Transfer Joint Matching for Unsupervised Domain Adaptation

Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: featu...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1410 - 1417
Main Authors Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, Yu, Philip S.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we show that both strategies are important and inevitable when the domain difference is substantially large. We therefore put forward a novel Transfer Joint Matching (TJM) approach to model them in a unified optimization problem. Specifically, TJM aims to reduce the domain difference by jointly matching the features and reweighting the instances across domains in a principled dimensionality reduction procedure, and construct new feature representation that is invariant to both the distribution difference and the irrelevant instances. Comprehensive experimental results verify that TJM can significantly outperform competitive methods for cross-domain image recognition problems.
AbstractList Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we show that both strategies are important and inevitable when the domain difference is substantially large. We therefore put forward a novel Transfer Joint Matching (TJM) approach to model them in a unified optimization problem. Specifically, TJM aims to reduce the domain difference by jointly matching the features and reweighting the instances across domains in a principled dimensionality reduction procedure, and construct new feature representation that is invariant to both the distribution difference and the irrelevant instances. Comprehensive experimental results verify that TJM can significantly outperform competitive methods for cross-domain image recognition problems.
Author Guiguang Ding
Yu, Philip S.
Mingsheng Long
Jianmin Wang
Jiaguang Sun
Author_xml – sequence: 1
  surname: Mingsheng Long
  fullname: Mingsheng Long
  email: longmingsheng@gmail.com
  organization: Sch. of Software, Tsinghua Univ., Beijing, China
– sequence: 2
  surname: Jianmin Wang
  fullname: Jianmin Wang
  email: jimwang@tsinghua.edu.cn
  organization: Sch. of Software, Tsinghua Univ., Beijing, China
– sequence: 3
  surname: Guiguang Ding
  fullname: Guiguang Ding
  email: dinggg@tsinghua.edu.cn
  organization: Sch. of Software, Tsinghua Univ., Beijing, China
– sequence: 4
  surname: Jiaguang Sun
  fullname: Jiaguang Sun
  email: sunjg@tsinghua.edu.cn
  organization: Sch. of Software, Tsinghua Univ., Beijing, China
– sequence: 5
  givenname: Philip S.
  surname: Yu
  fullname: Yu, Philip S.
  email: psyu@uic.edu
  organization: Dept. of Comput. Sci., Univ. of Illinois at Chicago, Chicago, IL, USA
BookMark eNpNjDtPwzAYAA0qEqV0ZGLJyJLiR2L7Y6vKW0UgVFgjp_4Mllo72AkS_55KZWC6G053QkYhBiTkjNEZYxQuF-8vrzNOWTVjWhyQKSjNKgVQM6brQzJmVIpSAoPRPz8m05x9S7lUsqqFHJOrVTIhO0zFY_ShL55Mv_704aNwMRVvIQ8dpm-f0RbXcWt8KObWdL3pfQyn5MiZTcbpHydkdXuzWtyXy-e7h8V8WXquqr6UrXFo9dqhFEwZoNJaV1tWWTBgqWsRW6u54KC14chp22oDCpxWHMCICbnYb7sUvwbMfbP1eY2bjQkYh9wwqdRuyqDapef71CNi0yW_NemnkUChViB-AQD6Wbg
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.183
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
EndPage 1417
ExternalDocumentID 6909579
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-6bafed8cfe6317a906ddf5d14d9a9d0fbeebd8232988a2e20bb8a979f87299a3
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Tue Aug 05 10:58:56 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-6bafed8cfe6317a906ddf5d14d9a9d0fbeebd8232988a2e20bb8a979f87299a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677906194
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677906194
ieee_primary_6909579
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.4975119
Snippet Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1410
SubjectTerms Adaptation
Computer vision
Conferences
distribution matching
Equations
Feature extraction
feature learning
Invariants
Joints
Kernel
Matching
Optimization
Pattern recognition
Principal component analysis
Strategy
Transfer learning
Visual
Visualization
Title Transfer Joint Matching for Unsupervised Domain Adaptation
URI https://ieeexplore.ieee.org/document/6909579
https://www.proquest.com/docview/1677906194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjxVbcX6IoJHkzaPbrLepFpKoVKkld7CbnYWipgUk1z89c5ukhbUg7ewkCXZTGa-mW8ehNwhBuWKM99mTCg7QIfZjigoW3DpJa4HkQAdGli80Nk6mG_Gmxa539fCAIBJPgNHXxouX2ZJqUNlQ_TkNKvUJm103KparUZ2PBrSYFzN7jZa2EfPhrI9o-DpaSyG-aS-TZnLDv02h5O35atO8gocV3cPNFNWfqlmY2-mXbJonrRKM3l3ykI4ydePJo7_fZVj0j9U9lnLvc06IS1IT0m3hqJW_aPnuNRMe2jWeuTBmDXcxJpn27SwFqjEdfjKQthrrdO83Gm1k-M2T9kH36bWo-S7iujvk9X0eTWZ2fXkBXuLXmphU8EVyChRQBFfcDaiUqqxdAPJOJMjJQCEjBCMsSjiHngjISLOQqYixOqM-2ekk2YpnBMLxlKXwiKKAh4g1OIhSHAVS1QI3PfVgPT04cS7qrdGXJ_LgNw2xx-jvGsSg6eQlXnsUt0hUcdeLv6-9ZIc6W9ZpXNdkU7xWcI1AodC3BiJ-QbFYsAx
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58HPTkq2J9RvBoavPaZr1JtdRHSpEq3sJudhaKmBSbXPz1zubRgnrwFhayJJvJzDfzzQPggjCo0IJ7NudS2z45zHbIUNtSKDdxXAwlmtBANGLDF__hLXhbgctFLQwilsln2DGXJZevsqQwobIr8uQMq7QK62T3A6eq1mqkx2U95gfV9O5SD3vk2zC-4BRcM4-l5D6ZZzPu8GXHzav-6_jZpHn5Hcf0DyznrPxSzqXFGWxB1DxrlWjy3ily2Um-frRx_O_LbENrWdtnjRdWawdWMN2FrRqMWvWvPqelZt5Ds7YH16Vho02sh2ya5lZEatwEsCwCvtZLOi9mRvHMaZvb7ENMU-tGiVlF9bdgMrib9Id2PXvBnpKfmttMCo0qTDQyQhiCd5lSOlCOr7jgqqslolQhwTEehsJFtytlKHiP65DQOhfePqylWYoHYGGgTDEs4SgUPoEt0UOFjuaJ7qHwPN2GPXM48azqrhHX59KG8-b4Y5J4Q2OIFLNiHjvM9Eg00ZfDv289g43hJHqKn-5Hj0ewab5rldx1DGv5Z4EnBCNyeVpKzzf7GMN6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Transfer+Joint+Matching+for+Unsupervised+Domain+Adaptation&rft.au=Mingsheng+Long&rft.au=Jianmin+Wang&rft.au=Guiguang+Ding&rft.au=Jiaguang+Sun&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1410&rft.epage=1417&rft_id=info:doi/10.1109%2FCVPR.2014.183&rft.externalDocID=6909579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon