A gait recognition method using L1-PCA and LDA

Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based on L1-norm maximization and LDA. The gait pattern is described by the periodic sequence width images, which contain the static and dynamic g...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3198 - 3203
Main Authors Han Su, Zhi-Wu Liao, Guo-Yue Chen
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.07.2009
Subjects
Online AccessGet full text
ISBN9781424437023
1424437024
ISSN2160-133X
DOI10.1109/ICMLC.2009.5212776

Cover

Loading…
Abstract Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based on L1-norm maximization and LDA. The gait pattern is described by the periodic sequence width images, which contain the static and dynamic gait feature. L1-PCA is adopted to represent these features and LDA is used to analyze and classify the features. L1-PCA tries to find projections through maximizing L1-norm and LDA tries to find the projective direction which minimize the within-class scatter of examples and maximize between-class scatter. L1-PCA and LDA can keep gait feature and reduce the dimension of the feature. The performance of our approach was tested on the gait databases. The result of experiment proves that our method is effective for the recognition of gait sequence which is lower image resolution and noisy data.
AbstractList Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based on L1-norm maximization and LDA. The gait pattern is described by the periodic sequence width images, which contain the static and dynamic gait feature. L1-PCA is adopted to represent these features and LDA is used to analyze and classify the features. L1-PCA tries to find projections through maximizing L1-norm and LDA tries to find the projective direction which minimize the within-class scatter of examples and maximize between-class scatter. L1-PCA and LDA can keep gait feature and reduce the dimension of the feature. The performance of our approach was tested on the gait databases. The result of experiment proves that our method is effective for the recognition of gait sequence which is lower image resolution and noisy data.
Author Zhi-Wu Liao
Guo-Yue Chen
Han Su
Author_xml – sequence: 1
  surname: Han Su
  fullname: Han Su
  organization: Sch. of Comput. Sci., Sichuan Normal Univ., Chengdu, China
– sequence: 2
  surname: Zhi-Wu Liao
  fullname: Zhi-Wu Liao
  organization: Sch. of Comput. Sci., Sichuan Normal Univ., Chengdu, China
– sequence: 3
  surname: Guo-Yue Chen
  fullname: Guo-Yue Chen
BookMark eNo1j81OhDAUhWucSRxGXkA3fQGw9_aPLgk6OglGF5q4m0BbsMYpBnDh20vieDYnZ_Gd5EvIKg7RE3IFLAdg5mZfPdZVjoyZXCKg1uqMJCBQCK4Zx3OSGl38b-QrskFQLAPO39YkWbjCABiJFySdpg-2REjUim9IXtK-CTMdvR36GOYwRHr08_vg6PcUYk9ryJ6rkjbR0fq2vCTrrvmcfHrqLXnd3b1UD1n9dL-vyjoLqNmcGc2M0w04Z9rCctOq1nYoGBSMq65DYBKNFdYa77XsnPBaWbmoWi5RgeBbcv33G7z3h68xHJvx53By578jWkdZ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212776
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 3203
ExternalDocumentID 5212776
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i270t-9709d7a1dd9b8c39b6bcf24018036ff210529c4cc9ee75fd4e76c5110c3526143
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i270t-9709d7a1dd9b8c39b6bcf24018036ff210529c4cc9ee75fd4e76c5110c3526143
PageCount 6
ParticipantIDs ieee_primary_5212776
PublicationCentury 2000
PublicationDate 2009-07-01
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4717067
Snippet Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based...
SourceID ieee
SourceType Publisher
StartPage 3198
SubjectTerms Biometric
Biometrics
Computer vision
Cybernetics
Feature extraction
gait recognition
Humans
L1-PCA
LDA
Legged locomotion
Linear discriminant analysis
Machine learning
Principal component analysis
Scattering
width analysis
Title A gait recognition method using L1-PCA and LDA
URI https://ieeexplore.ieee.org/document/5212776
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGLTaTkwFWsRbHhhx6iSOXY9VoCqoRR2o1K3ys6qQUoTShV-P7TwQiIEtzpJ8iqL7zr67D4A7QS3misVI6FQgwkmCuMYGUSMzrG3KrQhqixc6W5HndbbugPvWC2OMCeIzE_nLcJav9-rgt8pG3mfKGO2CriNulVer3U_x0eCsjpIKa-aIRxiYl8QUI0fF1o2vK2UOmJq4p3qdNoYazEdP-WKeV1GW9RN_jF4JyDPtg0XzzpXg5C06lDJSn7_iHP9b1DEYfnv84LJFrxPQMcUp6DdDHmD9zw9ANIFbsSthqzTaF7AaOw29Zn4L5zFa5hMoCg3nD5MhWE0fX_MZqocsoF3CcIk4w1wzEWvN5VilXFKprIP5eOywzVrHCLOEK6IUN4ZlVhPDqHJdGlY-Wd91W2egV-wLcw4gZ9IRXkFTSxWRWAqrEk0tkSHELjEXYODL37xXORqbuvLLv29fgaPq5MZLY69Br_w4mBvXAJTyNnz5L01wpTk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGWAq0CJuPDDi1LnseqwCVQtp1aGVulU-qwopRShd-PXYuRCIgS3Okjwp0fee_R0APHBiMJPUR1yFHEUsChBTWCOiRYyVCZnhBdtiRsbL6GUVr1rgsdHCaK0L8pn23GVxlq92cu-2yvpOZ0opOQCHsRPjlmqtZkfFmYPTykyqWFM7ehSReYFPMLLD2KpWdoXUQlNt-FStw1pSg1l_kkzTpDSzrJ75I3ylwJ5RB0zrty4pJ2_ePhee_Pxl6Pjfsk5A71vlB-cNfp2Cls7OQKeOeYDVX98F3hBu-DaHDddol8EyeBo61vwGpj6aJ0PIMwXTp2EPLEfPi2SMqpgFtA0ozhGjmCnKfaWYGMiQCSKksUDvDyy6GWNnwjhgMpKSaU1joyJNibR9GpbOW9_2W-egne0yfQEgo8KOvJyEhshIYMGNDBQxkShs7AJ9Cbqu_PV76aSxriq_-vv2PTgaL6bpOp3MXq_BcXmO44iyN6Cdf-z1rW0HcnFXfAVfKDCogQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+gait+recognition+method+using+L1-PCA+and+LDA&rft.au=Han+Su&rft.au=Zhi-Wu+Liao&rft.au=Guo-Yue+Chen&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=6&rft.spage=3198&rft.epage=3203&rft_id=info:doi/10.1109%2FICMLC.2009.5212776&rft.externalDocID=5212776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon