A novel feature extraction method using deep neural network for rolling bearing fault diagnosis

Rolling bearing fault diagnosis has received much attention because of its importance for the rotatory machinery. Feature extraction is the crucial part of rolling bearing fault diagnosis, which determines the diagnosis performance greatly. However, features extracted by many available methods canno...

Full description

Saved in:
Bibliographic Details
Published inThe 27th Chinese Control and Decision Conference (2015 CCDC) pp. 2427 - 2431
Main Authors Weining Lu, Xueqian Wang, Chunchun Yang, Tao Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rolling bearing fault diagnosis has received much attention because of its importance for the rotatory machinery. Feature extraction is the crucial part of rolling bearing fault diagnosis, which determines the diagnosis performance greatly. However, features extracted by many available methods cannot guarantee the sensitiveness to every interested fault category, which leads to incomplete diagnosis results and ability absence of handling with the situation that unknown-category fault appears. To solve this issue, the feature extraction method based on deep neural network (DNN) is proposed to extract a meaningful representation for bearing signal in this article. DNN is a new kind of machine learning tool with strong power of representation, which has been utilized as the feature extractors in lots of practical applications successfully. Afterwards, the effectiveness of this proposed approach is presented by using the actual rolling bearing data.
AbstractList Rolling bearing fault diagnosis has received much attention because of its importance for the rotatory machinery. Feature extraction is the crucial part of rolling bearing fault diagnosis, which determines the diagnosis performance greatly. However, features extracted by many available methods cannot guarantee the sensitiveness to every interested fault category, which leads to incomplete diagnosis results and ability absence of handling with the situation that unknown-category fault appears. To solve this issue, the feature extraction method based on deep neural network (DNN) is proposed to extract a meaningful representation for bearing signal in this article. DNN is a new kind of machine learning tool with strong power of representation, which has been utilized as the feature extractors in lots of practical applications successfully. Afterwards, the effectiveness of this proposed approach is presented by using the actual rolling bearing data.
Author Xueqian Wang
Weining Lu
Chunchun Yang
Tao Zhang
Author_xml – sequence: 1
  surname: Weining Lu
  fullname: Weining Lu
  email: luwn14@mails.tsinghua.edu.cn
  organization: Dept. of Autom., Tsinghua Univ., Beijing, China
– sequence: 2
  surname: Xueqian Wang
  fullname: Xueqian Wang
  email: wang.xq@sz.tsinghua.edu.cn
  organization: Tsinghua Nat. Lab. for Inf. Sci. & Technol., Beijing, China
– sequence: 3
  surname: Chunchun Yang
  fullname: Chunchun Yang
  email: yangcc14@mails.tsinghua.edu.cn
  organization: Tsinghua Nat. Lab. for Inf. Sci. & Technol., Beijing, China
– sequence: 4
  surname: Tao Zhang
  fullname: Tao Zhang
  email: taozhang@mail.tsinghua.edu.cn
  organization: Dept. of Autom., Tsinghua Univ., Beijing, China
