Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization
Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many computer vision tasks. In real cases, however, an MSI is always corrupted by various noises. In this paper, we propose a new tensor-based de...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1692 - 1700 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2016.187 |
Cover
Loading…
Abstract | Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many computer vision tasks. In real cases, however, an MSI is always corrupted by various noises. In this paper, we propose a new tensor-based denoising approach by fully considering two intrinsic characteristics underlying an MSI, i.e., the global correlation along spectrum (GCS) and nonlocal self-similarity across space (NSS). In specific, we construct a new tensor sparsity measure, called intrinsic tensor sparsity (ITS) measure, which encodes both sparsity insights delivered by the most typical Tucker and CANDECOMP/ PARAFAC (CP) low-rank decomposition for a general tensor. Then we build a new MSI denoising model by applying the proposed ITS measure on tensors formed by non-local similar patches within the MSI. The intrinsic GCS and NSS knowledge can then be efficiently explored under the regularization of this tensor sparsity measure to finely rectify the recovery of a MSI from its corruption. A series of experiments on simulated and real MSI denoising problems show that our method outperforms all state-of-the-arts under comprehensive quantitative performance measures. |
---|---|
AbstractList | Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many computer vision tasks. In real cases, however, an MSI is always corrupted by various noises. In this paper, we propose a new tensor-based denoising approach by fully considering two intrinsic characteristics underlying an MSI, i.e., the global correlation along spectrum (GCS) and nonlocal self-similarity across space (NSS). In specific, we construct a new tensor sparsity measure, called intrinsic tensor sparsity (ITS) measure, which encodes both sparsity insights delivered by the most typical Tucker and CANDECOMP/ PARAFAC (CP) low-rank decomposition for a general tensor. Then we build a new MSI denoising model by applying the proposed ITS measure on tensors formed by non-local similar patches within the MSI. The intrinsic GCS and NSS knowledge can then be efficiently explored under the regularization of this tensor sparsity measure to finely rectify the recovery of a MSI from its corruption. A series of experiments on simulated and real MSI denoising problems show that our method outperforms all state-of-the-arts under comprehensive quantitative performance measures. |
Author | Deyu Meng Qian Zhao Lei Zhang Qi Xie Wangmeng Zuo Zongben Xu Shuhang Gu |
Author_xml | – sequence: 1 surname: Qi Xie fullname: Qi Xie email: xq.liwu@stu.xjtu.edu.cn – sequence: 2 surname: Qian Zhao fullname: Qian Zhao email: timmy.zhaoqian@gmail.com – sequence: 3 surname: Deyu Meng fullname: Deyu Meng email: dymeng@mail.xjtu.edu.cn – sequence: 4 surname: Zongben Xu fullname: Zongben Xu email: zbxu@mail.xjtu.edu.cn – sequence: 5 surname: Shuhang Gu fullname: Shuhang Gu email: shuhanggu@gmail.com – sequence: 6 surname: Wangmeng Zuo fullname: Wangmeng Zuo email: wmzuo@hit.edu.cn – sequence: 7 surname: Lei Zhang fullname: Lei Zhang email: cslzhang@comp.polyu.edu.hk |
BookMark | eNotjEFLwzAYQKMoOGePnrzkD3TmS5r0y1Gm08lEmcXrSNuvI9KlI-kO89c70NOD9-Bds4swBGLsFsQMQNj7-dfHeiYFmBlgecYyWyIUplSIGuCcTUAYlRsL9oplKX0LIcAaBLQT9vp26Eef9tSM0fV8uXNbSvyRwuCTD1teH_kyjNGH5BteUUhD5J97F5Mfj3xN20Pvov9xox_CDbvsXJ8o--eUVYunav6Sr96fl_OHVe4lijE3hLpr2w4VQdcQCkWtrE_CYWE0Wt0WhehqaVtbCwSpUEqDjVanokStpuzub-uJaLOPfuficVOWKLQ26hd65k-I |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.187 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 1700 |
ExternalDocumentID | 7780556 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i280t-6e85fddf83e1fce803ed2bddfa8465895d440fb29d9b0812382268c5395d30b3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i280t-6e85fddf83e1fce803ed2bddfa8465895d440fb29d9b0812382268c5395d30b3 |
OpenAccessLink | http://ira.lib.polyu.edu.hk/bitstream/10397/105696/1/Gu_Multispectral_Images_Denoising.pdf |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780556 |
PublicationCentury | 2000 |
PublicationDate | 2016-06 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.4467869 |
Snippet | Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1692 |
SubjectTerms | Correlation Image denoising Noise reduction Stacking Tensile stress Three-dimensional displays Two dimensional displays |
Title | Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization |
URI | https://ieeexplore.ieee.org/document/7780556 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nB49ujHbt1jNKkARDCBpuZP1YQtRBxjjoX-9rN0Y0Hrytb2nWtGvf-72-33sI3QlBWEJ06IEyUABQOGypEFCKIQBwCZdUaUtwnjzz0Us4XrBFA93XXBhjjAs-M759dHf5eq121lXWi2wCfsabqAnAreRqHfwpgsPnRN2mgGy4qG8UiK3Gcsix2Ru8Tmc2sIv7_fhnZRWnWIZtNNkPqYwnefN3hfTV169sjf8d8zHqHih8eForpxPUMNkpalc2J6529BZE-7IOe1kHjR0p11Ew8-QdP33AkbPFDyZbr6xjActP_JQV-SqDBcZzgMFr6LxJXHQHnrna9nnF7uyi-fBxPhh5VckFb0XioPC4iVmqdRpT00-ViQNqNJEgSMBOYbFgOgyDVBKhhQRjAvQ9mG-xYhTe0EDSM9TK1pk5R5hQGuo0irTNkaZEIpkG7BeFMfRJUxVdoI6drOWmTKqxrObp8m_xFTqyi1XGaF2jVpHvzA1YA4W8db_BN6kBskM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0Y7brtp5RAgiEkGm4kfVjCVEHGeOgf72v2xjRePC2vqVZ06597_f6fu8hdMc5YRFRrgXKQAJA8WBLuYBSNAGASzxBpTIE59HY6724gxmb1dB9xYXRWufBZ9o2j_ldvlrKjXGVtX2TgJ95e2ifGTJuwdbaeVS4Bx_kVZsCtvF4dadATD2WXZbNdud1MjWhXZ79EPysrZKrlm4DjbaDKiJK3uxNJmz59Stf439HfYRaOxIfnlTq6RjVdHKCGqXVics9vQbRtrDDVtZEg5yWm5Mw0-gd9z_g0FnjR50sF8a1gMUn7idZukhgiXEIQHgJnVdRHt-Bp3l1-7Tkd7ZQ2H0KOz2rLLpgLUjgZJanAxYrFQdUP8RSBw7ViggQRGCpsIAz5bpOLAhXXIA5ARofDLhAMgpvqCPoKaony0SfIUwodVXs-8pkSZM8EkwB-vPdAPrEsfTPUdNM1nxVpNWYl_N08bf4Fh30wtFwPuyPny_RoVm4ImLrCtWzdKOvwTbIxE3-S3wDIyq1iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Multispectral+Images+Denoising+by+Intrinsic+Tensor+Sparsity+Regularization&rft.au=Qi+Xie&rft.au=Qian+Zhao&rft.au=Deyu+Meng&rft.au=Zongben+Xu&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1692&rft.epage=1700&rft_id=info:doi/10.1109%2FCVPR.2016.187&rft.externalDocID=7780556 |