Boro Rice Yield Estimation Model Using Modis Ndvi Data for Bangladesh

The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images have been used. The MODIS NDVI images and ground truth data are acquired for the years 2011 to...

Full description

Saved in:
Bibliographic Details
Published inIGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium pp. 7330 - 7333
Main Authors Alam, Md. Samiul, KALPOMA, KAZI, Karim, Md. Sanaul, Al Sefat, Abdullah, Kudoh, Jun-ichi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images have been used. The MODIS NDVI images and ground truth data are acquired for the years 2011 to 2016. Since Bangladesh is divided into 8 divisions, several regression models are applied to predict rice yield for each division rather than a single model for the entire country, in order to get improved result in rice yield prediction. Firstly the rice field area is predicted by using NDVI threshold values. An improvised algorithm has been implemented to determine the NDVI threshold values. Four regression models (Linear, Ridge, Lasso, Decision Tree) are performed to estimate total Boro production of each district of Bangladesh. Among the regression models, maximum R 2 (co-effiecient of determination) values of 0.492, 0.790, 0.899, 0.891, 0.848, 0.942, 0.777 and 0.848 are acquired for Barisal, Chittagong, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur and Sylhet divisions respectively. Ridge regression worked better for Barisal and Chittagong divisions. For Mymensingh and Rangpur divisions Lasso regression performed the best. Decision Tree regression worked best for the four other divisions.
AbstractList The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) images have been used. The MODIS NDVI images and ground truth data are acquired for the years 2011 to 2016. Since Bangladesh is divided into 8 divisions, several regression models are applied to predict rice yield for each division rather than a single model for the entire country, in order to get improved result in rice yield prediction. Firstly the rice field area is predicted by using NDVI threshold values. An improvised algorithm has been implemented to determine the NDVI threshold values. Four regression models (Linear, Ridge, Lasso, Decision Tree) are performed to estimate total Boro production of each district of Bangladesh. Among the regression models, maximum R 2 (co-effiecient of determination) values of 0.492, 0.790, 0.899, 0.891, 0.848, 0.942, 0.777 and 0.848 are acquired for Barisal, Chittagong, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur and Sylhet divisions respectively. Ridge regression worked better for Barisal and Chittagong divisions. For Mymensingh and Rangpur divisions Lasso regression performed the best. Decision Tree regression worked best for the four other divisions.
Author Al Sefat, Abdullah
Kudoh, Jun-ichi
Alam, Md. Samiul
KALPOMA, KAZI
Karim, Md. Sanaul
Author_xml – sequence: 1
  givenname: Md. Samiul
  surname: Alam
  fullname: Alam, Md. Samiul
  organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering
– sequence: 2
  givenname: KAZI
  surname: KALPOMA
  fullname: KALPOMA, KAZI
  organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering
– sequence: 3
  givenname: Md. Sanaul
  surname: Karim
  fullname: Karim, Md. Sanaul
  organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering
– sequence: 4
  givenname: Abdullah
  surname: Al Sefat
  fullname: Al Sefat, Abdullah
  organization: Ahsanullah University of Science and Technology,Dept. of Computer Science & Engineering
– sequence: 5
  givenname: Jun-ichi
  surname: Kudoh
  fullname: Kudoh, Jun-ichi
  organization: Tohoku University,Center for Northeast Asian Studies (CNEAS)
BookMark eNotj8tOwzAURA0Cibb0C7rxDyT4ESfXy7aUUqmA1NIFq8rxtYtRiFEcIfH3BNHVnNmMzozJVRtbR8iMs5xzpu826_luv88F4zoH0JpBcUGmugKuJJSaq4JdkpEYWlYxJm_IOKWPAUAwNiKrRewi3QXr6FtwDdJV6sOn6UNs6VNE19BDCu3pj0Oiz_gd6L3pDfWxowvTnhqDLr3fkmtvmuSm55yQw8PqdfmYbV_Wm-V8mwVR6j6zwNBKgNrVyHGQU9rXyvvCF9x6K-tKVVYp5MojClNiKXyhAdFpqGoBckJm_7vBOXf86gbT7ud4fi1_AaPATZ8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2019.8899084
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9781538691540
153869154X
EISSN 2153-7003
EndPage 7333
ExternalDocumentID 8899084
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i269t-c80dc388bebd1d86959fb5ff4f41cfc3b757c55d15fdd2a6d62f498dde987b283
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:22 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-c80dc388bebd1d86959fb5ff4f41cfc3b757c55d15fdd2a6d62f498dde987b283
PageCount 4
ParticipantIDs ieee_primary_8899084
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium
PublicationTitleAbbrev IGARSS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.7983979
Snippet The aim of this study is to construct a rice yield estimation model for Bangladesh. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS)...
SourceID ieee
SourceType Publisher
StartPage 7330
SubjectTerms Data models
Feature extraction
MODIS
NDVI
Production
production estimation
regression analysis
Regression tree analysis
Rice model
Yield estimation
Title Boro Rice Yield Estimation Model Using Modis Ndvi Data for Bangladesh
URI https://ieeexplore.ieee.org/document/8899084
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5sA8EnL5t4Jw8-2q23pMmj010UNmRzMJ9Gc8MxWWXrBP31Juk2UXzwLRRKS9JzvtPk-84HcGU7eidWmWuqY-zFysQclyTwZKJlpAxehcrud_T6pDuKH8Z4XILrrRZGKeXIZ6puh-4sX2ZiZbfKGtT8HPg0LkM5YaTQam2ybmSQzF93FQp81rjv3AyGQ0vdst-Cu-2Hf4qDj_Ye9DYPLlgjs_oq53Xx-asn43_fbB9q30I99LiFoAMoqfkh7HScW-9HFVrNbJGhgckF6Nky1VDLBHShVUTWBO0VOcaAHU-XqC_fp-guzVNkClnUTK29h1TLlxqM2q2n26639k3wpiFhuSeoL0VEKVdcBpIShpnmWOtYx4HQIuIJTgTGMsBayjAlkoQ6ZtQkOkYTbuqNI6jMs7k6BhQon3FusqImIlbCFFNYhyZk3QlcoskJVO1kTN6K1hiT9Tyc_n35DHbtghRs13Oo5IuVujCYnvNLt5hfuLmglA
link.rule.ids 309,310,780,784,789,790,796,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIgQnlhax4wNH0maxneRIoRu0FeoilVNVb6ICNahNkeDrsZ22CMSBmxUpSmRn5k3s9-YBXJmO3qFR5urqmDhY6phjgnqOCJUIpMYrX5r9jnaHNgb4fkiGObhea2GklJZ8JktmaM_yRcIXZqusHOmfAzfCG7BJsK5zM7XWKu8GGsvcZV8hz43LzfpNt9cz5C3zNdgbfzioWACp7UJ79eiMN_JSWqSsxD9_dWX877vtQfFbqoce1yC0Dzk5PYCtuvXr_ShAtZLMEtTV2QA9Ga4aquqQztSKyNigvSLLGTDjyRx1xPsE3Y3TMdKlLKqMjcGHkPPnIgxq1f5tw1k6JzgTn8apwyNX8CCKmGTCExGNSawYUQor7HHFAxaSkBMiPKKE8MdUUF_hONKpLo5CpiuOQ8hPk6k8AuRJN2ZM50VFOZZcl1NE-Tpo7RlcqOgxFMxkjN6y5hij5Tyc_H35ErYb_XZr1Gp2Hk5hxyxOxn09g3w6W8hzjfApu7AL-wVdsqPn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2019+-+2019+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=Boro+Rice+Yield+Estimation+Model+Using+Modis+Ndvi+Data+for+Bangladesh&rft.au=Alam%2C+Md.+Samiul&rft.au=KALPOMA%2C+KAZI&rft.au=Karim%2C+Md.+Sanaul&rft.au=Al+Sefat%2C+Abdullah&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=7330&rft.epage=7333&rft_id=info:doi/10.1109%2FIGARSS.2019.8899084&rft.externalDocID=8899084