Do uncertainties moderate the influence of renewable energy consumption on electric power CO2 emissions? A new policy insights

Investing in renewable energy is of utmost importance, especially in the context of addressing climate change. However, while numerous studies have explored the role of renewable energy in achieving carbon neutrality, there is a noticeable gap in the literature regarding how uncertainties affect the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of sustainable development and world ecology Vol. 31; no. 3; pp. 314 - 329
Main Author Adebayo, Tomiwa Sunday
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.04.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Investing in renewable energy is of utmost importance, especially in the context of addressing climate change. However, while numerous studies have explored the role of renewable energy in achieving carbon neutrality, there is a noticeable gap in the literature regarding how uncertainties affect the impact of renewable energy on electric power CO 2 . To bridge this gap, the present study employs recently developed nonparametric techniques, namely multivariate quantile-on-quantile regression (MQQR) and time-varying quantile causality (TVQC), to investigate the relationship between renewable energy and electric power CO 2 in the presence of uncertainties. The study utilizes monthly data spanning from January 1988 to May 2023. The bivariate results reveal that renewable energy and low uncertainties contribute to improving ecological quality by reducing electric power CO 2 . Furthermore, the multivariate quantile-on-quantile regression results highlight the substantial influence of low uncertainties on the impact of renewable energy in lowering electric power CO 2 . Additionally, the TVQC analysis demonstrates that both renewable energy and uncertainties possess predictive power regarding electric power sector CO 2 . The study discoveries showcase that the influence of renewable energy on electric power CO 2 is subject to external moderation. The suggested policy framework in this study is structured to assist the United States in accomplishing the goals outlined in SDG 7.
AbstractList Investing in renewable energy is of utmost importance, especially in the context of addressing climate change. However, while numerous studies have explored the role of renewable energy in achieving carbon neutrality, there is a noticeable gap in the literature regarding how uncertainties affect the impact of renewable energy on electric power CO₂. To bridge this gap, the present study employs recently developed nonparametric techniques, namely multivariate quantile-on-quantile regression (MQQR) and time-varying quantile causality (TVQC), to investigate the relationship between renewable energy and electric power CO₂ in the presence of uncertainties. The study utilizes monthly data spanning from January 1988 to May 2023. The bivariate results reveal that renewable energy and low uncertainties contribute to improving ecological quality by reducing electric power CO₂. Furthermore, the multivariate quantile-on-quantile regression results highlight the substantial influence of low uncertainties on the impact of renewable energy in lowering electric power CO₂. Additionally, the TVQC analysis demonstrates that both renewable energy and uncertainties possess predictive power regarding electric power sector CO₂. The study discoveries showcase that the influence of renewable energy on electric power CO₂ is subject to external moderation. The suggested policy framework in this study is structured to assist the United States in accomplishing the goals outlined in SDG 7.
Investing in renewable energy is of utmost importance, especially in the context of addressing climate change. However, while numerous studies have explored the role of renewable energy in achieving carbon neutrality, there is a noticeable gap in the literature regarding how uncertainties affect the impact of renewable energy on electric power CO2. To bridge this gap, the present study employs recently developed nonparametric techniques, namely multivariate quantile-on-quantile regression (MQQR) and time-varying quantile causality (TVQC), to investigate the relationship between renewable energy and electric power CO2 in the presence of uncertainties. The study utilizes monthly data spanning from January 1988 to May 2023. The bivariate results reveal that renewable energy and low uncertainties contribute to improving ecological quality by reducing electric power CO2. Furthermore, the multivariate quantile-on-quantile regression results highlight the substantial influence of low uncertainties on the impact of renewable energy in lowering electric power CO2. Additionally, the TVQC analysis demonstrates that both renewable energy and uncertainties possess predictive power regarding electric power sector CO2. The study discoveries showcase that the influence of renewable energy on electric power CO2 is subject to external moderation. The suggested policy framework in this study is structured to assist the United States in accomplishing the goals outlined in SDG 7.
Investing in renewable energy is of utmost importance, especially in the context of addressing climate change. However, while numerous studies have explored the role of renewable energy in achieving carbon neutrality, there is a noticeable gap in the literature regarding how uncertainties affect the impact of renewable energy on electric power CO 2 . To bridge this gap, the present study employs recently developed nonparametric techniques, namely multivariate quantile-on-quantile regression (MQQR) and time-varying quantile causality (TVQC), to investigate the relationship between renewable energy and electric power CO 2 in the presence of uncertainties. The study utilizes monthly data spanning from January 1988 to May 2023. The bivariate results reveal that renewable energy and low uncertainties contribute to improving ecological quality by reducing electric power CO 2 . Furthermore, the multivariate quantile-on-quantile regression results highlight the substantial influence of low uncertainties on the impact of renewable energy in lowering electric power CO 2 . Additionally, the TVQC analysis demonstrates that both renewable energy and uncertainties possess predictive power regarding electric power sector CO 2 . The study discoveries showcase that the influence of renewable energy on electric power CO 2 is subject to external moderation. The suggested policy framework in this study is structured to assist the United States in accomplishing the goals outlined in SDG 7.
