Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory prediction, learning multimodal outputs, and better predictions by imposing constraints using driving knowledge. Recent methods have achieved stron...
Saved in:
Published in | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 15794 - 15803 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory prediction, learning multimodal outputs, and better predictions by imposing constraints using driving knowledge. Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many. But the impact of those methods in learning diverse hypotheses is under-studied as such objectives highly depend on their initialization for diversity. As our first contribution, we propose a novel Divide-And-Conquer (DAC) approach that acts as a better initialization technique to WTA objective, resulting in diverse outputs without any spurious modes. Our second contribution is a novel trajectory prediction framework called ALAN that uses existing lane centerlines as anchors to provide trajectories constrained to the input lanes. Our framework provides multi-agent trajectory outputs in a forward pass by capturing interactions through hypercolumn descriptors and incorporating scene information in the form of rasterized images and per-agent lane anchors. Experiments on synthetic and real data show that the proposed DAC captures the data distribution better compare to other WTA family of objectives. Further, we show that our ALAN approach provides on par or better performance with SOTA methods evaluated on Nuscenes urban driving benchmark. |
---|---|
AbstractList | Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory prediction, learning multimodal outputs, and better predictions by imposing constraints using driving knowledge. Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many. But the impact of those methods in learning diverse hypotheses is under-studied as such objectives highly depend on their initialization for diversity. As our first contribution, we propose a novel Divide-And-Conquer (DAC) approach that acts as a better initialization technique to WTA objective, resulting in diverse outputs without any spurious modes. Our second contribution is a novel trajectory prediction framework called ALAN that uses existing lane centerlines as anchors to provide trajectories constrained to the input lanes. Our framework provides multi-agent trajectory outputs in a forward pass by capturing interactions through hypercolumn descriptors and incorporating scene information in the form of rasterized images and per-agent lane anchors. Experiments on synthetic and real data show that the proposed DAC captures the data distribution better compare to other WTA family of objectives. Further, we show that our ALAN approach provides on par or better performance with SOTA methods evaluated on Nuscenes urban driving benchmark. |
Author | Narayanan, Sriram Pittaluga, Francesco Chandraker, Manmohan Moslemi, Ramin Liu, Buyu |
Author_xml | – sequence: 1 givenname: Sriram surname: Narayanan fullname: Narayanan, Sriram organization: NEC Labs America – sequence: 2 givenname: Ramin surname: Moslemi fullname: Moslemi, Ramin organization: NEC Labs America – sequence: 3 givenname: Francesco surname: Pittaluga fullname: Pittaluga, Francesco organization: NEC Labs America – sequence: 4 givenname: Buyu surname: Liu fullname: Liu, Buyu organization: NEC Labs America – sequence: 5 givenname: Manmohan surname: Chandraker fullname: Chandraker, Manmohan organization: NEC Labs America |
BookMark | eNotjN1KwzAYQKMouM09gV70BVK__HxJcyWj_kLBIdPbkbRfIaKpplXZ2zvRqwOHw5mzozQkYuxcQCkEuIv6ef2ojVa2lCBFCQJRH7C5MAa1RnDykM0kWuQWLJ6w5TjGACgBrHLVjF1exa_YEfep4_WQPj4pF_2Qi8Yn4qtvn6nYF5RHKjbZv1A7DXlXrDN1sZ3ikE7Zce9fR1r-c8Gebq439R1vHm7v61XDozRu4sHYvkcvAQGtC0FWVZAyaGi9MhbBB-v6XxnafdN3rkOp0Col0QuPXi3Y2d83EtH2Pcc3n3dbh9aiUeoH3LxK9Q |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR46437.2021.01554 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665445092 9781665445092 |
EISSN | 2575-7075 |
EndPage | 15803 |
ExternalDocumentID | 9577563 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i269t-b67ff5a2050579bb288b22b40ca36750ab79f288bbc205fd9d523573325a1a5a3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:40 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i269t-b67ff5a2050579bb288b22b40ca36750ab79f288bbc205fd9d523573325a1a5a3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9577563 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib052007398 ssib042469789 |
Score | 2.4575782 |
Snippet | Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 15794 |
SubjectTerms | Benchmark testing Computer vision Context-aware services Couplings Semantics Trajectory |
Title | Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction |
URI | https://ieeexplore.ieee.org/document/9577563 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHjyark2TpjmJbI4hToY42W0k7Suo0I3RIfrX-167zQ88eCshDflo-nufv8fYBSRaBwCOS-kkl3lmuQWRc0nxFyECgsnINDC6j4cTeTtV0wa73ObCAEAVfAY-PVa-_GyershU1jVKaxVHTdbUJq5ztTbfjhSo531jTic2IR2ZZJ0tFwam23saP0jyU6FWKEKfhAX5o6ZKBSmDXTbaTKaOJHn1V6Xz049fPI3_ne0e63wl73njLSztswYUbXbVp7Qr4LbIOPZDMFh6KK56d7YAfv1ml-D1qwgN8BC9XipT_jsOQ24cOroOmwxuHntDvq6dwJ9FbEruYp3nygoqVKeNcyJJnBBOBqmNUEcIrNMmp0aXYp88M5ki4psoEsqGVtnogLWKeQGHzEMFKZcoVkV4daXC94LQxnEKoQKN_wN3xNq0-NmipseYrdd9_HfzCduh7a-tGKesVS5XcIa4Xrrz6kA_AcsCn4s |
link.rule.ids | 309,310,780,784,789,790,796,23930,23931,25140,27925,54758 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHvSksonf9uDRdG2aNM1JZHNM3caQTXYbSfsKKnRSOkT_el_abX7gwVsJaUl4TX7v8_cIuYBISg_AUM4NpzxNNNXAUspt_oWPgKAS6xoYDMPehN9NxbRGLte1MABQJp-Bax_LWH4yjxfWVdZSQkoRBhtkU3DUc6tqrdXfwxlaet-40y2fkAxUtKyX8z3Vaj-OHriNVKFdyHzXqgv8R1eVElS6O2SwWk6VS_LiLgrjxh-_mBr_u95d0vwq33NGa2DaIzXIGuSqYwuvgOosoTgP4SB3UGF1-joDev2mc3A6ZY4GOIhfz6Uz_x0_YwM5VnhNMunejNs9uuyeQJ9YqApqQpmmQjPbqk4qY1gUGcYM92IdoJXgaSNVagdNjHPSRCXCUt8EARPa10IH-6SezTM4IA6aSClHxSrAw8sFvuf5Ogxj8AVIvBHMIWnYzc9eK4KM2XLfR38Pn5Ot3njQn_Vvh_fHZNuKovJpnJB6kS_gFFG-MGelcD8BZ0ui3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2021+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Divide-and-Conquer+for+Lane-Aware+Diverse+Trajectory+Prediction&rft.au=Narayanan%2C+Sriram&rft.au=Moslemi%2C+Ramin&rft.au=Pittaluga%2C+Francesco&rft.au=Liu%2C+Buyu&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2575-7075&rft.spage=15794&rft.epage=15803&rft_id=info:doi/10.1109%2FCVPR46437.2021.01554&rft.externalDocID=9577563 |