Bearing fault diagnosis method based on stacked autoencoder and softmax regression

As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in case of suffering greater losses. This paper proposes a deep neural network algorithm framework for bearing fault diagnosis based on stacked...

Full description

Saved in:
Bibliographic Details
Published in2015 34th Chinese Control Conference (CCC) pp. 6331 - 6335
Main Authors Tao, Siqin, Zhang, Tao, Yang, Jun, Wang, Xueqian, Lu, Weining
Format Conference Proceeding Journal Article
LanguageEnglish
Published Technical Committee on Control Theory, Chinese Association of Automation 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in case of suffering greater losses. This paper proposes a deep neural network algorithm framework for bearing fault diagnosis based on stacked autoencoder and softmax regression. The simulation results verify the feasibility of the algorithm and show the excellent classification performance. In addition, this deep neural network represents strong robustness and eliminates the impact of noise remarkably. Last but not least, an integrated deep neural network method consisting of ten different structure parameter networks is proposed and it has better generalization capability.
AbstractList As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in case of suffering greater losses. This paper proposes a deep neural network algorithm framework for bearing fault diagnosis based on stacked autoencoder and softmax regression. The simulation results verify the feasibility of the algorithm and show the excellent classification performance. In addition, this deep neural network represents strong robustness and eliminates the impact of noise remarkably. Last but not least, an integrated deep neural network method consisting of ten different structure parameter networks is proposed and it has better generalization capability.
Author Xueqian Wang
Weining Lu
Siqin Tao
Tao Zhang
Jun Yang
Author_xml – sequence: 1
  givenname: Siqin
  surname: Tao
  fullname: Tao, Siqin
– sequence: 2
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 3
  givenname: Jun
  surname: Yang
  fullname: Yang, Jun
– sequence: 4
  givenname: Xueqian
  surname: Wang
  fullname: Wang, Xueqian
– sequence: 5
  givenname: Weining
  surname: Lu
  fullname: Lu, Weining
BookMark eNotkL1OwzAYRQ0CibbwArB4ZEmx48Q_I0T8SZWQEMzRl_pza0jsEjsSvD2V2unc4egOZ07OQgxIyDVnS86ZuWu2vmmWJeP1UpWSSVGdkLnRmtdSaFOfkhk3oiq4kvqCzFP6Ykwyw8WMvD8gjD5sqIOpz9R62ISYfKID5m20tIOElsZAU4b1937ClCOGdbQ4UgiWpujyAL90xM2IKfkYLsm5gz7h1ZEL8vn0-NG8FKu359fmflX4UlW5MLWRpRUGao2msxKU5FobMF1pjAPNgFlZOkTdqcpKh5yBReUqphhIRLEgt4ff3Rh_Jky5HXxaY99DwDillqtaVEaxstqrNwfVI2K7G_0A4197TCX-AZw1YIE
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SP
8FD
L7M
DOI 10.1109/ChiCC.2015.7260634
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9881563895
9789881563897
EISSN 1934-1768
EndPage 6335
ExternalDocumentID 7260634
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
7SP
8FD
L7M
ID FETCH-LOGICAL-i274t-95962d39a58e9bd6a761889a9b299fa80a0d62fee8b74d6fe10ade7f4070a6ee3
IEDL.DBID RIE
IngestDate Fri Jul 11 05:21:07 EDT 2025
Wed Aug 27 02:42:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-95962d39a58e9bd6a761889a9b299fa80a0d62fee8b74d6fe10ade7f4070a6ee3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1753497024
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1753497024
ieee_primary_7260634
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle 2015 34th Chinese Control Conference (CCC)
PublicationTitleAbbrev ChiCC
PublicationYear 2015
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
ssj0001766686
Score 2.2622693
Snippet As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 6331
SubjectTerms Accuracy
Algorithms
Bearing
Classification
Computer simulation
Conferences
Cost function
Fault diagnosis
Neural networks
Noise
Regression
Robustness
Softmax Regression
Stacked Autoencoder
Training
Title Bearing fault diagnosis method based on stacked autoencoder and softmax regression
URI https://ieeexplore.ieee.org/document/7260634
https://www.proquest.com/docview/1753497024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ734YxPnLyJ4tFu7tklztTiGMBFxsFtJmlcdaitbC-Jf70vTbaIevJRcGkL6-t73ku99j5BLAC_1U5k5ga-GTuDhQzDuORBqkaIFqJSbeufJHRtPg9tZOGuRq3UtDADU5DPom2F9l6-LtDJHZQOO4Jv5wRbZwsTN1mptzlM4AnEjhWa9MDN6l6siGVcM4ud5HBsmV9hvZmnaqfzywXVgGe2SyWpJlk_y0q9K1U8_f6g1_nfNe6S7KeGj9-vgtE9akB-QnW_qgx3ycI1WjiOayeq1pNqS7uZLartKUxPgNC1yigAS_3VNZVUWRvdSw4LKXNMluvA3-UEX8GTZtHmXTEc3j_HYaVosOHNMR0tHmOY72hcyjEAozSRnXhQJKRSGqUxGrnQ1G2YAkeKBZhl4rtTAM0wDXckA_EPSzoscjghF4BCFwH3FMkxRMhGxiEvJcU6d8oANe6Rjdid5tyoaSbMxPXKx2v8ELdtcV8gcimqZGA3RQHAEEcd_v3pCts0HteTZU9IuFxWcIUQo1XltG1_ZkrwB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIALryHGM0gcaddn0lyZQAO2CaEhcavSxoUJaNHWSohfj7NuDAEHLlUujaLUtT8nnz8DnCK6qZ-qzAr8xLMClx6SC9fCUMuULCBJhal37vV55z64fggfFuDsqxYGESfkM7TNcHKXr4u0MkdlLUHgm_vBIixT3A-9ulprfqIiCIobMbTaD3OjeDkrk3Fkq_00bLcNlyu0p_NMG6r88sKT0HK5Dr3ZompGybNdlYmdfvzQa_zvqjegMS_iY7df4WkTFjDfgrVv-oPbcHdOdk4jlqnqpWS6pt0Nx6zuK81MiNOsyBlBSPrbNVNVWRjlS40jpnLNxuTEX9U7G-FjzafNG3B_eTFod6xpkwVrSAlpaUnTfkf7UoURykRzJbgbRVLJhAJVpiJHOZp7GWKUiEDzDF1HaRQZJYKO4oj-DizlRY67wAg6RCEKP-EZJSmZjHgklBI0p05FwL0mbJvdid9qHY14ujFNOJntf0y2bS4sVI5FNY6NimggBcGIvb9fPYaVzqDXjbtX_Zt9WDUft6bSHsBSOarwkABDmRxN7OQT1q-_Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+34th+Chinese+Control+Conference+%28CCC%29&rft.atitle=Bearing+fault+diagnosis+method+based+on+stacked+autoencoder+and+softmax+regression&rft.au=Siqin+Tao&rft.au=Tao+Zhang&rft.au=Jun+Yang&rft.au=Xueqian+Wang&rft.date=2015-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=6331&rft.epage=6335&rft_id=info:doi/10.1109%2FChiCC.2015.7260634&rft.externalDocID=7260634