony0SfIUwodVXs-8pkSZM8EkwB-vPdAPrEsfTPUdNM1nxVpNWYl_N08bf4Fh30wtFwPuyPny_RoVm4ImLrCtWzdKOvwTbIxE3-S3wDIyq1iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Multispectral+Images+Denoising+by+Intrinsic+Tensor+Sparsity+Regularization&rft.au=Qi+Xie&rft.au=Qian+Zhao&rft.au=Deyu+Meng&rft.au=Zongben+Xu&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1692&rft.epage=1700&rft_id=info:doi/10.1109%2FCVPR.2016.187&rft.externalDocID=7780556