Bearing fault diagnosis method based on stacked autoencoder and softmax regression
As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in case of suffering greater losses. This paper proposes a deep neural network algorithm framework for bearing fault diagnosis based on stacked...
Saved in:
Published in | 2015 34th Chinese Control Conference (CCC) pp. 6331 - 6335 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
Technical Committee on Control Theory, Chinese Association of Automation
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in case of suffering greater losses. This paper proposes a deep neural network algorithm framework for bearing fault diagnosis based on stacked autoencoder and softmax regression. The simulation results verify the feasibility of the algorithm and show the excellent classification performance. In addition, this deep neural network represents strong robustness and eliminates the impact of noise remarkably. Last but not least, an integrated deep neural network method consisting of ten different structure parameter networks is proposed and it has better generalization capability. |
---|---|
AbstractList | As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in case of suffering greater losses. This paper proposes a deep neural network algorithm framework for bearing fault diagnosis based on stacked autoencoder and softmax regression. The simulation results verify the feasibility of the algorithm and show the excellent classification performance. In addition, this deep neural network represents strong robustness and eliminates the impact of noise remarkably. Last but not least, an integrated deep neural network method consisting of ten different structure parameter networks is proposed and it has better generalization capability. |
Author | Xueqian Wang Weining Lu Siqin Tao Tao Zhang Jun Yang |
Author_xml | – sequence: 1 givenname: Siqin surname: Tao fullname: Tao, Siqin – sequence: 2 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 3 givenname: Jun surname: Yang fullname: Yang, Jun – sequence: 4 givenname: Xueqian surname: Wang fullname: Wang, Xueqian – sequence: 5 givenname: Weining surname: Lu fullname: Lu, Weining |
BookMark | eNotkL1OwzAYRQ0CibbwArB4ZEmx48Q_I0T8SZWQEMzRl_pza0jsEjsSvD2V2unc4egOZ07OQgxIyDVnS86ZuWu2vmmWJeP1UpWSSVGdkLnRmtdSaFOfkhk3oiq4kvqCzFP6Ykwyw8WMvD8gjD5sqIOpz9R62ISYfKID5m20tIOElsZAU4b1937ClCOGdbQ4UgiWpujyAL90xM2IKfkYLsm5gz7h1ZEL8vn0-NG8FKu359fmflX4UlW5MLWRpRUGao2msxKU5FobMF1pjAPNgFlZOkTdqcpKh5yBReUqphhIRLEgt4ff3Rh_Jky5HXxaY99DwDillqtaVEaxstqrNwfVI2K7G_0A4197TCX-AZw1YIE |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL 7SP 8FD L7M |
DOI | 10.1109/ChiCC.2015.7260634 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9881563895 9789881563897 |
EISSN | 1934-1768 |
EndPage | 6335 |
ExternalDocumentID | 7260634 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL 7SP 8FD L7M |
ID | FETCH-LOGICAL-i274t-95962d39a58e9bd6a761889a9b299fa80a0d62fee8b74d6fe10ade7f4070a6ee3 |
IEDL.DBID | RIE |
IngestDate | Fri Jul 11 05:21:07 EDT 2025 Wed Aug 27 02:42:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i274t-95962d39a58e9bd6a761889a9b299fa80a0d62fee8b74d6fe10ade7f4070a6ee3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1753497024 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1753497024 ieee_primary_7260634 |
PublicationCentury | 2000 |
PublicationDate | 20150701 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 20150701 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 34th Chinese Control Conference (CCC) |
PublicationTitleAbbrev | ChiCC |
PublicationYear | 2015 |
Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
SSID | ssj0060913 ssj0001766686 |
Score | 2.2622693 |
Snippet | As bearings are the most common components of mechanical structure, it will be helpful to research bearing fault and diagnose the fault as early as possible in... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 6331 |
SubjectTerms | Accuracy Algorithms Bearing Classification Computer simulation Conferences Cost function Fault diagnosis Neural networks Noise Regression Robustness Softmax Regression Stacked Autoencoder Training |
Title | Bearing fault diagnosis method based on stacked autoencoder and softmax regression |
URI | https://ieeexplore.ieee.org/document/7260634 https://www.proquest.com/docview/1753497024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ734YxPnLyJ4tFu7tklztTiGMBFxsFtJmlcdaitbC-Jf70vTbaIevJRcGkL6-t73ku99j5BLAC_1U5k5ga-GTuDhQzDuORBqkaIFqJSbeufJHRtPg9tZOGuRq3UtDADU5DPom2F9l6-LtDJHZQOO4Jv5wRbZwsTN1mptzlM4AnEjhWa9MDN6l6siGVcM4ud5HBsmV9hvZmnaqfzywXVgGe2SyWpJlk_y0q9K1U8_f6g1_nfNe6S7KeGj9-vgtE9akB-QnW_qgx3ycI1WjiOayeq1pNqS7uZLartKUxPgNC1yigAS_3VNZVUWRvdSw4LKXNMluvA3-UEX8GTZtHmXTEc3j_HYaVosOHNMR0tHmOY72hcyjEAozSRnXhQJKRSGqUxGrnQ1G2YAkeKBZhl4rtTAM0wDXckA_EPSzoscjghF4BCFwH3FMkxRMhGxiEvJcU6d8oANe6Rjdid5tyoaSbMxPXKx2v8ELdtcV8gcimqZGA3RQHAEEcd_v3pCts0HteTZU9IuFxWcIUQo1XltG1_ZkrwB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIALryHGM0gcaddn0lyZQAO2CaEhcavSxoUJaNHWSohfj7NuDAEHLlUujaLUtT8nnz8DnCK6qZ-qzAr8xLMClx6SC9fCUMuULCBJhal37vV55z64fggfFuDsqxYGESfkM7TNcHKXr4u0MkdlLUHgm_vBIixT3A-9ulprfqIiCIobMbTaD3OjeDkrk3Fkq_00bLcNlyu0p_NMG6r88sKT0HK5Dr3ZompGybNdlYmdfvzQa_zvqjegMS_iY7df4WkTFjDfgrVv-oPbcHdOdk4jlqnqpWS6pt0Nx6zuK81MiNOsyBlBSPrbNVNVWRjlS40jpnLNxuTEX9U7G-FjzafNG3B_eTFod6xpkwVrSAlpaUnTfkf7UoURykRzJbgbRVLJhAJVpiJHOZp7GWKUiEDzDF1HaRQZJYKO4oj-DizlRY67wAg6RCEKP-EZJSmZjHgklBI0p05FwL0mbJvdid9qHY14ujFNOJntf0y2bS4sVI5FNY6NimggBcGIvb9fPYaVzqDXjbtX_Zt9WDUft6bSHsBSOarwkABDmRxN7OQT1q-_Sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+34th+Chinese+Control+Conference+%28CCC%29&rft.atitle=Bearing+fault+diagnosis+method+based+on+stacked+autoencoder+and+softmax+regression&rft.au=Siqin+Tao&rft.au=Tao+Zhang&rft.au=Jun+Yang&rft.au=Xueqian+Wang&rft.date=2015-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=6331&rft.epage=6335&rft_id=info:doi/10.1109%2FChiCC.2015.7260634&rft.externalDocID=7260634 |