Author Adebayo, Tomiwa Sunday
Author_xml – sequence: 1
  givenname: Tomiwa Sunday
  orcidid: 0000-0003-0094-1778
  surname: Adebayo
  fullname: Adebayo, Tomiwa Sunday
  email: twaikline@gmail.com
  organization: Cyprus International University
BookMark eNpdkU9LJDEQxcPiwqq7H2Eh4MVLz-ZPp9N9Uhl1d0Hwoucmna5oJJOMSZphLvvZrUH3IhRUwfvVo6h3Qo5iikDIT85WnPXsF5eKtYoNK8GEXAnRd22vv5BjrlvViE7oI5yRaQ7QN3JSygtDkg3qmPy7TnSJFnI1PlYPhW7SDNlUoPUZqI8uLIA6TY5miLAzUwCKQ37aU5tiWTbb6lOkWBDA1uwt3aYdZLq-FxQ2vhSUywW9oriNUvB2j77FPz3X8p18dSYU-PHRT8nj7c3D-k9zd__77_rqrvFCy9p0vJsncIOaBic7Y0DpWbpZT13XciX61nEhZyecsbxXaoKeg2bKwjwYrEGekvN3321OrwuUOuJhFkIwEdJSRslaJpXAByF69gl9SUuOeN0oBqG16kTfI3X5TuGHUt6YXcphHqvZh5RdNtF6NOVsPAQ0_g9oPAQ0fgQk3wDSG4fE
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID 7ST
7U6
C1K
SOI
7S9
L.6
DOI 10.1080/13504509.2023.2286487
DatabaseName Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Ecology
EISSN 1745-2627
EndPage 329
ExternalDocumentID 2286487
Genre Research Article
GroupedDBID .7I
.QK
0BK
29J
4.4
5GY
5VS
AAGZJ
AAHBH
AAMFJ
AAMIU
AAPUL
AAZMC
ABCCY
ABFIM
ABJNI
ABLIJ
ABPEM
ABXUL
ABXYU
ACGFO
ACGFS
ACIWK
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEISY
AEKEX
AEMXT
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AFRAH
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
EBS
E~B
E~C
H13
HF~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RSYQP
RWL
S-F
STATR
TAE
TBQAZ
TDBHL
TEG
TFH
TFL
TFW
TLG
TNTFI
TRJHH
TUROJ
UT5
UT9
VQA
ZCA
~01
~KM
~S~
7ST
7U6
AAGDL
AAHIA
AEFOU
AFRVT
AIYEW
C1K
SOI
TASJS
7S9
ADYSH
AMPGV
L.6
ID FETCH-LOGICAL-i273t-616dbef95b9f36aae57d3fd7b66415284f123df2fac1855be81e705ced9ad9a93
ISSN 1350-4509
1745-2627
IngestDate Wed Jul 02 04:45:40 EDT 2025
Wed Aug 13 10:03:54 EDT 2025
Wed Dec 25 09:06:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i273t-616dbef95b9f36aae57d3fd7b66415284f123df2fac1855be81e705ced9ad9a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0094-1778
PQID 2927756288
PQPubID 45776
PageCount 16
ParticipantIDs proquest_journals_2927756288
informaworld_taylorfrancis_310_1080_13504509_2023_2286487
proquest_miscellaneous_3040352450
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of sustainable development and world ecology
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
SSID ssj0023095
Score 2.4295084
Snippet Investing in renewable energy is of utmost importance, especially in the context of addressing climate change. However, while numerous studies have explored...
SourceID proquest
informaworld
SourceType Aggregation Database
Publisher
StartPage 314
SubjectTerms Bivariate analysis
carbon
Carbon dioxide
Carbon dioxide emissions
Climate action
Climate change
climate policy uncertainty
ecology
economic policy uncertainty
Electric power
Electric power CO
emissions
Energy consumption
issues and policy
Multivariate analysis
nonparametric technique
Quantiles
Renewable energy
renewable energy consumption
renewable energy sources
Renewable resources
sustainable development
Uncertainty
Title Do uncertainties moderate the influence of renewable energy consumption on electric power CO2 emissions? A new policy insights
URI https://www.tandfonline.com/doi/abs/10.1080/13504509.2023.2286487
https://www.proquest.com/docview/2927756288
https://www.proquest.com/docview/3040352450
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7j7IO-iFccXSWCPpWObdLrkww7DnWVVXQW9q2kbQJ92KnYDov7sL_Dn-s5SdrtOIuoEEpJaUJzvpxLei6EvAqZKiKVMtcvpY9JtZUrfBW7QkghPBkLpbSD7EmUnQbHZ-HZZPJz5LW07Yp5eXljXMn_UBX6gK4YJfsPlB0GhQ64B_rCFSgM17-i8bJxQCyZn_qYGFXXtcHcD1qdrPv6I6gQYubKCx0mJU20X6ljLw3DgGbK4dSl8w3LpjlHn5iDleDwLK19zVfAP-B9XdKhxEjBFm36dqzZ7h4tjhJStPshWoNju87X6shy52x_3ZzXF8KxMSqLShbiRzM-nWDGqeXall3vFQoZeSshv-WhBwjxDNeUpi8O0PHOpAzombQVFfXYhtccl5sYVCu8uTk-2ZMLxpESZ8PJ5lgzfs5YEgVW2u_k4c4WX_PPy1X-8f3Jh1vkgIEBwqbkYP3lOMsGY557uqLP8AF9dFjivblxmt9S4e6Jfq3PrO-Ru9YQoQuDqvtkIjcPyO0-Tr19SK6WDd1BF-3RRQFddEAXbRQd0EUNuugIXRRajy6q0UUBXXRA11u6oPA2NdiiPbYekdPVu_VR5tpqHW4NKnDnRn5UFVKlYZEqHsFeD-OKqyouogiVxCRQoCRViilRgo4YFjLxZeyFpaxSAS3lj8l002zkE0LLWHHmibgKijCoqhg0KJ2xQYgkFqDUzUg6Xsu80yhTBmA5923a254OOdIht3SYkcN-4XO7F9qcpUDkECtvz8jL4TGsA_49ExvZbGFYEHdgrcCAT_88xDNy53onHJJp930rn4Pm2hUvLIh-AQh_oK4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC5WPehlXXXF8bGWsNeMSXc6PTmJ6ErW9QHLCN5CJ-mGQZgZNhkED_52qzqJiIsnoW9NV5J-1dedqu8D-KmEKxKXiiAqbcSk2i4wkdOBMdaY0GrjnA-QvUmyu_jyXt2_yYXhsEo-Q7uWKMLv1by4-TK6D4k7jqQiJBJynomQQyFGCcHuJVhRaSzpALYy_nuZZa_HLhl67RVuFHCrPo_nI0PvSEv_26S957lYh7J_5zbg5GG4aIph-fSOzvFzH_UNvnbAFE_bmbQBX-x0E1b7vOV6C57PZ0hOsA0hYBpWZBUdZppAApE46dVOcOaQeTIfOSkLrc8txNJnevrtCam04juTEucs0oZntwJZd45v7uoTPEVqjXPPWEx2a74_qL_D3cWv8VkWdOoNwYQgUUNn0qQqrEtVkTqZ0NgrXUlX6SJJGDSMYkdOs3LCmZIwgyrsKLI6VKWtUkMllduwPJ1N7Q5gqZ0UodFVXKi4qjR5VJ_Bb8xIG3LyA0jfjlje-MsO1yqT5DLqaFD7Hs65h_Ouhwew3w9v3i3fOhep0FqxEvMAjl6rqR_4b4qZ2tmCzNL2R-iVDO5-4vGHsJqNr6_yq983f_ZgjarauCCxD8vNv4U9IMjTFD-6Of0CFOv6LA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3aBNpc-pWWbpM2U-jVW1teWetTCUmXbVLSUhLozUiWBpbC7lJ7CeSQ394Z2Q4hoaeAbkJjW1_zJM-8B_BJK3IFlSrJ6pAJqTYlNiOTWBusTYOxRDFA9qyYX0xOfushmrDpwyrlDE0dUUTcq2Vxrz0NEXGfs1wzEEklzUTlY6WmBaPux7BdsD_iSb59_utkPr85deVplF6RRom0GtJ4_mfoDmfpvT06Op7Zc3DDK3fxJn_Gm9aN66s7bI4P-qYX8KyHpXjYzaOX8CgsX8HTIWu52YXr4xWyC-wCCISEFUVDR3gmkCEkLgatE1wRCkvmpaRkYYiZhVjHPM-4OSGXTnpnUeNaJNrw6IdCUZ2Te7vmCx4it8Z15Ctmu43cHjSv4WL29fxonvTaDcmCAVHLJ9LCu0CldiXlBY-8Nj4nb1xRCGSYTohdpidFtmbEoF2YZsGkug6-tFzK_A1sLVfL8BawNpSr1Bo_cXrivWF_GvP3rZ0ayy5-BOXtAavaeNVBnS5JlWc9CerQw5X0cNX38Aj2h9Gt-sXbVKpUxmjRYR7Bx5tq7gf5l2KXYbVhs7z5MXZlg-8e8PgDePLzeFZ9_3Z2ugc7XNMFBal92Gr_bsJ7xjut-9DP6H8Nj_jQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+uncertainties+moderate+the+influence+of+renewable+energy+consumption+on+electric+power+CO2+emissions%3F+A+new+policy+insights&rft.jtitle=International+journal+of+sustainable+development+and+world+ecology&rft.au=Tomiwa+Sunday+Adebayo&rft.date=2024-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1350-4509&rft.eissn=1745-2627&rft.volume=31&rft.issue=3&rft.spage=314&rft.epage=329&rft_id=info:doi/10.1080%2F13504509.2023.2286487&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4509&client=summon