BookMark eNot0MtOwzAUBFAjFYlS8gGIjX8gwa_k2ssqPKVKbGBdOc11MaR25Tg8_p5WdHWkGWkWc0lmIQYk5JqzinNmbtv2rq0E43UFvBFS6DNSGNBcgTHAOJgZmXOjdGmUNBekGMcPxtghAdXIOVkvaYhfOFCHNk8JKf7kZDfZx0B3mN9jT6fRhy3tEfc04JTscCB_x_RJXUw0xWE49h3adNTZaci093Yb4ujHK3Lu7DBicXJB3h7uX9uncvXy-NwuV6UXoHJZg3a2kRo0NBxQmF5Ka4BvbNPJulOaNaCg05pZqbDuGeucMm6DIDhwLuSC3PzvekRc75Pf2fS7Pl0i_wD8G1bd
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC.2015.7162328
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Business
EISBN 9781479970179
9781479970162
1479970174
1479970166
EndPage 2431
ExternalDocumentID 7162328
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i274t-578fa638787617e29d33a971ca6b35b4806747b880a34e5d00bf49fce72171123
IEDL.DBID RIE
ISSN 1948-9439
IngestDate Wed Aug 27 02:19:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-578fa638787617e29d33a971ca6b35b4806747b880a34e5d00bf49fce72171123
PageCount 5
ParticipantIDs ieee_primary_7162328
PublicationCentury 2000
PublicationDate 20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 20150501
  day: 01
PublicationDecade 2010
PublicationTitle The 27th Chinese Control and Decision Conference (2015 CCDC)
PublicationTitleAbbrev CCDC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001947463
ssj0066300
Score 1.757124
Snippet Rolling bearing fault diagnosis has received much attention because of its importance for the rotatory machinery. Feature extraction is the crucial part of...
SourceID ieee
SourceType Publisher
StartPage 2427
SubjectTerms Artificial neural networks
Data mining
Deep Neural Network
Fault diagnosis
Feature extraction
Rolling bearings
Training
Title A novel feature extraction method using deep neural network for rolling bearing fault diagnosis
URI https://ieeexplore.ieee.org/document/7162328
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKBwQL0BbxLQ-MJE1iJ05GVKgqJBADlbpVtnNBFVValYSBX8_ZTltADEyOIiWynDzfne_dO0KuAyaUNgoAeRQmHk-08CQaOo_LPFYijnLuCLJPyWjMHybxpEVuNrUwAGDJZ-CbS5vLzxe6NkdlfaN2xKJ0h-xg4OZqtbbnKRkXVtnd7cKJkZKyGWWOgEar22Q0wyDrDwZ3A0Pqiv3mhT86q1jDMjwgj-spOT7Jm19Xytefv9Qa_zvnQ9LblvDR541xOiItKDtkd01z75D9b0KEXTK9peXiA-a0ACv0SXHLXrmSB-p6TFPz5CvNAZbUaGDKOQ6WQU7R7aUrp-1NFQLHjIWs5xXNHY9v9t4j4-H9y2DkNa0XvBmGqZWHOC4kQhPhjC4ORFnOmMxEqGWiWKx4ikaOC4Xgl4xDnAeBKnhWaMCAUqALx45Ju1yUcEJoCEyJFJJMRkaLkKcgUi11qBJWYBQMp6RrVm26dOoa02bBzv6-fU72zJdzlMML0q5WNVyiW1CpK_s_fAGdxbO1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJj4uKmB8uwePFmh3222PBiWoQDxAwo3stlNDJECwePDXO9vlocaDp22atNls--3M7HzzDcBNnUsdGwWAxHMDRwSxdBQZOkeoxNfS9xJhCbLdoNUXTwN_UIDbdS0MIubkM6yayzyXn0zjhTkqqxm1I-6FW7BNdt93bbXW5kQlEjLXdrf7cGDEpPKcsiBIk91d5jTdelRrNO4bhtblV5ev_NFbJTctzQPorCZlGSVv1UWmq_HnL73G_876ECqbIj72sjZPR1DASQl2VkT3Eux_kyIsw_COTaYfOGYp5lKfjDbtuS16YLbLNDNPvrIEccaMCqYa05BzyBk5vmxu1b2ZJuiYMVWLccYSy-QbvVeg33zoNVrOsvmCM6JANXMIyakicBKgyclBL0o4V5F0YxVo7msRkpkTUhP8FRfoJ_W6TkWUxkghpSQnjh9DcTKd4AkwF7mWIQaR8owaoQhRhrGKXR3wlOJgPIWyWbXhzOprDJcLdvb37WvYbfU67WH7sft8DnvmK1oC4gUUs_kCL8lJyPRV_m98AS8Ftv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+27th+Chinese+Control+and+Decision+Conference+%282015+CCDC%29&rft.atitle=A+novel+feature+extraction+method+using+deep+neural+network+for+rolling+bearing+fault+diagnosis&rft.au=Weining+Lu&rft.au=Xueqian+Wang&rft.au=Chunchun+Yang&rft.au=Tao+Zhang&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1948-9439&rft.spage=2427&rft.epage=2431&rft_id=info:doi/10.1109%2FCCDC.2015.7162328&rft.externalDocID=7162328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-9439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-9439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-9439&client=summon