Boro Rice Yield Estimation Model Using Modis Ndvi Data for Bangladesh
The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images have been used. The MODIS NDVI images and ground truth data are acquired for the years 2011 to...
Saved in:
Published in | IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium pp. 7330 - 7333 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images have been used. The MODIS NDVI images and ground truth data are acquired for the years 2011 to 2016. Since Bangladesh is divided into 8 divisions, several regression models are applied to predict rice yield for each division rather than a single model for the entire country, in order to get improved result in rice yield prediction. Firstly the rice field area is predicted by using NDVI threshold values. An improvised algorithm has been implemented to determine the NDVI threshold values. Four regression models (Linear, Ridge, Lasso, Decision Tree) are performed to estimate total Boro production of each district of Bangladesh. Among the regression models, maximum R 2 (co-effiecient of determination) values of 0.492, 0.790, 0.899, 0.891, 0.848, 0.942, 0.777 and 0.848 are acquired for Barisal, Chittagong, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur and Sylhet divisions respectively. Ridge regression worked better for Barisal and Chittagong divisions. For Mymensingh and Rangpur divisions Lasso regression performed the best. Decision Tree regression worked best for the four other divisions. |
---|---|
AbstractList | The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images have been used. The MODIS NDVI images and ground truth data are acquired for the years 2011 to 2016. Since Bangladesh is divided into 8 divisions, several regression models are applied to predict rice yield for each division rather than a single model for the entire country, in order to get improved result in rice yield prediction. Firstly the rice field area is predicted by using NDVI threshold values. An improvised algorithm has been implemented to determine the NDVI threshold values. Four regression models (Linear, Ridge, Lasso, Decision Tree) are performed to estimate total Boro production of each district of Bangladesh. Among the regression models, maximum R 2 (co-effiecient of determination) values of 0.492, 0.790, 0.899, 0.891, 0.848, 0.942, 0.777 and 0.848 are acquired for Barisal, Chittagong, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur and Sylhet divisions respectively. Ridge regression worked better for Barisal and Chittagong divisions. For Mymensingh and Rangpur divisions Lasso regression performed the best. Decision Tree regression worked best for the four other divisions. |
Author | Al Sefat, Abdullah Kudoh, Jun-ichi Alam, Md. Samiul KALPOMA, KAZI Karim, Md. Sanaul |
Author_xml | – sequence: 1 givenname: Md. Samiul surname: Alam fullname: Alam, Md. Samiul organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering – sequence: 2 givenname: KAZI surname: KALPOMA fullname: KALPOMA, KAZI organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering – sequence: 3 givenname: Md. Sanaul surname: Karim fullname: Karim, Md. Sanaul organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering – sequence: 4 givenname: Abdullah surname: Al Sefat fullname: Al Sefat, Abdullah organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering – sequence: 5 givenname: Jun-ichi surname: Kudoh fullname: Kudoh, Jun-ichi organization: Tohoku University,Center for Northeast Asian Studies (CNEAS) |
BookMark | eNotj8tOwzAURA0Cibb0C7rxDyT4ESfXy7aUUqmA1NIFq8rxtYtRiFEcIfH3BNHVnNmMzozJVRtbR8iMs5xzpu826_luv88F4zoH0JpBcUGmugKuJJSaq4JdkpEYWlYxJm_IOKWPAUAwNiKrRewi3QXr6FtwDdJV6sOn6UNs6VNE19BDCu3pj0Oiz_gd6L3pDfWxowvTnhqDLr3fkmtvmuSm55yQw8PqdfmYbV_Wm-V8mwVR6j6zwNBKgNrVyHGQU9rXyvvCF9x6K-tKVVYp5MojClNiKXyhAdFpqGoBckJm_7vBOXf86gbT7ud4fi1_AaPATZ8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS.2019.8899084 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9781538691540 153869154X |
EISSN | 2153-7003 |
EndPage | 7333 |
ExternalDocumentID | 8899084 |
Genre | orig-research |
GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i269t-c80dc388bebd1d86959fb5ff4f41cfc3b757c55d15fdd2a6d62f498dde987b283 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:22 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i269t-c80dc388bebd1d86959fb5ff4f41cfc3b757c55d15fdd2a6d62f498dde987b283 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8899084 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.7983979 |
Snippet | The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7330 |
SubjectTerms | Data models Feature extraction MODIS NDVI Production production estimation regression analysis Regression tree analysis Rice model Yield estimation |
Title | Boro Rice Yield Estimation Model Using Modis Ndvi Data for Bangladesh |
URI | https://ieeexplore.ieee.org/document/8899084 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5sA8EnL5t4Jw8-2q23pMmj010UNmRzMJ9Gc8MxWWXrBP31Juk2UXzwLRRKS9JzvtPk-84HcGU7eidWmWuqY-zFysQclyTwZKJlpAxehcrud_T6pDuKH8Z4XILrrRZGKeXIZ6puh-4sX2ZiZbfKGtT8HPg0LkM5YaTQam2ybmSQzF93FQp81rjv3AyGQ0vdst-Cu-2Hf4qDj_Ye9DYPLlgjs_oq53Xx-asn43_fbB9q30I99LiFoAMoqfkh7HScW-9HFVrNbJGhgckF6Nky1VDLBHShVUTWBO0VOcaAHU-XqC_fp-guzVNkClnUTK29h1TLlxqM2q2n26639k3wpiFhuSeoL0VEKVdcBpIShpnmWOtYx4HQIuIJTgTGMsBayjAlkoQ6ZtQkOkYTbuqNI6jMs7k6BhQon3FusqImIlbCFFNYhyZk3QlcoskJVO1kTN6K1hiT9Tyc_n35DHbtghRs13Oo5IuVujCYnvNLt5hfuLmglA |
link.rule.ids | 309,310,780,784,789,790,796,27925,54758 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIgQnlhax4wNH0maxneRIoRu0FeoilVNVb6ICNahNkeDrsZ22CMSBmxUpSmRn5k3s9-YBXJmO3qFR5urqmDhY6phjgnqOCJUIpMYrX5r9jnaHNgb4fkiGObhea2GklJZ8JktmaM_yRcIXZqusHOmfAzfCG7BJsK5zM7XWKu8GGsvcZV8hz43LzfpNt9cz5C3zNdgbfzioWACp7UJ79eiMN_JSWqSsxD9_dWX877vtQfFbqoce1yC0Dzk5PYCtuvXr_ShAtZLMEtTV2QA9Ga4aquqQztSKyNigvSLLGTDjyRx1xPsE3Y3TMdKlLKqMjcGHkPPnIgxq1f5tw1k6JzgTn8apwyNX8CCKmGTCExGNSawYUQor7HHFAxaSkBMiPKKE8MdUUF_hONKpLo5CpiuOQ8hPk6k8AuRJN2ZM50VFOZZcl1NE-Tpo7RlcqOgxFMxkjN6y5hij5Tyc_H35ErYb_XZr1Gp2Hk5hxyxOxn09g3w6W8hzjfApu7AL-wVdsqPn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2019+-+2019+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=Boro+Rice+Yield+Estimation+Model+Using+Modis+Ndvi+Data+for+Bangladesh&rft.au=Alam%2C+Md.+Samiul&rft.au=KALPOMA%2C+KAZI&rft.au=Karim%2C+Md.+Sanaul&rft.au=Al+Sefat%2C+Abdullah&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=7330&rft.epage=7333&rft_id=info:doi/10.1109%2FIGARSS.2019.8899084&rft.externalDocID=8899084 |