Template-based Question Answering using Recursive Neural Networks
Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language question to its corresponding SPARQL query. A common approach is to use query templates to generate SPARQL queries with slots that need to be fil...
Saved in:
Published in | 2021 IEEE 15th International Conference on Semantic Computing (ICSC) pp. 195 - 198 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICSC50631.2021.00041 |
Cover
Abstract | Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language question to its corresponding SPARQL query. A common approach is to use query templates to generate SPARQL queries with slots that need to be filled. Using templates instead of running an extensive NLP pipeline or end-to-end model shifts the QA problem into a classification task, where the system needs to match the input question to the appropriate template. This paper presents an approach to automatically learn and classify natural language questions into corresponding templates using recursive neural networks. Our model was trained on 5000 questions and their respective SPARQL queries from the preexisting LC-QuAD dataset grounded in DBpedia, spanning 5042 entities and 615 predicates. The resulting model was evaluated using the FAIR GERBIL QA framework resulting in 0.419 macro f-measure on LC-QuAD and 0.417 macro f-measure on QALD-7. |
---|---|
AbstractList | Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language question to its corresponding SPARQL query. A common approach is to use query templates to generate SPARQL queries with slots that need to be filled. Using templates instead of running an extensive NLP pipeline or end-to-end model shifts the QA problem into a classification task, where the system needs to match the input question to the appropriate template. This paper presents an approach to automatically learn and classify natural language questions into corresponding templates using recursive neural networks. Our model was trained on 5000 questions and their respective SPARQL queries from the preexisting LC-QuAD dataset grounded in DBpedia, spanning 5042 entities and 615 predicates. The resulting model was evaluated using the FAIR GERBIL QA framework resulting in 0.419 macro f-measure on LC-QuAD and 0.417 macro f-measure on QALD-7. |
Author | Usbeck, Ricardo Ngomo, Axel-Cyrille Ngonga Bansal, Srividya K. Athreya, Ram G |
Author_xml | – sequence: 1 givenname: Ram G surname: Athreya fullname: Athreya, Ram G email: rgathrey@asu.edu organization: SCIDSE, Arizona State University,Mesa,Arizona,USA – sequence: 2 givenname: Srividya K. surname: Bansal fullname: Bansal, Srividya K. email: skbansa2@asu.edu organization: SCIDSE, Arizona State University,Mesa,Arizona,USA – sequence: 3 givenname: Axel-Cyrille Ngonga surname: Ngomo fullname: Ngomo, Axel-Cyrille Ngonga email: axel.ngonga@upb.de organization: Data Science Group, Paderborn University,Germany – sequence: 4 givenname: Ricardo surname: Usbeck fullname: Usbeck, Ricardo email: ricardo.usbeck@iais.fraunhofer.de organization: Fraunhofer IAIS,Dresden,Germany |
BookMark | eNotzM1OhDAUQOGa6MIZfQJd8AJgL20v7ZIQfyaZaFT2k1u4mEYGJhSc-PZqxs35dmclzodxYCFuQWYA0t1tqvfKSFSQ5TKHTEqp4UysoMgtWOtccSnKmveHnmZOPUVuk9eF4xzGISmHeOQpDB_JEv_6xs0yxfDFyTMvE_W_zMdx-oxX4qKjPvL1v2tRP9zX1VO6fXncVOU2DTm6OSVD3gKhBERmo22n8k4xgjIKvWyUaXRRsNektGeDgI6owLbhtvVk1VrcnLaBmXeHKexp-t45hRqVUz8yzUd6 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSC50631.2021.00041 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728188997 9781728188997 |
EndPage | 198 |
ExternalDocumentID | 9364639 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i269t-a5ab81a60166ee548f32f3e613536b0c35c477eb4a34be56169aa76dceddba83 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:48:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i269t-a5ab81a60166ee548f32f3e613536b0c35c477eb4a34be56169aa76dceddba83 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9364639 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan. |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE 15th International Conference on Semantic Computing (ICSC) |
PublicationTitleAbbrev | ICSC |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9509554 |
Snippet | Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 195 |
SubjectTerms | Knowledge discovery Linked data Natural languages Neural networks Pipelines Question Answering Recursive Neural Network Semantics Task analysis |
Title | Template-based Question Answering using Recursive Neural Networks |
URI | https://ieeexplore.ieee.org/document/9364639 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_Dotkl3s2mOpViqUBGt0FvZj4mINS02RfDXO7OpFcWDpywhsNndwJuZvPeGsQtlEHQAMHLLnBMqz2JhEQgE5QYGXJ4nlrTD41s9elQ302RaY5dbLQwABPIZtGkY_uX7hVtTqayTSa0QUeusjp9ZpdXaqOHiKOtcDx4GCSIuZX3dONhwxj96pgTIGO6y8ddkFVPkpb0ubdt9_PJh_O_b7LHWtziP321hZ5_VoGiy_gRel3OMGwXBkuehjolbzvvF6j24DXJiuD_xe6qvE2Wdky2HmeMl8MBXLTYZXk0GI7HpjiCeuzorhUmM7cWG7FQ0ACYeuezmEjQ1stA2cjJxKk3BKiOVBQyTdGZMqr0D763pyQPWKBYFHDLurXRpT0aYZOf4qLFRnPsUAxVnZALKH7EmrX62rPwvZpuFH_99-4Tt0P5XZYpT1ijf1nCGwF3a83Bin132nDA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0oHvSkBozf9uDRQstut_RIiAQUiNGacCP7MTVGLERKTPz1zm4Ro_HgaZvNJu3uHt7M9L03AJdcEuggUuSWaO3zLAl9RUDg29xAos6ySFnt8HAkeo_8ZhyNN-BqrYVBREc-w7p9dP_yzUwvbamskTDBCVE3YYtwn0elWmulhwuDpNHvPHQiwlyb9zVDZ8QZ_uia4kCjuwvDr9eVXJGX-rJQdf3xy4nxv9-zB7VveZ53twaefdjAvArtFF_nU4ocfQtMxnOVTDp0r50v3p3foGc57k_eva2wW9K6Z4055JQGxwRf1CDtXqednr_qj-A_N0VS-DKSqhVKa6giECn1yFgzYyhsKwuhAs0izeMYFZeMK6RASSRSxsJoNEbJFjuASj7L8RA8o5iOWyygNDujpVIFYWZiClW0ZBFycwRVu_vJvHTAmKw2fvz39AVs99LhYDLoj25PYMfeRVm0OIVK8bbEM4LxQp272_sEu0mffQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+15th+International+Conference+on+Semantic+Computing+%28ICSC%29&rft.atitle=Template-based+Question+Answering+using+Recursive+Neural+Networks&rft.au=Athreya%2C+Ram+G&rft.au=Bansal%2C+Srividya+K.&rft.au=Ngomo%2C+Axel-Cyrille+Ngonga&rft.au=Usbeck%2C+Ricardo&rft.date=2021-01-01&rft.pub=IEEE&rft.spage=195&rft.epage=198&rft_id=info:doi/10.1109%2FICSC50631.2021.00041&rft.externalDocID=9364639 |