Automatic segmentation of pathological lung using incremental nonnegative matrix factorization

Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this paper, a new framework for automatic pathological lung segmentation is proposed. The proposed INMF-based segmentation approach has the abili...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE International Conference on Image Processing (ICIP) pp. 3111 - 3115
Main Authors Hosseini-Asl, Ehsan, Zurada, Jacek M., El-Baz, Ayman
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this paper, a new framework for automatic pathological lung segmentation is proposed. The proposed INMF-based segmentation approach has the ability to handle the in-homogeneities caused by the arteries, veins, bronchi, and possible pathologies that may exist in the lung tissues, and to detect the number of clusters in the image in an automated manner. The proposed INMF-based segmentation framework is quantitatively validated on simulated realistic lung phantoms that mimic different lung pathologies (7 datasets), in vivo data sets for 17 subjects, and for lung disease with severe pathologies. Three metrics are used: the Dice coefficient, modified Hausdorff distance, and absolute lung volume difference. Results show that the proposed approach outperforms existing lung segmentation techniques and can handle in-homogenities caused by different pathologies.
AbstractList Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this paper, a new framework for automatic pathological lung segmentation is proposed. The proposed INMF-based segmentation approach has the ability to handle the in-homogeneities caused by the arteries, veins, bronchi, and possible pathologies that may exist in the lung tissues, and to detect the number of clusters in the image in an automated manner. The proposed INMF-based segmentation framework is quantitatively validated on simulated realistic lung phantoms that mimic different lung pathologies (7 datasets), in vivo data sets for 17 subjects, and for lung disease with severe pathologies. Three metrics are used: the Dice coefficient, modified Hausdorff distance, and absolute lung volume difference. Results show that the proposed approach outperforms existing lung segmentation techniques and can handle in-homogenities caused by different pathologies.
Author Zurada, Jacek M.
El-Baz, Ayman
Hosseini-Asl, Ehsan
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Hosseini-Asl
  fullname: Hosseini-Asl, Ehsan
  email: ehsan.hosseiniasl@louisville.edu
  organization: Electr. & Comput. Eng. Dept., Univ. of Louisville, Louisville, KY, USA
– sequence: 2
  givenname: Jacek M.
  surname: Zurada
  fullname: Zurada, Jacek M.
  organization: Electr. & Comput. Eng. Dept., Univ. of Louisville, Louisville, KY, USA
– sequence: 3
  givenname: Ayman
  surname: El-Baz
  fullname: El-Baz, Ayman
  organization: Bioeng. Dept., Univ. of Louisville, Louisville, KY, USA
BookMark eNotj81KxDAUhSPowhl9AHGTF2jNTztJlkPxpzCgCwVXDml6UwNtMqSpqE9vGGdzz-Vwzne5K3TugweEbigpKSXqrm3al5IRWpeC15SLzRla0UooJTlX75foY7ukMOnkDJ5hmMCnvAePg8UHnT7DGAZn9IjHxQ94mV2ezpsIx-SI8zUPQ658Ac6U6L6x1SaF6H6PnCt0YfU4w_VJ1-jt4f61eSp2z49ts90VjgmZClERpkFyaVktOSOqE4xxqQTZsM5yYrJngPbKcAG16o3tSS8NVF3V5RbwNbr95zoA2B-im3T82Z9e5n_dclKj
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2015.7351376
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 147998339X
9781479983391
EndPage 3115
ExternalDocumentID 7351376
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i278t-7402ae838f2583209b7223897062bf30c320ce1d9c37e59dcfd0d8ce4b4b838e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:23 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i278t-7402ae838f2583209b7223897062bf30c320ce1d9c37e59dcfd0d8ce4b4b838e3
PageCount 5
ParticipantIDs ieee_primary_7351376
PublicationCentury 2000
PublicationDate 2015-12-09
PublicationDateYYYYMMDD 2015-12-09
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-09
  day: 09
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9496456
Snippet Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this...
SourceID ieee
SourceType Publisher
StartPage 3111
SubjectTerms Computed tomography
Context
Image segmentation
incremental learning
lung segmentation
Lungs
Matrix decomposition
Nonnegative matrix factorization
Pathology
Three-dimensional displays
Title Automatic segmentation of pathological lung using incremental nonnegative matrix factorization
URI https://ieeexplore.ieee.org/document/7351376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0XdOkS3KU4diEyQ4OdnLkV8fQdaItiH-9L22nKB68lUfblDxeX17yfd9D6ErH3EqdWOIsE4RzqwmsWg3hNDNCKMqyNLCRp_eD8ZzfLdJFC11_cWG89xX4zEfhsjrLd1tbhq2yvmAphYBoozYUbjVXqzmopLHqT4aTWcBqpVFz34-GKVW-GO2j6W6kGibyFJWFiezHLxHG_37KAep9M_Pw7CvnHKKWz7vo8aYstpX0Kn7zq03DJsrxNsOh4fDu94afIbBxALqv8Dq39cYgmPOAdVlVAuB4ExT733HdhaehaPbQfHT7MByTpm8CWSdCFkRATai9ZDJLUgjYWBkBiwCpRDxITMZiCzbrqVPgHp8qZzMXO2k9N9zAU54doQ4M7Y8R1o7ZlGoo1IzgMoEyXCfgWkm1dwxee4K6YW6WL7U0xrKZltO_zWdoL_inQoOoc9QpXkt_ATm9MJeVMz8BhrumXQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjXVtaXc0RAIKhAMknCRt1xGiDKNbYvzrfd0GRuPB2_KyrUtf3l5f-33fQ-hGBcxIFRovNlR4jBnlwapVe4wkWoiI0IQ7NvJw1O5N2cOMz2rodsuFsdYW4DPru8viLD9em9xtlbUE5QQCYgftQt7npGRrVUeVJIha_U5_7NBa3K_u_NEypcgY3QM03IxVAkWe_TzTvvn8JcP43485RM1vbh4eb7POEarZtIGe7vJsXYiv4ne7WFV8ohSvE-xaDm9-cPgFQhs7qPsCL1NTbg2COXVol0UhAY5XTrP_A5d9eCqSZhNNu_eTTs-rOid4y1DIzBNQFSorqUxCDiEbRFrAMkBGImiHOqGBAZuxJI7AQZZHsUniIJbGMs00PGXpMarD0PYEYRVTw4mCUk0LJkMoxFUIzpVE2ZjCa09Rw83N_LUUx5hX03L2t_ka7fUmw8F80B89nqN956sCGxJdoHr2lttLyPCZvioc-wVgHamm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Automatic+segmentation+of+pathological+lung+using+incremental+nonnegative+matrix+factorization&rft.au=Hosseini-Asl%2C+Ehsan&rft.au=Zurada%2C+Jacek+M.&rft.au=El-Baz%2C+Ayman&rft.date=2015-12-09&rft.pub=IEEE&rft.spage=3111&rft.epage=3115&rft_id=info:doi/10.1109%2FICIP.2015.7351376&rft.externalDocID=7351376