Transfer Joint Matching for Unsupervised Domain Adaptation
Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: featu...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1410 - 1417 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we show that both strategies are important and inevitable when the domain difference is substantially large. We therefore put forward a novel Transfer Joint Matching (TJM) approach to model them in a unified optimization problem. Specifically, TJM aims to reduce the domain difference by jointly matching the features and reweighting the instances across domains in a principled dimensionality reduction procedure, and construct new feature representation that is invariant to both the distribution difference and the irrelevant instances. Comprehensive experimental results verify that TJM can significantly outperform competitive methods for cross-domain image recognition problems. |
---|---|
AbstractList | Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we show that both strategies are important and inevitable when the domain difference is substantially large. We therefore put forward a novel Transfer Joint Matching (TJM) approach to model them in a unified optimization problem. Specifically, TJM aims to reduce the domain difference by jointly matching the features and reweighting the instances across domains in a principled dimensionality reduction procedure, and construct new feature representation that is invariant to both the distribution difference and the irrelevant instances. Comprehensive experimental results verify that TJM can significantly outperform competitive methods for cross-domain image recognition problems. |
Author | Guiguang Ding Yu, Philip S. Mingsheng Long Jianmin Wang Jiaguang Sun |
Author_xml | – sequence: 1 surname: Mingsheng Long fullname: Mingsheng Long email: longmingsheng@gmail.com organization: Sch. of Software, Tsinghua Univ., Beijing, China – sequence: 2 surname: Jianmin Wang fullname: Jianmin Wang email: jimwang@tsinghua.edu.cn organization: Sch. of Software, Tsinghua Univ., Beijing, China – sequence: 3 surname: Guiguang Ding fullname: Guiguang Ding email: dinggg@tsinghua.edu.cn organization: Sch. of Software, Tsinghua Univ., Beijing, China – sequence: 4 surname: Jiaguang Sun fullname: Jiaguang Sun email: sunjg@tsinghua.edu.cn organization: Sch. of Software, Tsinghua Univ., Beijing, China – sequence: 5 givenname: Philip S. surname: Yu fullname: Yu, Philip S. email: psyu@uic.edu organization: Dept. of Comput. Sci., Univ. of Illinois at Chicago, Chicago, IL, USA |
BookMark | eNpNjDtPwzAYAA0qEqV0ZGLJyJLiR2L7Y6vKW0UgVFgjp_4Mllo72AkS_55KZWC6G053QkYhBiTkjNEZYxQuF-8vrzNOWTVjWhyQKSjNKgVQM6brQzJmVIpSAoPRPz8m05x9S7lUsqqFHJOrVTIhO0zFY_ShL55Mv_704aNwMRVvIQ8dpm-f0RbXcWt8KObWdL3pfQyn5MiZTcbpHydkdXuzWtyXy-e7h8V8WXquqr6UrXFo9dqhFEwZoNJaV1tWWTBgqWsRW6u54KC14chp22oDCpxWHMCICbnYb7sUvwbMfbP1eY2bjQkYh9wwqdRuyqDapef71CNi0yW_NemnkUChViB-AQD6Wbg |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.183 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 |
EndPage | 1417 |
ExternalDocumentID | 6909579 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i274t-6bafed8cfe6317a906ddf5d14d9a9d0fbeebd8232988a2e20bb8a979f87299a3 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Tue Aug 05 10:58:56 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i274t-6bafed8cfe6317a906ddf5d14d9a9d0fbeebd8232988a2e20bb8a979f87299a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1677906194 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1677906194 ieee_primary_6909579 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.4975119 |
Snippet | Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1410 |
SubjectTerms | Adaptation Computer vision Conferences distribution matching Equations Feature extraction feature learning Invariants Joints Kernel Matching Optimization Pattern recognition Principal component analysis Strategy Transfer learning Visual Visualization |
Title | Transfer Joint Matching for Unsupervised Domain Adaptation |
URI | https://ieeexplore.ieee.org/document/6909579 https://www.proquest.com/docview/1677906194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjxVbcX6IoJHkzaPbrLepFpKoVKkld7CbnYWipgUk1z89c5ukhbUg7ewkCXZTGa-mW8ehNwhBuWKM99mTCg7QIfZjigoW3DpJa4HkQAdGli80Nk6mG_Gmxa539fCAIBJPgNHXxouX2ZJqUNlQ_TkNKvUJm103KparUZ2PBrSYFzN7jZa2EfPhrI9o-DpaSyG-aS-TZnLDv02h5O35atO8gocV3cPNFNWfqlmY2-mXbJonrRKM3l3ykI4ydePJo7_fZVj0j9U9lnLvc06IS1IT0m3hqJW_aPnuNRMe2jWeuTBmDXcxJpn27SwFqjEdfjKQthrrdO83Gm1k-M2T9kH36bWo-S7iujvk9X0eTWZ2fXkBXuLXmphU8EVyChRQBFfcDaiUqqxdAPJOJMjJQCEjBCMsSjiHngjISLOQqYixOqM-2ekk2YpnBMLxlKXwiKKAh4g1OIhSHAVS1QI3PfVgPT04cS7qrdGXJ_LgNw2xx-jvGsSg6eQlXnsUt0hUcdeLv6-9ZIc6W9ZpXNdkU7xWcI1AodC3BiJ-QbFYsAx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58HPTkq2J9RvBoavPaZr1JtdRHSpEq3sJudhaKmBSbXPz1zubRgnrwFhayJJvJzDfzzQPggjCo0IJ7NudS2z45zHbIUNtSKDdxXAwlmtBANGLDF__hLXhbgctFLQwilsln2DGXJZevsqQwobIr8uQMq7QK62T3A6eq1mqkx2U95gfV9O5SD3vk2zC-4BRcM4-l5D6ZZzPu8GXHzav-6_jZpHn5Hcf0DyznrPxSzqXFGWxB1DxrlWjy3ily2Um-frRx_O_LbENrWdtnjRdWawdWMN2FrRqMWvWvPqelZt5Ds7YH16Vho02sh2ya5lZEatwEsCwCvtZLOi9mRvHMaZvb7ENMU-tGiVlF9bdgMrib9Id2PXvBnpKfmttMCo0qTDQyQhiCd5lSOlCOr7jgqqslolQhwTEehsJFtytlKHiP65DQOhfePqylWYoHYGGgTDEs4SgUPoEt0UOFjuaJ7qHwPN2GPXM48azqrhHX59KG8-b4Y5J4Q2OIFLNiHjvM9Eg00ZfDv289g43hJHqKn-5Hj0ewab5rldx1DGv5Z4EnBCNyeVpKzzf7GMN6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Transfer+Joint+Matching+for+Unsupervised+Domain+Adaptation&rft.au=Mingsheng+Long&rft.au=Jianmin+Wang&rft.au=Guiguang+Ding&rft.au=Jiaguang+Sun&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1410&rft.epage=1417&rft_id=info:doi/10.1109%2FCVPR.2014.183&rft.externalDocID=6909579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |