Unsupervised Moving Object Detection via Contextual Information Separation

We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region using information from everywhere else but that region (context), while another network attempts to make such context as uninformative as possib...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 879 - 888
Main Authors Yang, Yanchao, Loquercio, Antonio, Scaramuzza, Davide, Soatto, Stefano
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region using information from everywhere else but that region (context), while another network attempts to make such context as uninformative as possible. The result is a model where hypotheses naturally compete with no need for explicit regularization or hyper-parameter tuning. Although our method requires no supervision whatsoever, it outperforms several methods that are pre-trained on large annotated datasets. Our model can be thought of as a generalization of classical variational generative region-based segmentation, but in a way that avoids explicit regularization or solution of partial differential equations at run-time.
AbstractList We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region using information from everywhere else but that region (context), while another network attempts to make such context as uninformative as possible. The result is a model where hypotheses naturally compete with no need for explicit regularization or hyper-parameter tuning. Although our method requires no supervision whatsoever, it outperforms several methods that are pre-trained on large annotated datasets. Our model can be thought of as a generalization of classical variational generative region-based segmentation, but in a way that avoids explicit regularization or solution of partial differential equations at run-time.
Author Yang, Yanchao
Soatto, Stefano
Scaramuzza, Davide
Loquercio, Antonio
Author_xml – sequence: 1
  givenname: Yanchao
  surname: Yang
  fullname: Yang, Yanchao
  organization: UCLA
– sequence: 2
  givenname: Antonio
  surname: Loquercio
  fullname: Loquercio, Antonio
  organization: ETH / Univ. of Zurich
– sequence: 3
  givenname: Davide
  surname: Scaramuzza
  fullname: Scaramuzza, Davide
  organization: Univ. of Zurich & ETH Zurich, Switzerland
– sequence: 4
  givenname: Stefano
  surname: Soatto
  fullname: Soatto, Stefano
  organization: UCLA
BookMark eNotjMtOwzAURA0CiVKyZsHGP5Dga8evJQoUioqKgLKtHOcGuWqdKkkj-HuigmZxRjqjuSRnsYlIyDWwDIDZ2-Lz9S3jDGzGGLP6hCRWG9DcgOBWmFMyAaZEqizYC5J03WacCQ6grJmQ51XsDntsh9BhRV-aIcQvuiw36Ht6j_2I0EQ6BEeLJvb43R_cls5j3bQ7d1TvuHftsV6R89ptO0z-OSWr2cNH8ZQulo_z4m6RBq5sn3rwAq303pU-F9JpzphEIRV3ss4lFzbnXoFUdVlV2gieKwSBZowuTe3FlNz8_QZEXO_bsHPtz9pYmedSil_7E0_q
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00097
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132938
1728132932
EISSN 1063-6919
EndPage 888
ExternalDocumentID 8954455
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i269t-c1c3e95ccabc435a72005e3562a5f4523942c6156fbdd783246e13e8e8e7b8fc3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-c1c3e95ccabc435a72005e3562a5f4523942c6156fbdd783246e13e8e8e7b8fc3
PageCount 10
ParticipantIDs ieee_primary_8954455
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.4838667
Snippet We propose an adversarial contextual model for detecting moving objects in images. A deep neural network is trained to predict the optical flow in a region...
SourceID ieee
SourceType Publisher
StartPage 879
SubjectTerms Computer vision
Deep learning
Grouping and Shape
Mathematical models
Neural networks
Object detection
Partial differential equations
Pattern recognition
Representation Learning
Scene Analysis and Understanding
Segmentation
Statistical Learning
Title Unsupervised Moving Object Detection via Contextual Information Separation
URI https://ieeexplore.ieee.org/document/8954455
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjxaYNnu0p5RQkhQomK4kd3tNCEmhUhrjL_e2W1FYzyYXprdQ5udTOfN68wbgCuUQqGJNTlSGgWhEmkQa4UBl0arnhUJ144amN6p8TycLOSiBte7XhhE9MVn2HG3_l9-sraFo8q6UeykY2Qd6pS4lb1aOz5FUCaj4qhS7-G9uDt8nj242i0nSOlFnX6MT_HRY9SE6ddzy6KRl06Rm479-CXJ-N8X24f2d58em-0i0AHUMDuEZgUsWeW22xZM5tm22LivwpbWp55EYPfGUTDsBnNfjZWxt5VmXqzq3fWUsKpRyW89YikRvs7aMB_dPg3HQTVEIVj1VZwHlluBsSRDGUvQSA8cjYSCYI-WaSjdZPS-JVijUpMkA_LvUCEXGNE1MFFqxRE0snWGx8AQKbejFEimqSLchZpjmISaG64INqA9gZY7muWm1MlYVqdy-vfyGew545RlV-fQyF8LvKAAn5tLb9lPVA6nfw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSECsZv9-DRAst2l_aMEkRAomC4kd3tNCEmhUhrjL_e3W1FYzyYXprdQ5udTOfN68wbgCvkTKAKpXGkOPB8wWIvlAI9ypUUTc0iKi01MByJ3tTvz_isBNebXhhEdMVnWLe37l9-tNSZpcoaQWilY_gWbJu4z2nerbVhVJjJZUQYFPo9tBk2Os_jR1u9ZSUpnazTjwEqLn50KzD8enJeNvJSz1JV1x-_RBn_-2p7UPvu1CPjTQzahxImB1ApoCUpHHddhf40WWcr-11Ym_WhoxHIg7IkDLnB1NVjJeRtIYmTq3q3XSWkaFVyW0-Yi4QvkxpMu7eTTs8rxih4i5YIU09TzTDkxlRKG3Ak25ZIQmaAj-Sxz-1s9JY2wEbEKoraxsN9gZRhYK62CmLNDqGcLBM8AoJosjuTBPE4FgZ5oaToR76kigoDHFAfQ9UezXyVK2XMi1M5-Xv5EnZ6k-FgPrgb3Z_CrjVUXoR1BuX0NcNzE-5TdeGs_Ak__6rI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Unsupervised+Moving+Object+Detection+via+Contextual+Information+Separation&rft.au=Yang%2C+Yanchao&rft.au=Loquercio%2C+Antonio&rft.au=Scaramuzza%2C+Davide&rft.au=Soatto%2C+Stefano&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=879&rft.epage=888&rft_id=info:doi/10.1109%2FCVPR.2019.00097&rft.externalDocID=8954455