Unsupervised Moving Object Detection via Contextual Information Separation
We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region using information from everywhere else but that region (context), while another network attempts to make such context as uninformative as possib...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 879 - 888 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region using information from everywhere else but that region (context), while another network attempts to make such context as uninformative as possible. The result is a model where hypotheses naturally compete with no need for explicit regularization or hyper-parameter tuning. Although our method requires no supervision whatsoever, it outperforms several methods that are pre-trained on large annotated datasets. Our model can be thought of as a generalization of classical variational generative region-based segmentation, but in a way that avoids explicit regularization or solution of partial differential equations at run-time. |
---|---|
AbstractList | We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region using information from everywhere else but that region (context), while another network attempts to make such context as uninformative as possible. The result is a model where hypotheses naturally compete with no need for explicit regularization or hyper-parameter tuning. Although our method requires no supervision whatsoever, it outperforms several methods that are pre-trained on large annotated datasets. Our model can be thought of as a generalization of classical variational generative region-based segmentation, but in a way that avoids explicit regularization or solution of partial differential equations at run-time. |
Author | Yang, Yanchao Soatto, Stefano Scaramuzza, Davide Loquercio, Antonio |
Author_xml | – sequence: 1 givenname: Yanchao surname: Yang fullname: Yang, Yanchao organization: UCLA – sequence: 2 givenname: Antonio surname: Loquercio fullname: Loquercio, Antonio organization: ETH / Univ. of Zurich – sequence: 3 givenname: Davide surname: Scaramuzza fullname: Scaramuzza, Davide organization: Univ. of Zurich & ETH Zurich, Switzerland – sequence: 4 givenname: Stefano surname: Soatto fullname: Soatto, Stefano organization: UCLA |
BookMark | eNotjMtOwzAURA0CiVKyZsHGP5Dga8evJQoUioqKgLKtHOcGuWqdKkkj-HuigmZxRjqjuSRnsYlIyDWwDIDZ2-Lz9S3jDGzGGLP6hCRWG9DcgOBWmFMyAaZEqizYC5J03WacCQ6grJmQ51XsDntsh9BhRV-aIcQvuiw36Ht6j_2I0EQ6BEeLJvb43R_cls5j3bQ7d1TvuHftsV6R89ptO0z-OSWr2cNH8ZQulo_z4m6RBq5sn3rwAq303pU-F9JpzphEIRV3ss4lFzbnXoFUdVlV2gieKwSBZowuTe3FlNz8_QZEXO_bsHPtz9pYmedSil_7E0_q |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2019.00097 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728132938 1728132932 |
EISSN | 1063-6919 |
EndPage | 888 |
ExternalDocumentID | 8954455 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i269t-c1c3e95ccabc435a72005e3562a5f4523942c6156fbdd783246e13e8e8e7b8fc3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:18 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i269t-c1c3e95ccabc435a72005e3562a5f4523942c6156fbdd783246e13e8e8e7b8fc3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8954455 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.4838667 |
Snippet | We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 879 |
SubjectTerms | Computer vision Deep learning Grouping and Shape Mathematical models Neural networks Object detection Partial differential equations Pattern recognition Representation Learning Scene Analysis and Understanding Segmentation Statistical Learning |
Title | Unsupervised Moving Object Detection via Contextual Information Separation |
URI | https://ieeexplore.ieee.org/document/8954455 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjxaYNnu0p5RQkhQomK4kd3tNCEmhUhrjL_e2W1FYzyYXprdQ5udTOfN68wbgCuUQqGJNTlSGgWhEmkQa4UBl0arnhUJ144amN6p8TycLOSiBte7XhhE9MVn2HG3_l9-sraFo8q6UeykY2Qd6pS4lb1aOz5FUCaj4qhS7-G9uDt8nj242i0nSOlFnX6MT_HRY9SE6ddzy6KRl06Rm479-CXJ-N8X24f2d58em-0i0AHUMDuEZgUsWeW22xZM5tm22LivwpbWp55EYPfGUTDsBnNfjZWxt5VmXqzq3fWUsKpRyW89YikRvs7aMB_dPg3HQTVEIVj1VZwHlluBsSRDGUvQSA8cjYSCYI-WaSjdZPS-JVijUpMkA_LvUCEXGNE1MFFqxRE0snWGx8AQKbejFEimqSLchZpjmISaG64INqA9gZY7muWm1MlYVqdy-vfyGew545RlV-fQyF8LvKAAn5tLb9lPVA6nfw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSECsZv9-DRAst2l_aMEkRAomC4kd3tNCEmhUhrjL_e3W1FYzyYXprdQ5udTOfN68wbgCvkTKAKpXGkOPB8wWIvlAI9ypUUTc0iKi01MByJ3tTvz_isBNebXhhEdMVnWLe37l9-tNSZpcoaQWilY_gWbJu4z2nerbVhVJjJZUQYFPo9tBk2Os_jR1u9ZSUpnazTjwEqLn50KzD8enJeNvJSz1JV1x-_RBn_-2p7UPvu1CPjTQzahxImB1ApoCUpHHddhf40WWcr-11Ym_WhoxHIg7IkDLnB1NVjJeRtIYmTq3q3XSWkaFVyW0-Yi4QvkxpMu7eTTs8rxih4i5YIU09TzTDkxlRKG3Ak25ZIQmaAj-Sxz-1s9JY2wEbEKoraxsN9gZRhYK62CmLNDqGcLBM8AoJosjuTBPE4FgZ5oaToR76kigoDHFAfQ9UezXyVK2XMi1M5-Xv5EnZ6k-FgPrgb3Z_CrjVUXoR1BuX0NcNzE-5TdeGs_Ak__6rI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Unsupervised+Moving+Object+Detection+via+Contextual+Information+Separation&rft.au=Yang%2C+Yanchao&rft.au=Loquercio%2C+Antonio&rft.au=Scaramuzza%2C+Davide&rft.au=Soatto%2C+Stefano&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=879&rft.epage=888&rft_id=info:doi/10.1109%2FCVPR.2019.00097&rft.externalDocID=8954455 |