DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
Large text-to-image models achieved a remarkable leap in the evolution of AI, enabling high-quality and diverse synthesis of images from a given text prompt. However, these models lack the ability to mimic the appearance of subjects in a given reference set and synthesize novel renditions of them in...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 22500 - 22510 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large text-to-image models achieved a remarkable leap in the evolution of AI, enabling high-quality and diverse synthesis of images from a given text prompt. However, these models lack the ability to mimic the appearance of subjects in a given reference set and synthesize novel renditions of them in different contexts. In this work, we present a new approach for "personalization" of text-to-image diffusion models. Given as input just a few images of a subject, we fine-tune a pretrained text-to-image model such that it learns to bind a unique identifier with that specific subject. Once the subject is embedded in the output domain of the model, the unique identifier can be used to synthesize novel photorealistic images of the subject contextualized in different scenes. By leveraging the semantic prior embedded in the model with a new autogenous class-specific prior preservation loss, our technique enables synthesizing the subject in diverse scenes, poses, views and lighting conditions that do not appear in the reference images. We apply our technique to several previously-unassailable tasks, including subject recontextualization, text-guided view synthesis, and artistic rendering, all while preserving the subject's key features. We also provide a new dataset and evaluation protocol for this new task of subject-driven generation. Project page: https://dreambooth.github.io/ |
---|---|
AbstractList | Large text-to-image models achieved a remarkable leap in the evolution of AI, enabling high-quality and diverse synthesis of images from a given text prompt. However, these models lack the ability to mimic the appearance of subjects in a given reference set and synthesize novel renditions of them in different contexts. In this work, we present a new approach for "personalization" of text-to-image diffusion models. Given as input just a few images of a subject, we fine-tune a pretrained text-to-image model such that it learns to bind a unique identifier with that specific subject. Once the subject is embedded in the output domain of the model, the unique identifier can be used to synthesize novel photorealistic images of the subject contextualized in different scenes. By leveraging the semantic prior embedded in the model with a new autogenous class-specific prior preservation loss, our technique enables synthesizing the subject in diverse scenes, poses, views and lighting conditions that do not appear in the reference images. We apply our technique to several previously-unassailable tasks, including subject recontextualization, text-guided view synthesis, and artistic rendering, all while preserving the subject's key features. We also provide a new dataset and evaluation protocol for this new task of subject-driven generation. Project page: https://dreambooth.github.io/ |
Author | Rubinstein, Michael Ruiz, Nataniel Jampani, Varun Pritch, Yael Li, Yuanzhen Aberman, Kfir |
Author_xml | – sequence: 1 givenname: Nataniel surname: Ruiz fullname: Ruiz, Nataniel organization: Google Research – sequence: 2 givenname: Yuanzhen surname: Li fullname: Li, Yuanzhen organization: Google Research – sequence: 3 givenname: Varun surname: Jampani fullname: Jampani, Varun organization: Google Research – sequence: 4 givenname: Yael surname: Pritch fullname: Pritch, Yael organization: Google Research – sequence: 5 givenname: Michael surname: Rubinstein fullname: Rubinstein, Michael organization: Google Research – sequence: 6 givenname: Kfir surname: Aberman fullname: Aberman, Kfir organization: Google Research |
BookMark | eNotjtFOwjAUQKvRRET-gIf-wPDe23VrfVMQJMFodPpKuu0OS6A12zD695Lo03k5OTmX4izEwEKMESaIYK-n788vmnKyEwJSEyDU-kSMbG6N0qAAyZpTMUDIVJJZtBdi1HVbAFCEmFkzEMWsZbe_i7H_uJFzH1gWh-DDRhb83Sd9TJZ7t2E5801z6HwM8jHWvOtkE1v5eii3XPXJrPVfHOSCA7euP0pX4rxxu45H_xyKt_l9MX1IVk-L5fR2lXjKoT8elWjZKAPO1hWpLM1q0FipmkHlaYmIKtfsKCXrakeQGc0IVQOAlS5LNRTjv65n5vVn6_eu_VkjEKTGgPoF95FSoQ |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52729.2023.02155 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798350301298 |
EISSN | 1063-6919 |
EndPage | 22510 |
ExternalDocumentID | 10204880 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i270t-69b19e8380a9dc23646d051c3de0374b111375ea2429ada20685e10cf001c5bb3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:56:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i270t-69b19e8380a9dc23646d051c3de0374b111375ea2429ada20685e10cf001c5bb3 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10204880 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.697097 |
Snippet | Large text-to-image models achieved a remarkable leap in the evolution of AI, enabling high-quality and diverse synthesis of images from a given text prompt.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 22500 |
SubjectTerms | Computer vision Image and video synthesis and generation Lighting Pattern recognition Protocols Rendering (computer graphics) Semantics Task analysis |
Title | DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation |
URI | https://ieeexplore.ieee.org/document/10204880 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT57qo-KbPXjdmNcmWY82lipYiqTSW8m-oGgbaZOLv96ZJK0oCN5CLgk7mfm-_bLfDCE3Mfc04IxgRmvLwtxKlutYMAvwFBgTSb92vT-Po9E0fJrxWWtWr70wxpj68Jlx8LL-l68LVaFUBhnu1x9ch3Rg59aYtXaCSgBbmUgkrT3Oc8Xt4HXywn1gjw7OCHcQ3fiPISo1hgx7ZLx9enN05M2pSumoz1-NGf_9egek_23Xo5MdEB2SPbM6Ir2WX9I2ezfHJEuBIS7vCwjOHR0CvaRZhbIIzXD7WxbscQnVhaYLaysU0SgOSnvfUOC1FAoMKjYsXWN5pE23agxqn0yHD9lgxNqpCmzhx27JIiE9YZIgcXOhFfaPjzRkpgq0wV40EmfPx9zkgN0i17nvRgk3nqssAJriUgYnpLsqVuYU_d4KCFKog9izodKJFEBwPBtYYImJm9gz0sdVmn80jTPm2wU6_-P-BdnHSDUKxyXpluvKXAHml_K6jvUX9D6qdA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgDDCVjyK-8cDqkC8nMSMtVQttVaEUsVVxbEsVtEFtsvDruUvSIpCQ2KIsiXy5e88vfneE3ITcUYAzgmmlDPMTI1miQsEMwJOndSDd0vU-HAW9if_4yl9rs3rphdFal4fPtIWX5b98laUFSmWQ4W75wW2THQB-7lR2rY2k4sFmJhBRbZBzbHHbfhk_cxf4o4VTwi3EN_5jjEqJIt0mGa2fXx0eebOKXFrp56_WjP9-wX3S-jbs0fEGig7Ill4ckmbNMGmdv6sjEneAI87vMwjPHe0CwaRxgcIIjXEDnGesP4f6QjszYwqU0SiOSntfUWC2FEoMajass8QCSat-1RjWFpl0H-J2j9VzFdjMDe2cBUI6QkdeZCdCpdhBPlCQm6mnNHajkTh9PuQ6AfQWiUpcO4i4duzUAKSlXErvmDQW2UKfoOM7BYrkKy90jJ-qSAqgOI7xDPDEyI7MKWnhKk0_qtYZ0_UCnf1x_5rs9uLhYDroj57OyR5GrdI7LkgjXxb6EhhALq_KuH8BC5itvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=DreamBooth%3A+Fine+Tuning+Text-to-Image+Diffusion+Models+for+Subject-Driven+Generation&rft.au=Ruiz%2C+Nataniel&rft.au=Li%2C+Yuanzhen&rft.au=Jampani%2C+Varun&rft.au=Pritch%2C+Yael&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=22500&rft.epage=22510&rft_id=info:doi/10.1109%2FCVPR52729.2023.02155&rft.externalDocID=10204880 |