Facial Action Unit Event Detection by Cascade of Tasks

Automatic facial Action Unit (AU) detection from video is a long-standing problem in facial expression analysis. AU detection is typically posed as a classification problem between frames or segments of positive examples and negative ones, where existing work emphasizes the use of different features...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision Vol. 2013; pp. 2400 - 2407
Main Authors Ding, Xiaoyu, Chu, Wen-Sheng, De La Torre, Fernando, Cohn, Jeffery F., Wang, Qiao
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.298

Cover

Loading…
Abstract Automatic facial Action Unit (AU) detection from video is a long-standing problem in facial expression analysis. AU detection is typically posed as a classification problem between frames or segments of positive examples and negative ones, where existing work emphasizes the use of different features or classifiers. In this paper, we propose a method called Cascade of Tasks (CoT) that combines the use of different tasks (i.e., frame, segment and transition) for AU event detection. We train CoT in a sequential manner embracing diversity, which ensures robustness and generalization to unseen data. In addition to conventional frame based metrics that evaluate frames independently, we propose a new event-based metric to evaluate detection performance at event-level. We show how the CoT method consistently outperforms state-of-the-art approaches in both frame-based and event-based metrics, across three public datasets that differ in complexity: CK+, FERA and RU-FACS.
AbstractList Automatic facial Action Unit (AU) detection from video is a long-standing problem in facial expression analysis. AU detection is typically posed as a classification problem between frames or segments of positive examples and negative ones, where existing work emphasizes the use of different features or classifiers. In this paper, we propose a method called Cascade of Tasks (CoT) that combines the use of different tasks (i.e., frame, segment and transition) for AU event detection. We train CoT in a sequential manner embracing diversity, which ensures robustness and generalization to unseen data. In addition to conventional frame based metrics that evaluate frames independently, we propose a new event-based metric to evaluate detection performance at event-level. We show how the CoT method consistently outperforms state-of-the-art approaches in both frame-based and event-based metrics, across three public datasets that differ in complexity: CK+, FERA and RU-FACS.
Automatic facial Action Unit (AU) detection from video is a long-standing problem in facial expression analysis. AU detection is typically posed as a classification problem between frames or segments of positive examples and negative ones, where existing work emphasizes the use of different features or classifiers. In this paper, we propose a method called Cascade of Tasks (CoT) that combines the use of different tasks (i.e., frame, segment and transition) for AU event detection. We train CoT in a sequential manner embracing diversity, which ensures robustness and generalization to unseen data. In addition to conventional frame-based metrics that evaluate frames independently, we propose a new event-based metric to evaluate detection performance at event-level. We show how the CoT method consistently outperforms state-of-the-art approaches in both frame-based and event-based metrics, across three public datasets that differ in complexity: CK+, FERA and RU-FACS.Automatic facial Action Unit (AU) detection from video is a long-standing problem in facial expression analysis. AU detection is typically posed as a classification problem between frames or segments of positive examples and negative ones, where existing work emphasizes the use of different features or classifiers. In this paper, we propose a method called Cascade of Tasks (CoT) that combines the use of different tasks (i.e., frame, segment and transition) for AU event detection. We train CoT in a sequential manner embracing diversity, which ensures robustness and generalization to unseen data. In addition to conventional frame-based metrics that evaluate frames independently, we propose a new event-based metric to evaluate detection performance at event-level. We show how the CoT method consistently outperforms state-of-the-art approaches in both frame-based and event-based metrics, across three public datasets that differ in complexity: CK+, FERA and RU-FACS.
Author Wang, Qiao
Ding, Xiaoyu
De La Torre, Fernando
Cohn, Jeffery F.
Chu, Wen-Sheng
AuthorAffiliation 2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
3 Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260
1 School of Information Science and Engineering, Southeast University, Nanjing, China
AuthorAffiliation_xml – name: 3 Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260
– name: 1 School of Information Science and Engineering, Southeast University, Nanjing, China
– name: 2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Ding
  fullname: Ding, Xiaoyu
  organization: Sch. of Inf. Sci. & Eng., Southeast Univ., Nanjing, China
– sequence: 2
  givenname: Wen-Sheng
  surname: Chu
  fullname: Chu, Wen-Sheng
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 3
  givenname: Fernando
  surname: De La Torre
  fullname: De La Torre, Fernando
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 4
  givenname: Jeffery F.
  surname: Cohn
  fullname: Cohn, Jeffery F.
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 5
  givenname: Qiao
  surname: Wang
  fullname: Wang, Qiao
  organization: Sch. of Inf. Sci. & Eng., Southeast Univ., Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25264433$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1Lw0AQhldQtK0ePQmSo5fW_Zj9uggSWxUKXlqvYZPM6mqa1G5a6L830ip6EgYG5n14eZg-OaybGgk5Z3TEGLXXj2n6POKUiRG35oD0GWhruQHKD0mPSUmHEqw9If0Y3ygVXaSOyQmXXAEI0SNq4orgquS2aENTJ_M6tMl4g3Wb3GGLu2O-TVIXC1di0vhk5uJ7PCVH3lURz_Z7QOaT8Sx9GE6f7h_T2-kwcC3M0OWAlpcGOXigymvDnM-78egK7mWpBEgFrrQauERpNOi8ZMYrq7TzVgzIza53uc4XWBad2MpV2XIVFm61zRoXsr9JHV6zl2aTAdMgQHUFV_uCVfOxxthmixALrCpXY7OOGTNcKSYFZ_-jSlmjDKgv9PK31o_P91874GIHBET8iZWWDKgVn8lag7M
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/ICCV.2013.298
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479928402
9781479928408
EndPage 2407
ExternalDocumentID PMC4174346
25264433
6751409
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH096951
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-i2738-ab4e92d8e24f406f781afbafbfeac2f5d634564ad97425e58747bd18f6967af93
IEDL.DBID RIE
ISSN 1550-5499
IngestDate Thu Aug 21 18:12:10 EDT 2025
Fri Jul 11 02:29:56 EDT 2025
Fri Jul 11 16:12:20 EDT 2025
Mon Jun 09 02:52:08 EDT 2025
Wed Aug 27 02:39:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2738-ab4e92d8e24f406f781afbafbfeac2f5d634564ad97425e58747bd18f6967af93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://doi.org/10.1109/ICCV.2013.298
PMID 25264433
PQID 1669868461
PQPubID 23500
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4174346
proquest_miscellaneous_1669868461
ieee_primary_6751409
proquest_miscellaneous_1826615321
pubmed_primary_25264433
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2013 IEEE International Conference on Computer Vision
PublicationTitleAbbrev iccv
PublicationTitleAlternate Proc IEEE Int Conf Comput Vis
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0001967680
Score 2.3409278
Snippet Automatic facial Action Unit (AU) detection from video is a long-standing problem in facial expression analysis. AU detection is typically posed as a...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2400
SubjectTerms Cascades
Computer vision
Conferences
Detectors
Facial
Feature extraction
Frames
Gold
Measurement
Robustness
Segments
Support vector machines
Tasks
Training
Trains
Title Facial Action Unit Event Detection by Cascade of Tasks
URI https://ieeexplore.ieee.org/document/6751409
https://www.ncbi.nlm.nih.gov/pubmed/25264433
https://www.proquest.com/docview/1669868461
https://www.proquest.com/docview/1826615321
https://pubmed.ncbi.nlm.nih.gov/PMC4174346
Volume 2013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEL4gTz6hgoq_UhMfHbBuK92jQQiaaHwAwxtpt2s0JsM4eNC_3l43QAwxJntYtmbrrl3vu-vddwBXPmohhVZeknDlhdix62ASoCfTgGvBO8ooF23xKIbj8H4STSpwvcqFQUQXfIYtOnV7-eksWZCrrG3BLfEz7cCONdyKXK21PyUWFjl3lquwVfuuyiMhcI9soDW_Zvuu13umoK6gxWNZVlXZBjB_x0n-UDyDGjwsu1zEm7y1FnPdSr5-sTn-95v2oLFO8WNPK-W1DxXMDqBWYlJW_vF5HcRAkVOd3bj8B0YQlfUpRpLd4hyLi_qT9VROgfZsZthI5W95A8aD_qg39MpaC94rJed4SocY81QiD43V8aYrfWW0PYxdmbmJUhEQ8YxKrf3BI4ykNUN06ksjrNyViYNDqGazDI-BWYBoUnRkcbG1ToUWna7yU5WgSOKQ-02okxim7wWdxrSUQBMulyMwtVOc9i1UhrNFPvWFiKWwQMn_o40kpBEF9PijYtRWL-ARob4gaEJ3YzxXDYhie_NO9vriqLZDMthCcbK9y6ewy111DPLInEF1_rHAc4tR5vrCTc5vfo3j1g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHODEG8YzSBzpWNM2S49oMI2nOGyIW5W0jkBIHaLbAX49cdptDE0IqYeqjdrUSePPjv0Z4NRHLaTQyktTrrwQm3YdTAP0ZBZwLXhTGeWiLR5Etx_ePEfPNTib5MIgogs-wwadur38bJCOyFV2bsEt8TMtwJLV-2FcZmtNPSqxsNi5OV6HreJ3dR4Jg3tkBU0ZNs-v2-0nCusKGjyWVV2VeRDzd6TkD9XTWYX7cafLiJO3xmioG-nXLz7H_37VGmxNk_zY40R9rUMN8w1YrVApq_75YhNER5FbnV24DAhGIJVdUZQku8Qhlhf1J2urgkLt2cCwnireii3od6567a5XVVvwXik9x1M6xJhnEnlorJY3Lekro-1h7NrMTZSJgKhnVGYtEB5hJK0hojNfGmHlrkwcbMNiPshxF5iFiCZDRxcXW_tUaNFsKT9TKYo0Drlfh00SQ_JeEmoklQTqcDIegcROctq5UDkORkXiCxFLYaGS_0cbSVgjCujxO-WoTV7AI8J9QVCH1sx4ThoQyfbsnfz1xZFth2SyhWJvfpePYbnbu79L7q4fbvdhhbtaGeSfOYDF4ccIDy1iGeojN1G_AZr35yY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Facial+Action+Unit+Event+Detection+by+Cascade+of+Tasks&rft.au=Ding%2C+Xiaoyu&rft.au=Chu%2C+Wen-Sheng&rft.au=De+La+Torre%2C+Fernando&rft.au=Cohn%2C+Jeffery+F.&rft.date=2013-01-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=2400&rft.epage=2407&rft_id=info:doi/10.1109%2FICCV.2013.298&rft.externalDocID=6751409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon