Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs
Predicting the depth (or surface normal) of a scene from single monocular color images is a challenging task. This paper tackles this challenging and essentially underdetermined problem by regression on deep convolutional neural network (DCNN) features, combined with a post-processing refining step...
Saved in:
Published in | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1119 - 1127 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2015.7298715 |
Cover
Loading…
Summary: | Predicting the depth (or surface normal) of a scene from single monocular color images is a challenging task. This paper tackles this challenging and essentially underdetermined problem by regression on deep convolutional neural network (DCNN) features, combined with a post-processing refining step using conditional random fields (CRF). Our framework works at two levels, super-pixel level and pixel level. First, we design a DCNN model to learn the mapping from multi-scale image patches to depth or surface normal values at the super-pixel level. Second, the estimated super-pixel depth or surface normal is refined to the pixel level by exploiting various potentials on the depth or surface normal map, which includes a data term, a smoothness term among super-pixels and an auto-regression term characterizing the local structure of the estimation map. The inference problem can be efficiently solved because it admits a closed-form solution. Experiments on the Make3D and NYU Depth V2 datasets show competitive results compared with recent state-of-the-art methods. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2015.7298715 |