Automatic segmentation of pathological lung using incremental nonnegative matrix factorization
Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this paper, a new framework for automatic pathological lung segmentation is proposed. The proposed INMF-based segmentation approach has the abili...
Saved in:
Published in | 2015 IEEE International Conference on Image Processing (ICIP) pp. 3111 - 3115 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this paper, a new framework for automatic pathological lung segmentation is proposed. The proposed INMF-based segmentation approach has the ability to handle the in-homogeneities caused by the arteries, veins, bronchi, and possible pathologies that may exist in the lung tissues, and to detect the number of clusters in the image in an automated manner. The proposed INMF-based segmentation framework is quantitatively validated on simulated realistic lung phantoms that mimic different lung pathologies (7 datasets), in vivo data sets for 17 subjects, and for lung disease with severe pathologies. Three metrics are used: the Dice coefficient, modified Hausdorff distance, and absolute lung volume difference. Results show that the proposed approach outperforms existing lung segmentation techniques and can handle in-homogenities caused by different pathologies. |
---|---|
AbstractList | Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this paper, a new framework for automatic pathological lung segmentation is proposed. The proposed INMF-based segmentation approach has the ability to handle the in-homogeneities caused by the arteries, veins, bronchi, and possible pathologies that may exist in the lung tissues, and to detect the number of clusters in the image in an automated manner. The proposed INMF-based segmentation framework is quantitatively validated on simulated realistic lung phantoms that mimic different lung pathologies (7 datasets), in vivo data sets for 17 subjects, and for lung disease with severe pathologies. Three metrics are used: the Dice coefficient, modified Hausdorff distance, and absolute lung volume difference. Results show that the proposed approach outperforms existing lung segmentation techniques and can handle in-homogenities caused by different pathologies. |
Author | Zurada, Jacek M. El-Baz, Ayman Hosseini-Asl, Ehsan |
Author_xml | – sequence: 1 givenname: Ehsan surname: Hosseini-Asl fullname: Hosseini-Asl, Ehsan email: ehsan.hosseiniasl@louisville.edu organization: Electr. & Comput. Eng. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 2 givenname: Jacek M. surname: Zurada fullname: Zurada, Jacek M. organization: Electr. & Comput. Eng. Dept., Univ. of Louisville, Louisville, KY, USA – sequence: 3 givenname: Ayman surname: El-Baz fullname: El-Baz, Ayman organization: Bioeng. Dept., Univ. of Louisville, Louisville, KY, USA |
BookMark | eNotj81KxDAUhSPowhl9AHGTF2jNTztJlkPxpzCgCwVXDml6UwNtMqSpqE9vGGdzz-Vwzne5K3TugweEbigpKSXqrm3al5IRWpeC15SLzRla0UooJTlX75foY7ukMOnkDJ5hmMCnvAePg8UHnT7DGAZn9IjHxQ94mV2ezpsIx-SI8zUPQ658Ac6U6L6x1SaF6H6PnCt0YfU4w_VJ1-jt4f61eSp2z49ts90VjgmZClERpkFyaVktOSOqE4xxqQTZsM5yYrJngPbKcAG16o3tSS8NVF3V5RbwNbr95zoA2B-im3T82Z9e5n_dclKj |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2015.7351376 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 147998339X 9781479983391 |
EndPage | 3115 |
ExternalDocumentID | 7351376 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i278t-7402ae838f2583209b7223897062bf30c320ce1d9c37e59dcfd0d8ce4b4b838e3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:23 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i278t-7402ae838f2583209b7223897062bf30c320ce1d9c37e59dcfd0d8ce4b4b838e3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7351376 |
PublicationCentury | 2000 |
PublicationDate | 2015-12-09 |
PublicationDateYYYYMMDD | 2015-12-09 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9496456 |
Snippet | Accurate segmentation of pathological lungs from large-size chest computed tomographic images is crucial for computer-assisted lung cancer diagnostics. In this... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3111 |
SubjectTerms | Computed tomography Context Image segmentation incremental learning lung segmentation Lungs Matrix decomposition Nonnegative matrix factorization Pathology Three-dimensional displays |
Title | Automatic segmentation of pathological lung using incremental nonnegative matrix factorization |
URI | https://ieeexplore.ieee.org/document/7351376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0XdOkS3KU4diEyQ4OdnLkV8fQdaItiH-9L22nKB68lUfblDxeX17yfd9D6ErH3EqdWOIsE4RzqwmsWg3hNDNCKMqyNLCRp_eD8ZzfLdJFC11_cWG89xX4zEfhsjrLd1tbhq2yvmAphYBoozYUbjVXqzmopLHqT4aTWcBqpVFz34-GKVW-GO2j6W6kGibyFJWFiezHLxHG_37KAep9M_Pw7CvnHKKWz7vo8aYstpX0Kn7zq03DJsrxNsOh4fDu94afIbBxALqv8Dq39cYgmPOAdVlVAuB4ExT733HdhaehaPbQfHT7MByTpm8CWSdCFkRATai9ZDJLUgjYWBkBiwCpRDxITMZiCzbrqVPgHp8qZzMXO2k9N9zAU54doQ4M7Y8R1o7ZlGoo1IzgMoEyXCfgWkm1dwxee4K6YW6WL7U0xrKZltO_zWdoL_inQoOoc9QpXkt_ATm9MJeVMz8BhrumXQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjXVtaXc0RAIKhAMknCRt1xGiDKNbYvzrfd0GRuPB2_KyrUtf3l5f-33fQ-hGBcxIFRovNlR4jBnlwapVe4wkWoiI0IQ7NvJw1O5N2cOMz2rodsuFsdYW4DPru8viLD9em9xtlbUE5QQCYgftQt7npGRrVUeVJIha_U5_7NBa3K_u_NEypcgY3QM03IxVAkWe_TzTvvn8JcP43485RM1vbh4eb7POEarZtIGe7vJsXYiv4ne7WFV8ohSvE-xaDm9-cPgFQhs7qPsCL1NTbg2COXVol0UhAY5XTrP_A5d9eCqSZhNNu_eTTs-rOid4y1DIzBNQFSorqUxCDiEbRFrAMkBGImiHOqGBAZuxJI7AQZZHsUniIJbGMs00PGXpMarD0PYEYRVTw4mCUk0LJkMoxFUIzpVE2ZjCa09Rw83N_LUUx5hX03L2t_ka7fUmw8F80B89nqN956sCGxJdoHr2lttLyPCZvioc-wVgHamm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Automatic+segmentation+of+pathological+lung+using+incremental+nonnegative+matrix+factorization&rft.au=Hosseini-Asl%2C+Ehsan&rft.au=Zurada%2C+Jacek+M.&rft.au=El-Baz%2C+Ayman&rft.date=2015-12-09&rft.pub=IEEE&rft.spage=3111&rft.epage=3115&rft_id=info:doi/10.1109%2FICIP.2015.7351376&rft.externalDocID=7351376 |