Template-based Question Answering using Recursive Neural Networks

Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language question to its corresponding SPARQL query. A common approach is to use query templates to generate SPARQL queries with slots that need to be fil...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 15th International Conference on Semantic Computing (ICSC) pp. 195 - 198
Main Authors Athreya, Ram G, Bansal, Srividya K., Ngomo, Axel-Cyrille Ngonga, Usbeck, Ricardo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2021
Subjects
Online AccessGet full text
DOI10.1109/ICSC50631.2021.00041

Cover

Abstract Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language question to its corresponding SPARQL query. A common approach is to use query templates to generate SPARQL queries with slots that need to be filled. Using templates instead of running an extensive NLP pipeline or end-to-end model shifts the QA problem into a classification task, where the system needs to match the input question to the appropriate template. This paper presents an approach to automatically learn and classify natural language questions into corresponding templates using recursive neural networks. Our model was trained on 5000 questions and their respective SPARQL queries from the preexisting LC-QuAD dataset grounded in DBpedia, spanning 5042 entities and 615 predicates. The resulting model was evaluated using the FAIR GERBIL QA framework resulting in 0.419 macro f-measure on LC-QuAD and 0.417 macro f-measure on QALD-7.
AbstractList Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language question to its corresponding SPARQL query. A common approach is to use query templates to generate SPARQL queries with slots that need to be filled. Using templates instead of running an extensive NLP pipeline or end-to-end model shifts the QA problem into a classification task, where the system needs to match the input question to the appropriate template. This paper presents an approach to automatically learn and classify natural language questions into corresponding templates using recursive neural networks. Our model was trained on 5000 questions and their respective SPARQL queries from the preexisting LC-QuAD dataset grounded in DBpedia, spanning 5042 entities and 615 predicates. The resulting model was evaluated using the FAIR GERBIL QA framework resulting in 0.419 macro f-measure on LC-QuAD and 0.417 macro f-measure on QALD-7.
Author Usbeck, Ricardo
Ngomo, Axel-Cyrille Ngonga
Bansal, Srividya K.
Athreya, Ram G
Author_xml – sequence: 1
  givenname: Ram G
  surname: Athreya
  fullname: Athreya, Ram G
  email: rgathrey@asu.edu
  organization: SCIDSE, Arizona State University,Mesa,Arizona,USA
– sequence: 2
  givenname: Srividya K.
  surname: Bansal
  fullname: Bansal, Srividya K.
  email: skbansa2@asu.edu
  organization: SCIDSE, Arizona State University,Mesa,Arizona,USA
– sequence: 3
  givenname: Axel-Cyrille Ngonga
  surname: Ngomo
  fullname: Ngomo, Axel-Cyrille Ngonga
  email: axel.ngonga@upb.de
  organization: Data Science Group, Paderborn University,Germany
– sequence: 4
  givenname: Ricardo
  surname: Usbeck
  fullname: Usbeck, Ricardo
  email: ricardo.usbeck@iais.fraunhofer.de
  organization: Fraunhofer IAIS,Dresden,Germany
BookMark eNotzM1OhDAUQOGa6MIZfQJd8AJgL20v7ZIQfyaZaFT2k1u4mEYGJhSc-PZqxs35dmclzodxYCFuQWYA0t1tqvfKSFSQ5TKHTEqp4UysoMgtWOtccSnKmveHnmZOPUVuk9eF4xzGISmHeOQpDB_JEv_6xs0yxfDFyTMvE_W_zMdx-oxX4qKjPvL1v2tRP9zX1VO6fXncVOU2DTm6OSVD3gKhBERmo22n8k4xgjIKvWyUaXRRsNektGeDgI6owLbhtvVk1VrcnLaBmXeHKexp-t45hRqVUz8yzUd6
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSC50631.2021.00041
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188997
9781728188997
EndPage 198
ExternalDocumentID 9364639
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i269t-a5ab81a60166ee548f32f3e613536b0c35c477eb4a34be56169aa76dceddba83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:48:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-a5ab81a60166ee548f32f3e613536b0c35c477eb4a34be56169aa76dceddba83
PageCount 4
ParticipantIDs ieee_primary_9364639
PublicationCentury 2000
PublicationDate 2021-Jan.
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationTitle 2021 IEEE 15th International Conference on Semantic Computing (ICSC)
PublicationTitleAbbrev ICSC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9509554
Snippet Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language...
SourceID ieee
SourceType Publisher
StartPage 195
SubjectTerms Knowledge discovery
Linked data
Natural languages
Neural networks
Pipelines
Question Answering
Recursive Neural Network
Semantics
Task analysis
Title Template-based Question Answering using Recursive Neural Networks
URI https://ieeexplore.ieee.org/document/9364639
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_Dotkl3s2mOpViqUBGt0FvZj4mINS02RfDXO7OpFcWDpywhsNndwJuZvPeGsQtlEHQAMHLLnBMqz2JhEQgE5QYGXJ4nlrTD41s9elQ302RaY5dbLQwABPIZtGkY_uX7hVtTqayTSa0QUeusjp9ZpdXaqOHiKOtcDx4GCSIuZX3dONhwxj96pgTIGO6y8ddkFVPkpb0ubdt9_PJh_O_b7LHWtziP321hZ5_VoGiy_gRel3OMGwXBkuehjolbzvvF6j24DXJiuD_xe6qvE2Wdky2HmeMl8MBXLTYZXk0GI7HpjiCeuzorhUmM7cWG7FQ0ACYeuezmEjQ1stA2cjJxKk3BKiOVBQyTdGZMqr0D763pyQPWKBYFHDLurXRpT0aYZOf4qLFRnPsUAxVnZALKH7EmrX62rPwvZpuFH_99-4Tt0P5XZYpT1ijf1nCGwF3a83Bin132nDA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0oHvSkBozf9uDRQstut_RIiAQUiNGacCP7MTVGLERKTPz1zm4Ro_HgaZvNJu3uHt7M9L03AJdcEuggUuSWaO3zLAl9RUDg29xAos6ySFnt8HAkeo_8ZhyNN-BqrYVBREc-w7p9dP_yzUwvbamskTDBCVE3YYtwn0elWmulhwuDpNHvPHQiwlyb9zVDZ8QZ_uia4kCjuwvDr9eVXJGX-rJQdf3xy4nxv9-zB7VveZ53twaefdjAvArtFF_nU4ocfQtMxnOVTDp0r50v3p3foGc57k_eva2wW9K6Z4055JQGxwRf1CDtXqednr_qj-A_N0VS-DKSqhVKa6giECn1yFgzYyhsKwuhAs0izeMYFZeMK6RASSRSxsJoNEbJFjuASj7L8RA8o5iOWyygNDujpVIFYWZiClW0ZBFycwRVu_vJvHTAmKw2fvz39AVs99LhYDLoj25PYMfeRVm0OIVK8bbEM4LxQp272_sEu0mffQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+15th+International+Conference+on+Semantic+Computing+%28ICSC%29&rft.atitle=Template-based+Question+Answering+using+Recursive+Neural+Networks&rft.au=Athreya%2C+Ram+G&rft.au=Bansal%2C+Srividya+K.&rft.au=Ngomo%2C+Axel-Cyrille+Ngonga&rft.au=Usbeck%2C+Ricardo&rft.date=2021-01-01&rft.pub=IEEE&rft.spage=195&rft.epage=198&rft_id=info:doi/10.1109%2FICSC50631.2021.00041&rft.externalDocID=9364639