A gait recognition method using L1-PCA and LDA
Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based on L1-norm maximization and LDA. The gait pattern is described by the periodic sequence width images, which contain the static and dynamic g...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3198 - 3203 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2009.5212776 |
Cover
Loading…
Abstract | Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based on L1-norm maximization and LDA. The gait pattern is described by the periodic sequence width images, which contain the static and dynamic gait feature. L1-PCA is adopted to represent these features and LDA is used to analyze and classify the features. L1-PCA tries to find projections through maximizing L1-norm and LDA tries to find the projective direction which minimize the within-class scatter of examples and maximize between-class scatter. L1-PCA and LDA can keep gait feature and reduce the dimension of the feature. The performance of our approach was tested on the gait databases. The result of experiment proves that our method is effective for the recognition of gait sequence which is lower image resolution and noisy data. |
---|---|
AbstractList | Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based on L1-norm maximization and LDA. The gait pattern is described by the periodic sequence width images, which contain the static and dynamic gait feature. L1-PCA is adopted to represent these features and LDA is used to analyze and classify the features. L1-PCA tries to find projections through maximizing L1-norm and LDA tries to find the projective direction which minimize the within-class scatter of examples and maximize between-class scatter. L1-PCA and LDA can keep gait feature and reduce the dimension of the feature. The performance of our approach was tested on the gait databases. The result of experiment proves that our method is effective for the recognition of gait sequence which is lower image resolution and noisy data. |
Author | Zhi-Wu Liao Guo-Yue Chen Han Su |
Author_xml | – sequence: 1 surname: Han Su fullname: Han Su organization: Sch. of Comput. Sci., Sichuan Normal Univ., Chengdu, China – sequence: 2 surname: Zhi-Wu Liao fullname: Zhi-Wu Liao organization: Sch. of Comput. Sci., Sichuan Normal Univ., Chengdu, China – sequence: 3 surname: Guo-Yue Chen fullname: Guo-Yue Chen |
BookMark | eNo1j81OhDAUhWucSRxGXkA3fQGw9_aPLgk6OglGF5q4m0BbsMYpBnDh20vieDYnZ_Gd5EvIKg7RE3IFLAdg5mZfPdZVjoyZXCKg1uqMJCBQCK4Zx3OSGl38b-QrskFQLAPO39YkWbjCABiJFySdpg-2REjUim9IXtK-CTMdvR36GOYwRHr08_vg6PcUYk9ryJ6rkjbR0fq2vCTrrvmcfHrqLXnd3b1UD1n9dL-vyjoLqNmcGc2M0w04Z9rCctOq1nYoGBSMq65DYBKNFdYa77XsnPBaWbmoWi5RgeBbcv33G7z3h68xHJvx53By578jWkdZ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212776 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 3203 |
ExternalDocumentID | 5212776 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i270t-9709d7a1dd9b8c39b6bcf24018036ff210529c4cc9ee75fd4e76c5110c3526143 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i270t-9709d7a1dd9b8c39b6bcf24018036ff210529c4cc9ee75fd4e76c5110c3526143 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5212776 |
PublicationCentury | 2000 |
PublicationDate | 2009-07-01 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4717067 |
Snippet | Gait is one of biometric technologies which can be identified at a distance or at low resolution. This paper proposes a gait recognition method using PCA based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3198 |
SubjectTerms | Biometric Biometrics Computer vision Cybernetics Feature extraction gait recognition Humans L1-PCA LDA Legged locomotion Linear discriminant analysis Machine learning Principal component analysis Scattering width analysis |
Title | A gait recognition method using L1-PCA and LDA |
URI | https://ieeexplore.ieee.org/document/5212776 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGLTaTkwFWsRbHhhx6iSOXY9VoCqoRR2o1K3ys6qQUoTShV-P7TwQiIEtzpJ8iqL7zr67D4A7QS3misVI6FQgwkmCuMYGUSMzrG3KrQhqixc6W5HndbbugPvWC2OMCeIzE_nLcJav9-rgt8pG3mfKGO2CriNulVer3U_x0eCsjpIKa-aIRxiYl8QUI0fF1o2vK2UOmJq4p3qdNoYazEdP-WKeV1GW9RN_jF4JyDPtg0XzzpXg5C06lDJSn7_iHP9b1DEYfnv84LJFrxPQMcUp6DdDHmD9zw9ANIFbsSthqzTaF7AaOw29Zn4L5zFa5hMoCg3nD5MhWE0fX_MZqocsoF3CcIk4w1wzEWvN5VilXFKprIP5eOywzVrHCLOEK6IUN4ZlVhPDqHJdGlY-Wd91W2egV-wLcw4gZ9IRXkFTSxWRWAqrEk0tkSHELjEXYODL37xXORqbuvLLv29fgaPq5MZLY69Br_w4mBvXAJTyNnz5L01wpTk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGWAq0CJuPDDi1LnseqwCVQtp1aGVulU-qwopRShd-PXYuRCIgS3Okjwp0fee_R0APHBiMJPUR1yFHEUsChBTWCOiRYyVCZnhBdtiRsbL6GUVr1rgsdHCaK0L8pn23GVxlq92cu-2yvpOZ0opOQCHsRPjlmqtZkfFmYPTykyqWFM7ehSReYFPMLLD2KpWdoXUQlNt-FStw1pSg1l_kkzTpDSzrJ75I3ylwJ5RB0zrty4pJ2_ePhee_Pxl6Pjfsk5A71vlB-cNfp2Cls7OQKeOeYDVX98F3hBu-DaHDddol8EyeBo61vwGpj6aJ0PIMwXTp2EPLEfPi2SMqpgFtA0ozhGjmCnKfaWYGMiQCSKksUDvDyy6GWNnwjhgMpKSaU1joyJNibR9GpbOW9_2W-egne0yfQEgo8KOvJyEhshIYMGNDBQxkShs7AJ9Cbqu_PV76aSxriq_-vv2PTgaL6bpOp3MXq_BcXmO44iyN6Cdf-z1rW0HcnFXfAVfKDCogQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+gait+recognition+method+using+L1-PCA+and+LDA&rft.au=Han+Su&rft.au=Zhi-Wu+Liao&rft.au=Guo-Yue+Chen&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=6&rft.spage=3198&rft.epage=3203&rft_id=info:doi/10.1109%2FICMLC.2009.5212776&rft.externalDocID=5212776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |